
Learning Accurate Low-bit Deep Neural
Networks with Stochastic Quantization

Yinpeng Dong1, Renkun Ni2, Jianguo Li3, Yurong Chen3, Jun Zhu1, and Hang Su1
1 Department of Computer Science and Technology, Tsinghua University, Beijing, China

2 University of Virginia
3 Intel Labs China, Beijing, China

Introduction

BinaryConnect: Quantize 32-bits weights Wi to binary values Bi.

Bji =

+1 with probability p = σ(Wj
i),

−1 with probability 1− p.
(1)

BWN: Introduce a scaling factor α ∈ R+ along with Bi to approximate Wi.

Bi = sign(Wi) and α =
1

d

∑d

j=1
|Wj

i|. (2)

TWN: Approximates Wi with a ternary value vector Ti ∈ {1, 0,−1}d along with
a scaling factor α.

Tji =


+1 if Wj

i > ∆

0 if |Wj
i| ≤ ∆

−1 if Wj
i < −∆

and α =
1

|I∆|
∑
i∈I∆

|Wj
i|, (3)

where ∆ is a positive threshold with following values

∆ =
0.7

d

∑d

j=1
|Wj

i|, (4)

I∆ = {j | |Wj
i| > ∆} and |I∆| denotes the cardinality of set I∆.

Motivations: Previous methods quantize the weights to low-bits all together.
The quantization error is not consistently small for all elements/filters. The
large quantization error for some elements/filters lead to inappropriate gradi-
ent direction during training, thus makes the model converge to worse local
minimum.

Stochastic Quantization

1.3 -1.1 0.75 0.85

0.95

1.4

-1.2

-0.9 1.05 -1.0

-0.9

0.8

-0.8 0.9

1.0 -1.0

0.2

0.05

0.2

0.1

Selection
Point

C1

C2

C3

C4 1-st selection: v=0.58
C2 selected

Rotation

Selection
Point

2-nd selection: v=0.37
C3 selected

Rotation
1.3 -1.1 0.75 0.85

1

1

-1.2

-1 1 -1

-1

0.8

-1 1

1.0 -1.0

Weight Matrix Quantization Error Stochastic Partition with r = 50% Hybrid Weight Matrix

Figure 1: Illustration of the stochasitc quantization procedure.

Quantization Error: The normalized L1 distance between Wi and Qi (e.g., Bi,
Ti).

ei =
‖Wi −Qi‖1
‖Wi‖1

. (5)

Quantization Probability pi: Inversely proportional to ei (e.g., linear, sigmoid
functions of 1/ei).
Quantization Ratio r: A portion of weights to quantize. r gradually increases
to 100% at the end of training.
Stochastic Partition: Partition the rows of W into two disjoint groups Gq =

{Wq1, · · · ,WqNq} and Gr = {Wr1, · · · ,WrNr} (Nq = r × m), which should
satisfy

Gq ∪Gr =W and Gq ∩Gr = ∅, (6)
Training: Form the hybrid weight matrix Q̃t, where each row Q̃i = Wi if
Wi ∈ Gr; else Q̃i = Qi. Update W with the hybrid gradients ∂L

∂Q̃t in each
iteration as

Wt+1 =Wt − ηt
∂L
∂Q̃t

, (7)
Inference: Use the low bitwidth weights Q during inference.

Codes: https://github.com/dongyp13/Stochastic-Quantization.

Experiments

Ablation Study
Several factors in the algorithm will affect the overall performance like:

• Selection granularity: element-wise or channel-wise.
• Partition algorithm: stochastic partition—roulette algorithm;

deterministic partition—sorting; fixed partition—select once.
• Quantization probability function: constant—pi = 1/m;
linear—pi = fi/

∑
j fj; softmax—pi = exp(fi)/

∑
j exp(fj);

sigmoid—pi = 1/(1+exp(−fi)), where fi = 1/(ei+ε).
• Scheme for updating SQ ratio r:
exponential—r = 50%, 75%, 87.5% and 100%;
average—r = 20%, 40%, 60%, 80% and 100%;
fine-tune—r = 0%, 50%, 75%, 87.5% and 100%.

Channel-wise vs. Element-wise
Channel-wise Element-wise

SQ-BWN 7.15 7.67
SQ-TWN 6.20 6.53

Stochastic vs. Deterministic vs. Fixed
Stochastic Deterministic Fixed

SQ-BWN 7.15 8.21 *
SQ-TWN 6.20 6.85 6.50

Quantization Probability Function
Linear Constant Softmax Sigmoid

SQ-BWN 7.15 7.44 7.51 7.37
SQ-TWN 6.20 6.30 6.29 6.28

Update Stochastic Quantization Ratio
Exponential Average Fine-Tune

SQ-BWN 7.15 7.35 7.18
SQ-TWN 6.20 6.88 6.62

Benchmark Results

CIFAR

Bits CIFAR-10 CIFAR-100
VGG-9 ResNet-56 VGG-9 ResNet-56

FWN 32 9.00 6.69 30.68 29.49
BWN 1 10.67 16.42 37.68 35.01

SQ-BWN 1 9.40 7.15 35.25 31.56
TWN 2 9.87 7.64 34.80 32.09

SQ-TWN 2 8.37 6.20 34.24 28.90

ImageNet

Bits AlexNet-BN ResNet-18
top-1 top-5 top-1 top-5

FWN 32 44.18 20.83 34.80 13.60
BWN 1 51.22 27.18 45.20 21.08

SQ-BWN 1 48.78 24.86 41.64 18.35
TWN 2 47.54 23.81 39.83 17.02

SQ-TWN 2 44.70 21.40 36.18 14.26

British Machine Vision Conference, September, 2017, London

https://github.com/dongyp13/Stochastic-Quantization

