Adversarial Distributional Training for Robust

Deep Learning

Introduction

Adversarial training (AT) is among the most effective techniques to
improve model robustness, which can be formulated as
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Parameterizing Adversarial Distributions

Experiments

Settings: CIFAR-10 with Wide-ResNet-28-10, e = 8/255
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point drawn from it is likely an adversarial example.
The outer minimization aims to adversarially train the model parameters by
minimizing the expected loss over the worst-case adversarial distributions.
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Loss landscape visualization

ADTgxp.am: @amortizing the inner optimization of ADTexp by using a

Note that conditional generator network. We learn a generator g, that takes a natural

loss

example x; as input, and outputs the parameters {u;, o;} of the adversarial
distribution.
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indicating that ADT will degenerate into AT.
Therefore, we add an entropic regularization term into the objective as
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ADT,yp-am: Using implicit distributions to characterize the adversarial
1 o 51 6 perturbations. We implicitly define a conditional adversarial distribution as
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Model |Dominant eigenvalue
Standard 1.8301+6.3663
ATpcp 0.0242+0.0478
ADTexp 0.0180+0.0311
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ADTivp-am 0.0211+0.0353
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(é) ADTEXP-AM

We instead maximize the variational lower bound of the entropy. (f) Comparison on the Hessian
Advantages: Diversity of Adversarial Examples Conclusion
« ADT can characterize diverse adversarial examples, many of which may | T e 6D e
be generated by different attacks, such that ADT leads to better - | e Exp - | e Exp | ® EXP « We proposed adversarial distribution training (ADT) framework for

learning robust models.
 We introduced three ways to parameterize the adversarial distributions
« We performed extensive experiments to validate the effectiveness of our

generalizability across attacks.

« The adversarial distributions in ADT can better explore the space of
possible adversarial examples, leading to better robustness
performance.

proposed methods.

« Qur code is available at:




