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* Defense against Adversarial Attacks Using High-level
Representation Guided Denoiser (CVPR 2017)

Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Jun Zhu, and Xiaolin Hu

* Boosting Adversarial Attacks with Momentum (CVPR 2017)

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Xiaolin Hu, Jianguo Li, and Jun Zhu

 Max-Mahalanobis Linear Discriminant Analysis Networks
(ICML 2018)

Tianyu Pang, Chao Du, and Jun Zhu

 Towards Robust Detection of Adversarial Examples (Under
review of NIPS 2018)

Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu
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dversarial Examples
m  Szegedy et al 2013: Intriguing properties of neural networks.
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Overview (White-box Attacks)

Constraine

*  One-step FGSM (Goodfellow et al., 2015)

x*=x+¢€- Sign(vxl‘(x' )’))

e Iterative FGSM (I-FGSM, Kurakin et al., 2016)

xg =%, x{pq= clip(x; + a - sign(VL(x{,¥)))

e Optimization-based methods (Carlini and Wagner, 2017)
mind(x* x) — L(x*,y)
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Black-box Attacks (Transferability)

* Cross-model transferability (Liu et al., 2017)

Target model with

unknown weights, Substitute model
machine learning ——————— mimicking target

algorithm, training model with known,
set; maybe non- differentiable function

differentiable
\
\Adversarial

examples

* Cross-data transferability
(Moosavi-Dezfooli et al., 2017)
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Limitations of Black-box Attacks (1)

* FGSM have poor white-box attack ability;
* |terative FGSM have poor transferability;

* The trade-off between transferability and attack
ability, makes black-box attacks less effective.

_ * Attack Inception V3;

Ces 15215, LFGSM * Evaluate the success rates of
attacks on Inception V3,
Inception V4, Inception
ResNet V2, ResNet v2-152;

e €=16;

e 1000 images from ImageNet.
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Limitations of Black-box Attacks (2)

* Train a substitute network (Papernot et al., 2017) to
fully characterize the behavior of the black-box model

* Require full prediction confidence;
* Require tremendous queries;

* Hard to deploy for models trained on large-scale
dataset

* Impossible for cases without querying

e Our solution: alleviate the trade-off between
transferability and attack ability.
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Optimization with Momentum

* Constrained optimization of adversarial attacks:
argmax L(x*,y) s.t.||x* — x|l < €
x*

* Accelerate gradient descent;
* Escape from poor local minima and maxima;

* Stabilize update directions of stochastic gradient
descent;

* Momentum can be used for adversarial attacks

* It is still a white-box attack method but has strong black-
box attack ability (transferability)
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Momentum lterative FGSM

Xo =X, Xiyq=clip(x; + a- sign(VxL(xf,y)))

‘ Momentum

Xo=%X,90=0
Jorq 2 ViL(x¢,y)
R TATE T P
Xi+1= clip(x{ + a - sign(g¢4+1))

* uis the decay factor;
* g, accumulates the gradient w.r.t. input space of the first t iterations;
* The current gradient is normalized.
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Non-targeted Results

ec =16,u = 1.0, 10 iterations

[ | Atack [ Ine3 [ Tnovd [ IncRes2 [ ResI52

Res-152

FGSM
I-FGSM
MI-FGSM
FGSM
I-FGSM
MI-FGSM
FGSM
I-FGSM
MI-FGSM
FGSM
I-FGSM
MI-FGSM

72.3*

100.0*

100.0*
32.7
35.8
65.6
32.6
37.8
69.8
35.0
26.7
53.6

28.2
22.8
48.8
61.0*
99.9*
99.9*
28.1
20.8
62.1
28.2
22.7
48.9

26.2
19.9
48.0
26.6
24.7
54.9
55.3*
99.6*
99.5*
27.5
21.2
4.7

253
16.2
35.6
272
19.3
46.3
25.8
22.8
50.6
72.9*
98.6*
98.5*

11.3

151
13.7

19.8
13.1
8.9
26.1
14.6
9.3
221

10.9

15.2
11.9

174
12.1
7.8
20.9
13.2
8.9
21.7
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m Attack Inception V3 withe = 16

Success Rate (%)

Ablation Study

=—&—Inc-v3 vs. MI-FGSM
== Inc-v3 vs. -FGSM
—8—Inc-v4 vs. MI-FGSM
=% Inc-v4 vs. -FGSM
IncRes-v2 vs. MI-FGSM
IncRes-v2 vs. I-<FGSM
—@—Res-152 vs. MI-FGSM
=% Res-152 vs. I-FGSM

\*__“~
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4 5 6 7
Number of Iterations

m Attack Inception V3 witha =1

Success Rate (%)

Inc-v3 vs. MI-FGSM
= = Inc-v3 vs. [-FGSM
Inc-v3 vs. FGSM
= = Res-152 vs. MI-FGSM
Res-152 vs. .FGSM
Res-152 vs. FGSM

10 13 16 19 22 25 28
The size of perturbation €
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Attacking an Ensemble of Models

* |f an adversarial example remain adversarial for
multiple models, it is more likely to be misclassified by
other black-box models.

