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Adversarial Examples

Alps: 94.39% Dog: 99.99%

Puffer: 97.99% Crab: 100.00%

n Szegedy et al 2013: Intriguing properties of neural networks.
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Overview (White-box Attacks)

• One-step FGSM (Goodfellow et al., 2015)

𝑥∗ = 𝑥 + 𝜖 ⋅ sign(𝛻"𝐿(𝑥, 𝑦))

• Iterative FGSM (I-FGSM, Kurakin et al., 2016)

𝑥#∗ = 𝑥, 𝑥$%&∗ = clip(𝑥$∗ + α ⋅ sign 𝛻"𝐿 𝑥$∗, 𝑦 )

• Optimization-based methods (Carlini and Wagner, 2017)

min𝑑 𝑥∗, 𝑥 − 𝐿(𝑥∗, 𝑦)

Constrained optimization of adversarial attacks:
argmax

!∗
𝐿 𝑥∗, 𝑦 𝑠. 𝑡. 𝑥∗ − 𝑥 # ≤ 𝜖
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Black-box Attacks (Transferability)

• Cross-model transferability (Liu et al., 2017)

• Cross-data transferability
(Moosavi-Dezfooli et al., 2017)

Universal adversarial perturbations

Seyed-Mohsen Moosavi-Dezfooli⇤†
seyed.moosavi@epfl.ch

Alhussein Fawzi⇤†
alhussein.fawzi@epfl.ch

Omar Fawzi‡
omar.fawzi@ens-lyon.fr

Pascal Frossard†

pascal.frossard@epfl.ch

Abstract

Given a state-of-the-art deep neural network classifier,
we show the existence of a universal (image-agnostic) and
very small perturbation vector that causes natural images
to be misclassified with high probability. We propose a sys-
tematic algorithm for computing universal perturbations,
and show that state-of-the-art deep neural networks are
highly vulnerable to such perturbations, albeit being quasi-
imperceptible to the human eye. We further empirically an-
alyze these universal perturbations and show, in particular,
that they generalize very well across neural networks. The
surprising existence of universal perturbations reveals im-
portant geometric correlations among the high-dimensional
decision boundary of classifiers. It further outlines poten-
tial security breaches with the existence of single directions
in the input space that adversaries can possibly exploit to
break a classifier on most natural images.1

1. Introduction
Can we find a single small image perturbation that fools

a state-of-the-art deep neural network classifier on all nat-
ural images? We show in this paper the existence of such
quasi-imperceptible universal perturbation vectors that lead
to misclassify natural images with high probability. Specif-
ically, by adding such a quasi-imperceptible perturbation
to natural images, the label estimated by the deep neu-
ral network is changed with high probability (see Fig. 1).
Such perturbations are dubbed universal, as they are image-
agnostic. The existence of these perturbations is problem-
atic when the classifier is deployed in real-world (and pos-
sibly hostile) environments, as they can be exploited by ad-
versaries to break the classifier. Indeed, the perturbation

⇤The first two authors contributed equally to this work.
†École Polytechnique Fédérale de Lausanne, Switzerland
‡ENS de Lyon, LIP, UMR 5668 ENS Lyon - CNRS - UCBL - INRIA,

Université de Lyon, France
1A video demonstrating the effect of universal perturbations on a smart-

phone can be found here.
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Figure 1: When added to a natural image, a universal per-
turbation image causes the image to be misclassified by the
deep neural network with high probability. Left images:
Original natural images. The labels are shown on top of
each arrow. Central image: Universal perturbation. Right
images: Perturbed images. The estimated labels of the per-
turbed images are shown on top of each arrow.
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Limitations of Black-box Attacks (1)

• FGSM have poor white-box attack ability;
• Iterative FGSM have poor transferability;
• The trade-off between transferability and attack

ability, makes black-box attacks less effective.
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• Attack Inception V3;
• Evaluate the success rates of

attacks on Inception V3,
Inception V4, Inception
ResNet V2, ResNet v2-152;

• ϵ = 16;
• 1000 images from ImageNet.
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Limitations of Black-box Attacks (2)

• Train a substitute network (Papernot et al., 2017) to
fully characterize the behavior of the black-box model
• Require full prediction confidence;
• Require tremendous queries;

• Hard to deploy for models trained on large-scale
dataset
• Impossible for cases without querying

• Our solution: alleviate the trade-off between
transferability and attack ability.
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Optimization with Momentum

• Constrained optimization of adversarial attacks:
argmax

0∗
𝐿 𝑥∗, 𝑦 𝑠. 𝑡. 𝑥∗ − 𝑥 2 ≤ 𝜖

• Accelerate gradient descent;
• Escape from poor local minima and maxima;
• Stabilize update directions of stochastic gradient

descent;
• Momentum can be used for adversarial attacks
• It is still a white-box attack method but has strong black-

box attack ability (transferability)
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Momentum Iterative FGSM

