THE UPRISING 2016 10.24 GEEKPWN AI/Robotics Cybersecurity Contest U.S. 2018 U.S. 2018 2016 10.23 SILICON VALUEY

2017. 05. 13 SHANGHAI

2016.05.12 MACAU.

Team members:

Chao Du Yinpeng Dong Xingxing Wei **Tianyu Pang (Me)** Fangzhou Liao

NIPS 2017: Non-targeted Attack Competition – 1st

NIPS 2017: Non-targeted Attack Competition – 1st

NIPS 2017: Defense Competition – 1st

Defense against Adversarial Attacks Using High-level Representation Guided Denoiser **(CVPR 2017)**

Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Jun Zhu, and Xiaolin Hu

- Boosting Adversarial Attacks with Momentum (CVPR 2017)
 Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Xiaolin Hu, Jianguo Li, and Jun Zhu
- Max-Mahalanobis Linear Discriminant Analysis Networks (ICML 2018)

Tianyu Pang, Chao Du, and Jun Zhu

Towards Robust Detection of Adversarial Examples (Under review of NIPS 2018)

Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu

Defense against Adversarial Attacks Using High-level Representation Guided Denoiser (CVPR 2017)

angzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Jun Zhu, and Xiaolin Hu

- Boosting Adversarial Attacks with Momentum (CVPR 2017) Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Xiaolin Hu, Jianguo Li, and Jun Zhu
- Max-Mahalanobis Linear Discriminant Analysis Networks (ICML 2018)

Tianyu Pang, Chao Du, and Jun Zhu

Towards Robust Detection of Adversarial Examples (Under review of NIPS 2018)

Tianyu Pang, Chao Du, Yinpeng Dong, and Jun Zhu

Boosting Adversarial Attacks with Momentum

Yinpeng Dong¹, Fangzhou Liao¹, Tianyu Pang¹, Hang Su¹, Jun Zhu¹, Xiaolin Hu¹, Jianguo Li² ¹Tsinghua University, ² Intel Labs China Adversarial Examples

s

- Crab: 100.00%
- Szegedy et al 2013: Intriguing properties of neural networks.

Constrained optimization of adversarial attacks: $\underset{x^*}{\operatorname{argmax}} L(x^*, y) \quad s.t. \|x^* - x\|_{\infty} \leq \epsilon$

• One-step FGSM (Goodfellow et al., 2015)

 $x^* = x + \epsilon \cdot \operatorname{sign}(\nabla_x L(x, y))$

Iterative FGSM (I-FGSM, Kurakin et al., 2016)

 $x_0^* = x, \ x_{t+1}^* = \operatorname{clip}(x_t^* + \alpha \cdot \operatorname{sign}(\nabla_x L(x_t^*, y)))$

• Optimization-based methods (Carlini and Wagner, 2017)

 $\min d(x^*, x) - L(x^*, y)$

Black-box Attacks (Transferability)

• Cross-model transferability (Liu et al., 2017)

 Cross-data transferability (Moosavi-Dezfooli et al., 2017)

- FGSM have poor white-box attack ability;
- Iterative FGSM have poor transferability;
- The **trade-off** between transferability and attack ability, makes black-box attacks less effective.

- Attack Inception V3;
- Evaluate the success rates of attacks on Inception V3, Inception V4, Inception ResNet V2, ResNet v2-152;

•
$$\epsilon = 16;$$

• 1000 images from ImageNet.

Limitations of Black-box Attacks (2)

- Train a substitute network (Papernot et al., 2017) to fully characterize the behavior of the black-box model
 - Require full prediction confidence;
 - Require tremendous queries;
- Hard to deploy for models trained on large-scale dataset
- Impossible for cases without querying
- Our solution: alleviate the trade-off between transferability and attack ability.

Optimization with Momentum

- Constrained optimization of adversarial attacks: $\underset{x^*}{\operatorname{argmax}} L(x^*, y) \quad s.t. \|x^* - x\|_{\infty} \leq \epsilon$
- Accelerate gradient descent;
- Escape from poor local minima and maxima;
- Stabilize update directions of stochastic gradient descent;
- Momentum can be used for adversarial attacks
 - It is still a white-box attack method but has strong blackbox attack ability (transferability)

Momentum Iterative FGSM

$$x_0^* = x, \ x_{t+1}^* = \operatorname{clip}(x_t^* + \alpha \cdot \operatorname{sign}(\nabla_x L(x_t^*, y)))$$

Momentum

$$x_{0}^{*} = x, g_{0} = 0$$

$$g_{t+1} = \mu \cdot g_{t} + \frac{\nabla_{x} L(x_{t}^{*}, y)}{\|\nabla_{x} L(x_{t}^{*}, y)\|_{1}}$$

$$x_{t+1}^{*} = \operatorname{clip}(x_{t}^{*} + \alpha \cdot \operatorname{sign}(g_{t+1}))$$

- *μ* is the decay factor;
- g_t accumulates the gradient w.r.t. input space of the first t iterations;
- The current gradient is normalized.

