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Adversarial Examples in Computer Vision
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Not only in Computer Vision

Movie Review (Positive (POS) <> Negative (NEG))

Original (Label: NEG)
Attack (Label: POS)

The characters, cast in impossibly contrived situations, are totally estranged from reality.
The characters, cast in impossibly engineered circumstances, are fully estranged from reality.

Original (Label: POS)

It cuts to the knot of what it actually means to face your scares, and to ride the overwhelming metaphorical
wave that life wherever it takes you.

Attack (Label: NEG) It cuts to the core of what it actually means to face your fears, and to ride the big metaphorical wave that
life wherever it takes you.
SNLI (Entailment (ENT), Neutral (NEU), Contradiction (CON))
Premise Two small boys in blue soccer uniforms use a wooden set of steps to wash their hands.
Original (Label: CON) The boys are in band uniforms.
Adversary (Label: ENT)  The boys are in band garment.
Premise A child with wet hair is holding a butterfly decorated beach ball.
Original (Label: NEU) The child is at the beach.
Adversary (Label: ENT)  The youngster is at the shore.
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Reinforcement Learning (Lin et al. IJCAI 2017)
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Max-Mahalanobis Training

Part |

(Max-Mahalanobis Linear Discriminant Analysis Networks, ICML 2018)



Motivation

* Paradigm of feed-forward deep nets

Non-linear Linear
Transformation Classifier

Active area of research Much less active

(AlexNet; VGG nets; ResNets; (Softmax regression)
GoogleNets; DenseNets;)



Inspiration one: LDA is more efficient than LR

* Efron et al.(1975) show that if the input distributes as a mixture of
Gaussian, then linear discriminant analysis (LDA) is more efficient
than logistic regression (LR).

LDA needs less training data than LR to obtain certain error rate

* However, in practice data points hardly distributes as a mixture of
Gaussian in the input space.



Inspiration two: neural networks are powerful

* Deep generative models (e.g., GANs) are successful.

Deep generative models
—

DNN
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Inspiration two: neural networks are powerful

* Deep generative models (e.g., GANs) are successful.

* The reverse direction should also be feasible.
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(MM-LDA networks) o
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Our method

* Models the feature distribution in DNNs as a mixture of Gaussian.

* Applies LDA on the feature to make predictions.



How to treat the Gaussian parameters? E%
'

* Wan et al. (CVPR 2018) also model the feature distribution as a
mixture of Gaussian. However, they treat the Gaussian parameters
(1; and X) as extra trainable variables.

* We treat them as hyperparameters calculated by our algorithm,
which can provide theoretical guarantee on the robustness.

* The induced mixture of Gaussian model is named Max
Mahalanobis Distribution (MMD).



Max-Mahalanobis Distribution (MMD) ;%

* Making the minimal Mahalanobis distance between two
Gaussian components maximal.
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Robustness w.r.t Gaussian parameters
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Distributing as a MMD can maximize RB.



Can we further improve MMLDA?



Max-Mahalanobis Training

Part i

(Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness, ICLR 2020)



Motivation
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The same dataset, e.g., CIFAR-10, which enables good standard accuracy

may not suffice to train robust models.

(Schmidt et al. NeurlPS 2018)
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* Introducing extra labeled data
(Hendrycks et al. ICML 2019)

* Introducing extra unlabeled data
(Alayrac et al. NeurlIPS 2019; Carmon et al. NeurlPS 2019)



Possible Solutions %%
r

* Introducing extra labeled data
(Hendrycks et al. ICML 2019)

* Introducing extra unlabeled data
(Alayrac et al. NeurlIPS 2019; Carmon et al. NeurlPS 2019)

* Our solution: Increase sample density to induce locally
sufficient training data for robust learning



Sample Density

Given a training dataset D with N input-label pairs, and the feature mapping Z trained by the
objective L(Z(x),y) on this dataset, we define the sample density nearby the feature point z = Z(z)
following the similar definition in physics (Jackson, 1999) as