* Ensemble in logits .
()= ) wili®)
1=
BThe loss is defined as

J(x,y) = —1, - log(softmax(l(x)))

* Comparisons:
* Ensemble in predictions: p(x) = Y, w;p; (x)
* Ensemble in loss: J(x,y) = Y1, wifi(x,y)
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Non-targeted Results (2)

m e€=16,u = 1.0, 20 iterations, equal ensemble weights

- Ensemble method

Logits
Predictions
Loss
Logits
Predictions

Loss
Logits
Predictions
Loss
Logits
Predictions
Loss

FGSM I-FGSM MI-FGSM

Fold-out Fold-out

55.7
52.3
50.5
56.1
50.9
49.3
57.2
52.1
50.7
53.5
51.9
50.4

45.7
42.7
42.2
39.9
36.5
36.2
38.8
35.8
35.2
35.9
34.6
34.1

99.7
95.1
93.8
99.8
95.5
93.9
99.5
97.1
96.2
99.6
99.9
98.2

72.1
62.7
63.1
61.0
524
50.2
54.4
46.9
45.9
43.5
41.0
40.1

99.6
97.1
97.0
99.5
97.1
96.1
99.5
98.0
97.4
99.6
99.8
98.8

87.9
83.3
81.9
81.2
77.4
72.5
76.5
73.9
70.8
69.6
67.0
65.2




Max-Mahalanobis Linear
Discriminant Analysis Networks

Tianyu Pang, Chao Du and Jun Zhu

Department of Computer Science and Technology
Tsinghua University
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Motivation one

* Almost all popular networks suffer from
adversarial attacks

Puffer: 97.99% Crab: 100.00%

From Dong et al. (2018)
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SIS SSSSS

* Paradigm of feed-forward deep nets
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SIS SSSSS

* Paradigm of feed-forward deep nets

Active area of research

(AlexNet; VGG nets; ResNets;
GoogleNets; DenseNets;)
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SIS SSSSS

* Paradigm of feed-forward deep nets

/ \

Active area of research Much less active

(AlexNet; VGG nets; ResNets; (Softmax regression)
GoogleNets; DenseNets;)

________________ AN N OAANANANANNNNNANNNNTY
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Our goal

* Design a new network architecture for
better performance in the adversarial setting.
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Our goal

* Design a new network architecture for
better performance in the adversarial setting.

e Substitute a new linear classifier for softmax
regression (SR).
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Our Method
(MM-LDA networks)
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Inspiration one: LDA is more efficient than LR

* Efron et al.(1975) show that if the input distributes
as a mixture of Gaussian, then linear discriminant
analysis (LDA) is more efficient than logistic
regression (LR).
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Inspiration one: LDA is more efficient than LR

* Efron et al.(1975) show that if the input distributes
as a mixture of Gaussian, then linear discriminant
analysis (LDA) is more efficient than logistic

regression (LR). /

LDA needs less training data than LR to obtain certain error rate
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Inspiration one: LDA is more efficient than LR

* Efron et al.(1975) show that if the input distributes
as a mixture of Gaussian, then linear discriminant
analysis (LDA) is more efficient than logistic

regression (LR). /

LDA needs less training data than LR to obtain certain error rate

* However, in practice data points hardly distributes
as a mixture of Gaussian in the input space.
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Inspiration two: Neural networks are powerful

* Deep generative models (e.g., GANs) are
successful.

Deep generative models

DNN

Simple Distribution Complex Distribution
(Gaussian/Mixture of Gaussian) (Data distribution)
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Inspiration two: Neural networks are powerful

* Deep generative models (e.g., GANs) are
successful.

 The reverse direction should also be feasible.

Deep generative models

DNN

Our Method

(MM-LDA networks) N
Simple Distribution Complex Distribution

(Gaussian/Mixture of Gaussian) (Data distribution)
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The Solution

Our method

 Models the feature distribution in DNNs as a
mixture of Gaussian.
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| The Solution
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Our method

 Models the feature distribution in DNNs as a
mixture of Gaussian.

* Applies LDA on the feature to make predictions.

| cm2020/.0/17 - MMmA Rt

11110
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How to treat the Gaussian
parameters?

* Wan et al. (CVPR 2018) also model the feature
distribution as a mixture of Gaussian. However,
they treat the Gaussian parameters (y; and X) as
extra trainable variables.
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parameters?

* Wan et al. (CVPR 2018) also model the feature
distribution as a mixture of Gaussian. However,
they treat the Gaussian parameters (y; and X) as
extra trainable variables.

* We treat them as hyperparameters calculated by
our algorithm, which can provide theoretical
guarantee on the robustness.
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How to treat the Gaussian
parameters?

* Wan et al. (CVPR 2018) also model the feature
distribution as a mixture of Gaussian. However,
they treat the Gaussian parameters (u; and X) as
extra trainable variables.