Non-targeted Results

• $\epsilon = 16$, $\mu = 1.0$, 10 iterations

	Attack	Inc-v3	Inc-v4	IncRes-v2	Res-152	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}
Inc-v3	FGSM	72.3*	28.2	26.2	25.3	11.3	10.9	4.8
	I-FGSM	100.0*	22.8	19.9	16.2	7.5	6.4	4.1
	MI-FGSM	100.0*	48.8	48.0	35.6	15.1	15.2	7.8
Inc-v4	FGSM	32.7	61.0*	26.6	27.2	13.7	11.9	6.2
	I-FGSM	35.8	99.9 *	24.7	19.3	7.8	6.8	4.9
	MI-FGSM	65.6	99.9 *	54.9	46.3	19.8	17.4	9.6
IncRes-v2	FGSM	32.6	28.1	55.3*	25.8	13.1	12.1	7.5
	I-FGSM	37.8	20.8	99.6 *	22.8	8.9	7.8	5.8
	MI-FGSM	69.8	62.1	99.5*	50.6	26.1	20.9	15.7
Res-152	FGSM	35.0	28.2	27.5	72.9*	14.6	13.2	7.5
	I-FGSM	26.7	22.7	21.2	98.6*	9.3	8.9	6.2
	MI-FGSM	53.6	48.9	44.7	98.5*	22.1	21.7	12.9

0

Ablation Study

Attack Inception V3 with $\epsilon = 16$

• Attack Inception V3 with $\alpha = 1$

Attacking an Ensemble of Models

- If an adversarial example remain adversarial for multiple models, it is more likely to be misclassified by other black-box models.
- Ensemble in logits

$$l(x) = \sum_{i=1}^{K} w_i l_i(x)$$

The loss is defined as

$$I(x, y) = -1_y \cdot \log(\operatorname{softmax}(l(x)))$$

- Comparisons:
 - Ensemble in predictions: $p(x) = \sum_{i=1}^{K} w_i p_i(x)$
 - Ensemble in loss: $J(x, y) = \sum_{i=1}^{K} w_i J_i(x, y)$

Non-targeted Results (2)

• $\epsilon = 16, \mu = 1.0, 20$ iterations, equal ensemble weights

	Encomble method	FGSM		I-FGSM		MI-FGSM	
	Elisemble method	Ensemble	Hold-out	Ensemble	Hold-out	Ensemble	Hold-out
-Inc-v3	Logits	55.7	45.7	99.7	72.1	99.6	87.9
	Predictions	52.3	42.7	95.1	62.7	97.1	83.3
	Loss	50.5	42.2	93.8	63.1	97.0	81.9
-Inc-v4	Logits	56.1	39.9	99.8	61.0	99.5	81.2
	Predictions	50.9	36.5	95.5	52.4	97.1	77.4
	Loss	49.3	36.2	93.9	50.2	96.1	72.5
-IncRes-v2	Logits	57.2	38.8	99.5	54.4	99.5	76.5
	Predictions	52.1	35.8	97.1	46.9	98.0	73.9
	Loss	50.7	35.2	96.2	45.9	97.4	70.8
-Res-152	Logits	53.5	35.9	99.6	43.5	99.6	69.6
	Predictions	51.9	34.6	99.9	41.0	99.8	67.0
	Loss	50.4	34.1	98.2	40.1	98.8	65.2

Max-Mahalanobis Linear Discriminant Analysis Networks

Tianyu Pang, Chao Du and Jun Zhu

Department of Computer Science and Technology Tsinghua University

9

0 ||

Motivation

Gree

0

CS CYBERSEC

Motivation one

Almost all popular networks suffer from adversarial attacks

Crab: 100.00%

From Dong et al. (2018)

Motivation two

• Paradigm of feed-forward deep nets

Motivation two

• Paradigm of feed-forward deep nets

Motivation two

• Paradigm of feed-forward deep nets

Our goal

Design a new network architecture for better performance in the adversarial setting.