AN
SD(z) = ————. 2
) = Yol(aB) )
Here Vol(-) denotes the volume of the input set, A B is a small neighbourhood containing the feature
point z, and AN = |Z(D) N AB| is the number of training points in A B, where Z(D) is the set of

all mapped features for the inputs in D. Note that the mapped feature 2 is still of the label y.
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Generalized Softmax Cross Entropy Loss (g-SCE loss) %%
O}
We define g-SCE loss as
Lesce(Z(x),y) = —1; log [softmax(h)], Including MIMLDA
where h;, = —(z — ,uz-)TEz-(z — u;) + B; is the logits in quadratic form.
We note that the SCE loss is included in the family of g-SCE loss as
exp(W;' 2 + b;) exp(—llz — 3Will3 + b + 7[|Will3)

softmax(Wz + b); = = .
( ) e e&PW 2 +b) Y exp(=llz — sWill3 + b + z[[Will3)




Induced Sample Density of g-SCE Loss

Theorem 1. (Proof in Appendix A.1) Given (z,y) € D, ;, 2 = Z(z) and Ly.sce(z,y) = C, if there

are Y, = oyl, X5 = o1, and oy, # 0y, then the sample density nearby the feature point z based on
the approximation in Eq. (6) is

N, :-p,:(C Mur—pzl2  Bp—B:
B. - log(C.—1) | 2 ’ (O'k—O',;) Ok — 0
k',k:+ Or—0F

where for the input-label pair in Dy, ;, there is Lq.sce ~ py, ;,(¢).
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The ‘Curse’ of Softmax Function n%

Lesce(Z(x),y) = —1; log [softmax(h)],

U

* The softmax makes the loss value only depend on the relative relation among logits.

* This causes indirect and unexpected supervisory signals on the learned features.



Our Method: Max-Mahalanobis Center (MMC) Loss

'/exp(_ lz—p3l13y D ]
LMMLDA(Z(m),y) =(— lOg = — log
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Lvmve(Z(z),y) = §||Z — M;”g

* No softmax normalization




Induced Sample Density of MMC Loss E%

Theorem 2. (Proof in Appendix A.2) Given (z,y) € Dy, z = Z(z) and Lyyc(z,y) = C, the
sample density nearby the feature point z is

SD(z) N .ﬁc), )

C =
where for the input-label pair in Dy, there is Lypc ~ pr(c).
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Toy Demo on Faster Convergence

Center loss o ©

MMC loss

Full-batch Mini-batch 20/1000

Mini-batch 5/1000



Empirical Faster Convergence
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White-box Robustness (Adaptive Attacks)
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Perturbation ¢ = 8 /255 Perturbation ¢ = 16/255

Methods Clean | PGDY¥ | PGDY | PGDY | PGDY | PGDY | PGD: | PGDY" | PGDS
SCE 92.9 <1 3.7 <1 3.6 <1 2.9 <1 2.6
Center loss 92.8 <1 4.4 <1 4.3 <1 3.1 <1 2.9
MMLDA 92.4 <1 16.5 <1 9.7 <1 6.7 <1 5.5
L-GM 92.5 37.6 19.8 8.9 4.9 26.0 11.0 2.5 2.8
MMC-10 (rand) 92.3 43.5 29.2 20.9 18.4 31.3 17.9 8.6 11.6
MMC-10 92.7 48.7 36.0 26.6 24.8 36.1 25.2 13.4 17.5
AT (SCE) 83.7 70.6 49.7 69.8 47.8 48.4 26.7 31.2 16.0
AT? (MMC-10) | 83.0 69.2 54.8 67.0 53.5 58.6 47.3 44.7 45.1
ATY) (SCE) 80.9 69.8 554 69.4 53.9 53.3 34.1 38.5 21.5
AT MMC-10) | 81.8 70.8 56.3 70.1 55.0 54.7 37.4 39.9 27.7

CIFAR-10
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Towards Robust Detection of Adversarial Examples

(Towards Robust Detection of Adversarial Examples, NeurlPS 2018)



We Detect Adversarial Examples, and How? E%
¢

Design new detectors:

e Kernel density detector (Feinman et al. 2017)
e LID detector (Ma et al. ICLR 2018)

Train the models to better collaborate with existing detectors



Reverse Cross Entropy %%
'
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Cross-Entropy (CE): | Reverse Cross-Entropy (RCE):
| 1,: One-hot label . R, : Reverse label
0001000000 1114111111
2eg8g8ggsd { } I!alc!!ll:”r {9’9’9’0’9’9’9’9’9’9}