𝑥!∗ = 𝑥, 𝑥#$%∗ = clip(𝑥#∗ + α ⋅ sign 𝛻&𝐿 𝑥#∗, 𝑦 )

𝑥!∗ = 𝑥, 𝑔! = 0

𝑔#$% = 𝜇 ⋅ 𝑔# +
𝛻&𝐿 𝑥#∗, 𝑦
𝛻&𝐿 𝑥#∗, 𝑦 %

𝑥#$%∗ = clip(𝑥#∗ + 𝛼 ⋅ sign 𝑔#$% )

• 𝜇 is the decay factor;
• 𝑔# accumulates the gradient w.r.t. input space of the first t iterations;
• The current gradient is normalized.

Momentum
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Non-targeted Results

• 𝜖 = 16, 𝜇 = 1.0, 10 iterations
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Ablation Study
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Attacking an Ensemble of Models

• If an adversarial example remain adversarial for
multiple models, it is more likely to be misclassified by
other black-box models.
• Ensemble in logits

𝑙 𝑥 =$
!"#

$
𝑤!𝑙!(𝑥)

nThe loss is defined as
𝐽 𝑥, 𝑦 = −1% ⋅ log(softmax(𝑙(𝑥)))

• Comparisons:
• Ensemble in predictions: 𝑝 𝑥 = ∑'(%) 𝑤'𝑝'(𝑥)
• Ensemble in loss: 𝐽 𝑥, 𝑦 = ∑'(%) 𝑤'𝐽'(𝑥, 𝑦)
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Non-targeted Results (2)

n 𝜖 = 16, 𝜇 = 1.0, 20 iterations, equal ensemble weights



Max-Mahalanobis Linear
Discriminant Analysis Networks

Tianyu Pang, Chao Du and Jun Zhu

Department of Computer Science and Technology
Tsinghua University

ICML | 2018
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Motivation
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Motivation one

• Almost all popular networks suffer from 
adversarial attacks

From Dong et al. (2018)
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Motivation two

• Paradigm of feed-forward deep nets
Non-linear 

Transformation
Linear 

ClassifierInput Output
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Motivation two

• Paradigm of feed-forward deep nets
Non-linear 

Transformation
Linear 

ClassifierInput Output

Active area of research
(AlexNet; VGG nets; ResNets; 

GoogleNets; DenseNets;)
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Motivation two

• Paradigm of feed-forward deep nets
Non-linear 

Transformation
Linear 

ClassifierInput Output

Active area of research
(AlexNet; VGG nets; ResNets; 

GoogleNets; DenseNets;)

Much less active
(Softmax regression)
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• Design a new network architecture for 
better performance in the adversarial setting.

Our goal
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• Design a new network architecture for 
better performance in the adversarial setting.

• Substitute a new linear classifier for softmax 
regression (SR).

Our goal
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Our Method
(MM-LDA networks)
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• Efron et al.(1975) show that if the input distributes 
as a mixture of Gaussian,  then linear discriminant 
analysis (LDA) is more efficient than logistic 
regression (LR).

Inspiration one: LDA is more efficient than LR
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• Efron et al.(1975) show that if the input distributes 
as a mixture of Gaussian,  then linear discriminant 
analysis (LDA) is more efficient than logistic 
regression (LR).

LDA needs less training data than LR to obtain certain error rate

Inspiration one: LDA is more efficient than LR



29

• Efron et al.(1975) show that if the input distributes 
as a mixture of Gaussian,  then linear discriminant 
analysis (LDA) is more efficient than logistic 
regression (LR).

• However, in practice data points hardly distributes 
as a mixture of Gaussian in the input space.

LDA needs less training data than LR to obtain certain error rate

Inspiration one: LDA is more efficient than LR
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Inspiration two: Neural networks are powerful
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• Deep generative models (e.g., GANs) are 
successful.

Deep generative models

Simple Distribution
(Gaussian/Mixture of Gaussian)

Complex Distribution
(Data distribution)

DNN

Inspiration two: Neural networks are powerful
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• Deep generative models (e.g., GANs) are 
successful.

• The reverse direction should also be feasible.

Our Method
(MM-LDA networks)

Deep generative models

Simple Distribution
(Gaussian/Mixture of Gaussian)

Complex Distribution
(Data distribution)

DNN

Inspiration two: Neural networks are powerful
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The Solution

Our method 

• Models the feature distribution in DNNs as a 
mixture of Gaussian.