Our goal

 Design a new network architecture for better performance in the adversarial setting.

• Substitute a new linear classifier for softmax regression (SR).

Our Method (MM-LDA networks)

Inspiration one: LDA is more efficient than LR

• Efron et al.(1975) show that *if the input distributes as a mixture of Gaussian*, then linear discriminant analysis (LDA) is **more efficient** than logistic regression (LR).

Inspiration one: LDA is more efficient than LR

• Efron et al.(1975) show that *if the input distributes as a mixture of Gaussian*, then linear discriminant analysis (LDA) is **more efficient** than logistic regression (LR).

LDA needs less training data than LR to obtain certain error rate

Inspiration one: LDA is more efficient than LR

• Efron et al.(1975) show that *if the input distributes as a mixture of Gaussian*, then linear discriminant analysis (LDA) is **more efficient** than logistic regression (LR).

LDA needs less training data than LR to obtain certain error rate

 However, in practice data points hardly distributes as a mixture of Gaussian in the input space.

Inspiration two: Neural networks are powerful

Inspiration two: Neural networks are powerful

• Deep generative models (e.g., GANs) are successful.

Deep generative models

DNN

Simple Distribution (Gaussian/Mixture of Gaussian)

Complex Distribution (Data distribution)

Inspiration two: Neural networks are powerful

• Deep generative models (e.g., GANs) are successful.

• The reverse direction should also be feasible.

The Solution

Our method

• Models the feature distribution in DNNs as a mixture of Gaussian.

The Solution

Our method

• Models the feature distribution in DNNs as a mixture of Gaussian.

Applies LDA on the feature to make predictions.

How to treat the Gaussian parameters?

How to treat the Gaussian parameters?

• Wan et al. (CVPR 2018) also model the feature distribution as a mixture of Gaussian. However, they treat the Gaussian parameters (μ_i and Σ) as extra trainable variables.

How to treat the Gaussian parameters?

- Wan et al. (CVPR 2018) also model the feature distribution as a mixture of Gaussian. However, they treat the Gaussian parameters (μ_i and Σ) as extra trainable variables.
- We treat them as hyperparameters calculated by our algorithm, which can provide theoretical guarantee on the robustness.

How to treat the Gaussian parameters?

- Wan et al. (CVPR 2018) also model the feature distribution as a mixture of Gaussian. However, they treat the Gaussian parameters (μ_i and Σ) as extra trainable variables.
- We treat them as hyperparameters calculated by our algorithm, which can provide theoretical guarantee on the robustness.
- The induced mixture of Gaussian model is named Max Mahalanobis Distribution (MMD).

Max Mahalanobis Distribution (MMD)

 Making the minimal Mahalanobis distance between two Gaussian components maximal.

Definition of Robustness

• The robustness on a point with label *i* (Moosavi-Dezfoolo et al. , CVPR 2016): $\min_{i \neq i} d_{i,j},$

where $d_{i,j}$ is the local minimal distance of a point with label *i* to an adversarial example with label *j*.

- The robustness on a point with label i (Moosavi-Dezfoolo et al. , CVPR 2016): $\min_{j \neq i} d_{i,j},$
- where $d_{i,j}$ is the local minimal distance of a point with label *i* to an adversarial example with label *j*.
- We further define the robustness of the classifier as:

 $\mathbf{RB} = \min_{i,j\in[L]} \mathbb{E}(d_{i,j}).$

Robustness w.r.t Gaussian parameters

Theorem 1. The expectation of the distance $\mathbb{E}(d_{i,j})$ is a function of the Mahalanobis distance $\Delta_{i,j}$ as

$$\mathbb{E}(d_{i,j}) = \sqrt{\frac{2}{\pi}} \exp\left(-\frac{\Delta_{i,j}^2}{8}\right) + \frac{1}{2}\Delta_{i,j}\left[1 - 2\Phi(-\frac{\Delta_{i,j}}{2})\right]$$

where $\Phi(\cdot)$ is the normal cumulative distribution function.