)
)
by

I
I

-\

<

P

=)
oQ
~

"
—

>
)
)
try

I

I

-

<

o

=)
oQ
~

-y
—



The RCE Training Method

Phase 1: Reverse Training
Training the model by minimizing the RCE loss

Phase 2: Reverse Logits
Negating the logits fed to the softmax layer to give predictions
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Theoretical Analysis %%
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Theorem 2. (Proof in Appendix A) Let (x,y) be a given training data. Under the Lo.-norm, if there
is a training error & < 1 that ||S(Z,e(x, 0%)) — Ryl < o, then we have bounds

IS(=Zpre (@, 07)) = Lyl < (L = 1)%,
and Vj.k # y,

S(=Zpre(@,0%)); — S(=Zpre (@, 0F) )| < 20°(L = 1)%

Property 1: Consistent and Unbiased
When the training error &« — 0, the prediction tends to the one-hot label

Property 2: Tighter Bound
The difference between any two non-maximal elements decreases as O(a?)



The Insights of RCE Training

We first define the non-maximal entropy (non-ME) as:

nonME(x) = — z F(x); 10g(ﬁ(x)i) ,

ERY

where F(x); is the normalized non-maximal predictions.

RCE training encourages the maximal prediction to tend to 1,
while maximizing the non-ME.
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The Insights of RCE Training E%
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Decision

1" The left plot is the decision domain in 2-
® .’ d feature space for 3 classes (each class
‘o @ ® // with one color)
Isoline of \C\)\ ® o ,6/ ® Isoline of
non-ME=t S non-ME=t

When the non-ME of the returned
predictions are maximized, the learned
features for each class with tend to
locate near the black dash lines, where
the points on the dash lines have the
maximal non-ME.
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The Insights of RCE Training

Decision
boundary

® .
. O //
LR ® ®- ® Then if an adversary want to craft an
~ .
fsoline of "~ @ ®.6 oineof adversarial example based on z, he has
non-ME=t non t

to move further to z, rather than z4 to
obtain a normal value of non-ME.
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boundary input z,



The Insights of RCE Training

® Normal examples
@ Adversarial examples that succeed to fool detector
O Adversarial examples that fail to fool detector

Detector allowable region

.\.-/

Detector allowable region

.\.I/

Detector allowable region Detector allowable region

CE RCE

In practice, the learned low-dimensional feature distributions by RCE make it
more difficult to craft an adversarial examples with normal values of non-ME.



Experiments

CE RCE

t-SNE visualization of learned features on CIFAR-10
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Our New Work --- Bag of Tricks for Adversarial Training

Table 1: Hyperparameter settings and tricks used to implement different AT methods on CIFAR-10.
BAG OF TRIC KS FOR ADVERSARIAL TRAIN ING We convert the training steps into epochs, and provide code links for reference in Table 11. Compared

to the model architectures, the listed settings are easy to be neglected and paid less attention to unify.

Tianyu Pang, Xiao Yang, Yinpeng Dong, Hang Su, Jun Zhu Method Lr. '{f;al dZE:Ch Barch | Weight | Earlystop | Warm-up
. . . . I. y) size decay |(train/ attack)|(l.r. / pertub.)

Department of Computer Science & Technology, Tsinghua University Madry et al. (2018) 01 200 (100, 150) 128 T2 x 102 No/ No No/No

{ptyl7,yangxiaol9,dypl7}@mails.tsinghua.edu.cn, {suhangss,dcszj}@mail.tsinghua.edu.cn Cai et al. (2018) 0.1 300 (150’ 250) 200 | 5 x 10—4 No / No No / Yes

Zhang et al. (2019b) 0.1 76 (75) 128 | 2 x 1074 Yes / No No/No

Wang et al. (2019) 0.01 120 (60, 100) 128 | 1x1074 No/ Yes No/No

ABSTRACT Qin et al. (2019) 0.1 110 (100,105) | 256 | 2x10*| No/No No / Yes

-4

Adversarial training (AT) is one of the most effective strategies for promoting g;;?nait(;og()n 9) 81 100 ?go(sfge 2?131eal) 25506 g z 18_4 Eg ; Eg Eg;gg

model robustness. However, recent benchm:arks show that most of the _prpposed Alayrac et al. (2019) | 0.2 64 (38, 46, 51) 128 | 5% 104 No / No No / No