* We treat them as hyperparameters calculated by
our algorithm, which can provide theoretical
guarantee on the robustness.

* The induced mixture of Gaussian model is named
Max Mahalanobis Distribution (MMD).
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Max Mahalanobis Distribution (MMD)

* Making the minimal Mahalanobis distance
between two Gaussian components maximal.

U2 H3 Ha

251
L=2

H1
L=4
Straight Line Equilateral Regular

Triangle Tetrahedron
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Definition of Robustness

* The robustness on a point with label i (Moosavi-
Dezfoolo et al., CVPR 2016):

min d; ;
JEI! b’

where d; ; is the local minimal distance of a point
with label i to an adversarial example with label j.
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Definition of Robustness

* The robustness on a point with label i (Moosavi-
Dezfoolo et al. , CVPR 2016):

min d;
]-'/-'l

where d; ; is the local minimal distance of a point
with Iabe(l to an adversarial example with label j.

l]’

 We further define the robustness of the classifier
as:

RB = lr]nel[n E(d; ;).
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stness w.r.t Gaussian

parameters

| Theorem 1. The expectation of the distance IE(dl-, j) 1s a function of the
Mahalanobis distance A; ; as

8
where @ (+) 1s the normal cumulative distribution function.

2 ALZJ Ay
[E(dl’]) = —eXp —— |+ = Al] [1 ZCD(——)

________________ NN NNNNNNNNNMNANNNNY
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parameters

| Theorem 1. The expectation of the distance IE(dl-, j) 1s a function of the
Mahalanobis distance A; ; as

2 ALZJ Ay
[E(dl’]) = —eXp —? + — Al] [1 ZCD(——)

where @ (+) 1s the normal cumulative distribution function.

RB ~ RB = 2 min A;j
2,je[L]

________________ NN NNNANNNNNNMNANNNNTY
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Theorem 1. The expectation of the distance IE(dl-, j) 1s a function of the
Mahalanobis distance A; ; as

2 A2\ 1 e -

8
where @ (+) 1s the normal cumulative distribution function.

!

RB ~ RB = min A, ;,
2qjelL] ~

2

Distributing as a MMD can maximize RB.

________________ NONNNNNNNNNNMNANNNNY
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Experiments
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Performance on normal examples

Table 2. Error rates (%) on the test sets of MNIST and CIFAR-10.

[ MNIST | CIFAR-I0 |

Resnet-32 (SR) 0.38 7.13
Resnet-32 (MM-LDA) 0.35 8.04
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More orderly distribution in the
feature space

SR networks MM-LDA networks
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B&tter robustness on iterative-
based attacks

Table 1. Classification accuracy (%) on adversarial examples of MNIST and CIFAR-10. The investigated values of perturbation are 0.04,

0.12, and 0.20. Boldface indicates the best result under certain combination of a value of perturbation and an attacking method.

MNIST

Resnet-32 (SR)
Resnet-32 (SR) + SAT
Resnet-32 (SR) + HAT
Resnet-32 (MM-LDA)

Resnet-32 (SR)
Resnet-32 (SR) + SAT
Resnet-32 (SR) + HAT
Resnet-32 (MM-LDA)

Resnet-32 (SR)
Resnet-32 (SR) + SAT
Resnet-32 (SR) + HAT
Resnet-32 (MM-LDA)

FGSM | BIM

ILCM

CIFAR-10
JSMA | FGSM | BIM ILCM JSMA
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Better robustness on optimization-
based attack

Table 3. Average distortions of the adversarial examples crafted by
the C&W attack on MNIST and CIFAR-10.

' Model | MNIST | CIFAR-10 |

Resnet-32 (SR) 8.56 0.67
Resnet-32 (MM-LDA) 16.32 2.80
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Better robustness on optimization-
based attack
MNIST

Nor. examples E..ﬂ....ﬂ.
Adv. Noises (SR) . g 4‘; ': "‘ . ol .
Adv. Noises (Ours) D / Q 3 4 S 6 7 8 7

CIFAR- 10

Nor. examples

Adv. Noises (SR)

Adv. Noises (Ours)
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B&tter performance on class-
biased datasets

—6-sR —0—SR ‘

—¥—MM-LDA =¥~ MM-LDA

0' A
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Index of dataset Index of dataset

(2) BP1 (b) BP2
Figure 4. Classification accuracy on the test sets of class-biased
datasets. Each index of dataset corresponds to a counterpart of the
bias probability. The original class-unbiased dataset is CIFAR-10.
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* No extra computational cost
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Conclusion

* No extra computational cost

* With no loss of accuracy on normal
examples
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Conclusion

* No extra computational cost

* With no loss of accuracy on normal
examples

* Quite easy to implement
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Conclusion

* No extra computational cost

* With no loss of accuracy on normal
examples

* Quite easy to implement

* Compatible with nearly all popular
networks
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