Robustness w.r.t Gaussian parameters

Theorem 1. The expectation of the distance $\mathbb{E}(d_{i,j})$ is a function of the Mahalanobis distance $\Delta_{i,j}$ as

$$\mathbb{E}(d_{i,j}) = \sqrt{\frac{2}{\pi}} \exp\left(-\frac{\Delta_{i,j}^2}{8}\right) + \frac{1}{2}\Delta_{i,j}\left[1 - 2\Phi(-\frac{\Delta_{i,j}}{2})\right]$$

where $\Phi(\cdot)$ is the normal cumulative distribution function.

$$\mathbf{RB} \approx \overline{\mathbf{RB}} = \frac{1}{2} \min_{i,j \in [L]} \Delta_{i,j},$$

Robustness w.r.t Gaussian parameters

Theorem 1. The expectation of the distance $\mathbb{E}(d_{i,j})$ is a function of the Mahalanobis distance $\Delta_{i,j}$ as

$$\mathbb{E}(d_{i,j}) = \sqrt{\frac{2}{\pi}} \exp\left(-\frac{\Delta_{i,j}^2}{8}\right) + \frac{1}{2}\Delta_{i,j}\left[1 - 2\Phi(-\frac{\Delta_{i,j}}{2})\right]$$

where $\Phi(\cdot)$ is the normal cumulative distribution function.

$$\mathbf{RB} \approx \overline{\mathbf{RB}} = \frac{1}{2} \min_{i,j \in [L]} \Delta_{i,j},$$

Distributing as a MMD can maximize $\overline{\mathbf{RB}}$.

9

Experiments

Ge

Performance on normal examples

Table 2. Error rates (%) on the test sets of MNIST and CIFAR-10.

Model	MNIST	CIFAR-10 7.13		
Resnet-32 (SR)	0.38	7.13		
Resnet-32 (MM-LDA)	0.35	8.04		

More orderly distribution in the feature space

SR networks

MM-LDA networks

Better robustness on iterativebased attacks

Table 1. Classification accuracy (%) on adversarial examples of MNIST and CIFAR-10. The investigated values of perturbation are 0.04, 0.12, and 0.20. **Boldface** indicates the best result under certain combination of a value of perturbation and an attacking method.

Dorturbation	Madal	MNIST				CIFAR-10			
r ci tui Datioli	NIQUEI	FGSM	BIM	ILCM	JSMA	FGSM	BIM	ILCM	JSMA
0.04	Resnet-32 (SR)	93.6	87.9	94.8	92.9	20.0	5.5	0.2	65.6
	Resnet-32 (SR) + SAT	86.7	68.5	98.4	-	24.4	7.0	0.4	-
	Resnet-32 (SR) + HAT	88.7	96.3	99.8	-	30.3	5.3	1.3	-
	Resnet-32 (MM-LDA)	99.2	99.2	99.0	99.1	91.3	91.2	70.0	91.2
0.12	Resnet-32 (SR)	28.1	3.4	20.9	56.0	10.2	4.1	0.3	20.5
	Resnet-32 (SR) + SAT	40.5	8.7	88.8	-	88.2	6.9	0.1	-
	Resnet-32 (SR) + HAT	40.3	40.1	92.6	-	44.1	8.7	0.0	-
	Resnet-32 (MM-LDA)	99.3	98.6	99.6	99.7	90.7	90.1	42.5	91.1
0.20	Resnet-32 (SR)	15.5	0.3	1.7	25.6	10.7	4.2	0.6	11.5
	Resnet-32 (SR) + SAT	17.3	1.1	69.4	-	91.7	9.4	0.0	-
	Resnet-32 (SR) + HAT	10.1	10.5	46.1	-	40.7	6.0	0.2	-
	Resnet-32 (MM-LDA)	97.5	97.3	96.6	99.6	89.5	89.7	31.2	91.8

Better robustness on optimizationbased attack

Table 3. Average distortions of the adversarial examples crafted by the C&W attack on MNIST and CIFAR-10.

Model	MNIST	CIFAR-10
Resnet-32 (SR)	8.56	0.67
Resnet-32 (MM-LDA)	16.32	2.80

Better robustness on optimizationbased attack

Nor. examples

Adv. Noises (SR)

Adv. Noises (Ours)

Nor. examples

Adv. Noises (SR)

Adv. Noises (Ours)

Better performance on classbiased datasets

Figure 4. Classification accuracy on the test sets of class-biased datasets. Each index of dataset corresponds to a counterpart of the bias probability. The original class-unbiased dataset is CIFAR-10.

• No extra computational cost

Conclusion

No extra computational cost

• With no loss of accuracy on normal examples

Conclusion

No extra computational cost

• With no loss of accuracy on normal examples

Quite easy to implement

Conclusion

- No extra computational cost
- With no loss of accuracy on normal examples
- Quite easy to implement
- Compatible with nearly all popular networks

_ _ _ _

9

0

Thanks

Gee

0,