2020/12/17 MMLDA



34

The Solution

Our method 

• Models the feature distribution in DNNs as a 
mixture of Gaussian.

• Applies LDA on the feature to make predictions.

2020/12/17 MMLDA
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How to treat the Gaussian 
parameters?
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How to treat the Gaussian 
parameters?
• Wan et al. (CVPR 2018) also model the feature 

distribution as a mixture of Gaussian. However, 
they treat the Gaussian parameters (𝜇: and Σ) as 
extra trainable variables.
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How to treat the Gaussian 
parameters?
• Wan et al. (CVPR 2018) also model the feature 

distribution as a mixture of Gaussian. However, 
they treat the Gaussian parameters (𝜇: and Σ) as 
extra trainable variables.

• We treat them as hyperparameters calculated by 
our algorithm, which can provide theoretical 
guarantee on the robustness. 
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How to treat the Gaussian 
parameters?
• Wan et al. (CVPR 2018) also model the feature 

distribution as a mixture of Gaussian. However, 
they treat the Gaussian parameters (𝜇: and Σ) as 
extra trainable variables.

• We treat them as hyperparameters calculated by 
our algorithm, which can provide theoretical 
guarantee on the robustness. 

• The induced mixture of Gaussian model is named 
Max Mahalanobis Distribution (MMD).
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Max Mahalanobis Distribution (MMD)

• Making the minimal Mahalanobis distance 
between two Gaussian components maximal.

𝜇(

𝜇)

𝜇( 𝜇)
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𝜇(
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𝜇*
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𝐿 = 4
Regular 

Tetrahedron
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Definition of Robustness

• The robustness on a point with label 𝑖 (Moosavi-
Dezfoolo et al. , CVPR 2016): 

min
;<:

𝑑:,; ,

where 𝑑:,; is the local minimal distance of a point 
with label 𝑖 to an adversarial example with label 𝑗.
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Definition of Robustness

• The robustness on a point with label 𝑖 (Moosavi-
Dezfoolo et al. , CVPR 2016): 

min
;<:

𝑑:,; ,

where 𝑑:,; is the local minimal distance of a point 
with label 𝑖 to an adversarial example with label 𝑗.

• We further define the robustness of the classifier 
as:

𝐑𝐁 = min
:,;∈[?]

𝔼(𝑑:,;) .
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Robustness w.r.t Gaussian 
parameters

Theorem 1. The expectation of the distance 𝔼 𝑑!,# is a function of the 
Mahalanobis distance ∆!,# as

𝔼 𝑑",$ =
2
𝜋exp −

∆",$%

8 +
1
2∆",$ 1 − 2𝛷(−

∆",$
2 )

where 𝛷 (*) is the normal cumulative distribution function.
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Robustness w.r.t Gaussian 
parameters

𝐑𝐁 ≈ 𝐑𝐁 = 𝟏
𝟐
min
!,#∈[(]

∆!,#,

Theorem 1. The expectation of the distance 𝔼 𝑑!,# is a function of the 
Mahalanobis distance ∆!,# as

𝔼 𝑑",$ =
2
𝜋exp −

∆",$%

8 +
1
2∆",$ 1 − 2𝛷(−

∆",$
2 )

where 𝛷 (*) is the normal cumulative distribution function.
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Robustness w.r.t Gaussian 
parameters

𝐑𝐁 ≈ 𝐑𝐁 = 𝟏
𝟐
min
!,#∈[(]

∆!,#,

Distributing as a MMD can maximize 𝐑𝐁. 

Theorem 1. The expectation of the distance 𝔼 𝑑!,# is a function of the 
Mahalanobis distance ∆!,# as

𝔼 𝑑",$ =
2
𝜋exp −

∆",$%

8 +
1
2∆",$ 1 − 2𝛷(−

∆",$
2 )

where 𝛷 (*) is the normal cumulative distribution function.
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Experiments



46

Performance on normal examples
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More orderly distribution in the 
feature space
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Better robustness on iterative-
based attacks



49

Better robustness on optimization-
based attack
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Better robustness on optimization-
based attack

CIFAR-10

MNIST
Nor. examples

Adv. Noises (SR)

Adv. Noises (Ours)

Nor. examples

Adv. Noises (SR)

Adv. Noises (Ours)
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Better performance on class-
biased datasets 
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Conclusion

• No extra computational cost
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Conclusion

• No extra computational cost

• With no loss of accuracy on normal 
examples
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Conclusion

• No extra computational cost

• With no loss of accuracy on normal 
examples

• Quite easy to implement
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Conclusion

• No extra computational cost

• With no loss of accuracy on normal 
examples

• Quite easy to implement

• Compatible with nearly all popular 
networks
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