improvements on AT are less effective than simply early stopping the training pro- Shafahi et al. (2019b) | 0.1 200 (100, 150) 128 | 2 x 10-% No / No No /No

cedure. This counter-intuitive fact motivates us to investigate the implementation Zhang et al. (20192) | 0.05 | 105 (79, 96, 100) | 256 | 5x10~%| No/No No / No

details of tens of AT methods. Surprisingly, we find that the basic settings (e.g., Zhang & Wang (2019)| 0.1 200 (60, 90) 60 | 2x104 No / No No / No

weight decay, training schedule, etc.) used in these methods are highly inconsistent. Atzmon et al. (2019) | 0.01 100 (50) 32 [1x107%| No/No No / No

In this work, we provide comprehensive evaluations on CIFAR-10, focusing on the Wong et al. (2020) 0~0.2 30 (one cycle) 128 | 5 x 1074 No/ No Yes / No

effects of mostly overlooked training tricks and hyperparameters for adversarially Rice et al. (2020) 0.1 200 (100, 150) 128 | 5x107* | Yes/No No/No

trained models. Our empirical observations suggest that adversarial robustness is Ding et al. (2020) 0.3 128 (51,77,102) | 128 |2 x 1074 No/No No/No

much more sensitive to some basic training settings than we thought. For example, Pang et al. (2020a) 0.01 200 (100, 150) 50 |1x10°¢ No/No No/No

a slightly different value of weight decay can reduce the model robust accuracy by Zhang et al. (2020) 0.1 120(60,90,110) | 128 |2 x 10~* | No/ Yes No/No

more than 7%, which is probable to override the potential promotion induced by Huang et al. (2020) 0.1 | 200 (cosine anneal) | 256 | 5x 10~* | No/No Yes / No

the proposed methods. We conclude a baseline training setting and re-implement Cheng et al. (2020) 0.1 | 200(80,140,180) | 128 | 5x107* | No/No No/No

previous defenses to achieve new state-of-the-art results'. These facts also appeal Lee et al. (2020) 0.1 200 (100, 150) 128 | 2x107* | No/No No/No

to more concerns on the overlooked confounders when benchmarking defenses. Xu et al. (2020) 0.1 120 (60, 90) 256 | 1x10~* | No/No No/No




Our New Work --- Bag of Tricks for Adversarial Training
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Our New Work --- Bag of Tricks for Adversarial Training

Table 16: We retrieve the results of top-rank methods from https://github.com/fra31l/
auto—-attack. All the methods listed below do not require additional training data on CIFAR-10.
Here the model of Ours (TRADES) corresponds to lines of weight decay 5 x 10~%, eval BN mode
and ReLU activation in Table 9, which only differs from the original TRADES in weight decay. We
run our methods 5 times with different random seeds, and report the mean and standard deviation.

Threat model: {, constraint, € = 8/255

Method Architecture Clean AA
Ours (TRADES) WRN-34-20 86.43 54.39
Ours (TRADES) WRN-34-10 | 85.49 +0.24 | 53.94 +0.10
Pang et al. (2020c) WRN-34-20 85.14 53.74
Zhang et al. (2020) | WRN-34-10 84.52 53.51
Rice et al. (2020) WRN-34-20 85.34 53.42
Qin et al. (2019) WRN-40-8 86.28 52.84
Threat model: ¢, constraint, € = 0.031

Method Architecture Clean AA
Ours (TRADES) WRN-34-10 | 85.45 +0.09 | 54.28 + 0.24
Huang et al. (2020) | WRN-34-10 83.48 53.34
Zhang et al. (2019b) | WRN-34-10 84.92 53.08




Our New Work --- Bag of Tricks for Adversarial Training

Takeaways:

(i) Slightly different values of weight decay could largely affect the robustness of trained models;
(ii) Moderate label smoothing and linear scaling rule on L.r. for different batch sizes are beneficial;
(1ii) Applying eval BN mode to craft training adversarial examples can avoid blurring the distribution;
(iv) Early stopping the adversarial steps or perturbation may degenerate worst-case robustness;

(v) Smooth activation benefits more when the model capacity is not enough for adversarial training.

Paper: https://arxiv.org/pdf/2010.00467.pdf

Code: https://github.com/P2333/Bag-of-Tricks-for-AT
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