Motivitions

A typical feed-forward deep neural network (DNN) is a combina-
tion of a nonlinear transformation from the input x to the latent
feature vector z and a linear classifier acting on z to return a pre-

diction for x. Our work is proposed under the two motivitions:

® Compared to the nonlinear transformation part, the linear
classifier part is under-explored, which is by default defined

as a softmax regression (SR).

® DNNs with a SR classifier are vulnerable to adversarial
attacks, where human imperceivable noises can be crafted

to fool a high-accuracy network.

Thus, we attempt to design a network with a novel linear classi-

fier part substituted for SR, expecting for better performance.

Inspirations

In the binary-class classification cases, Efron (1975) shows that
if the input pair (x,y) distributes as

Pixly =1) = N(w, 1), (1)

where 1 € {0, 1}, then logistic regression (LR) is less efficient

Ply=1i) =m,

than linear discriminant analysis (LDA). The relative efficiency of

LR to LDA can be represented as Eft,(C, A), where ¢ = 1og(§?),
and A = (1 —uo) " (g —Ho)]; is the Mahalanobis distance
of two Gaussian components. Generally, larger values of || or
A imply lower values of Eff,(C, A).

Max-Mahalanobis Distribution

We consider the multi-class cases, L is #class, [L] ={1,---,L}.
Under a linear transformation on the input, the distribution as-
sumption (1) can be standardized and extended to

Plxly =1) = N, 1), (2)

where 1 € [L], ZiL:1 m; = 1 and ZiL:1 (;, = 0. Then the deci-
sion boundary obtained by LDA between class 1 and j is decided

Ply=1) =m,

by the Fisher's linear discriminant function A;;(x) = 0.
In the adversarial setting, the nearest adversarial example x*

w.r.t the normal example x must be located on the decision
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boundary. We randomly sample a normal example of class 1
as X(i), i.e., X ~ M(w,I), and denote its nearest adversar-
ia counterpart on the decision boundary Aj(x) = 0 as x{;
There is §(x(y)) = i)Q(szi,j)) =j or §(xp)) = ))g(x(i,j))

where {j(-) refers to the LDA classifier. We define the distance

between x; ) and x(

>))

5) as d(i,)')' then there is:

Theorem 1 The expectation of the distance d; ;) is a function
of the Mahalanobis distance A, ;:

2 o2
’ [d( ,J)] j;exp( 21’]) | Oéi,jﬂ — ZCD(—OQ,)')],

where o ; = ;Ai,j +Ci5/Aij, and O (-) is the normal cumulative
t[d(i))-)]/aAi))- > Q.

distribution function. Further there is O

Upper Bound for Robustness

We define the robustness of the classifier as

RB = min E[d ).
i,jelL]

According to Theorem 1, there is RB ~ RB = min; j¢
Let p = {wili € [L
rem gives a tight upper bound for RB w.r.t u:

Theorem 2 Assume that Z%ﬂ w = 0 and HuH% = C. Then

Ai,j/z.
I}, ||ul], be max; ||wi||,- The following theo-

we have c
o L
B < .
b = 2(L—1)
The equality holds if and only if
C, 1=,
W by = o (3)
C/0—=1), 1#j

where 1,j € [L] and W, 1 € p.
We denote any set of means that satisfy the optimal condition (3)
as *. We define the distribution of assumption (2) with © = p*

as Max-Mahalanobis distribution (MMD).
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Figure 1: MMD under different values of L. L = 2, straight line;
L = 3, equilateral triangle; L = 4, regular tetrahedron.

The MM-LDA Network

According to above analysis, we propose the Max-Mahalanobis
linear discriminant analysis (MM-LDA) network. Specifically,
considering the joint distribution Qg(z,y) induced by the net-
work with parameters 8. We denote the MMD as P(z,y),
H(P, Q) as the cross-entropy function. Then the training ob-

jective for MM-LDA networks could be designed as

H(QG) P) — 44(2,9),\,(29 — k)g P (U Z) — 10g P(Z)]
— E(oy-qel— 108 P(yl2)] + E,_os [~ log P(z)].
Here Qg is the margina

distribution of Qg for z. Since we
are focusing on classification tasks, we assume for tractability
that the marginal distribution Qg(z) is consistent with it of the
MMD, i.e., P(z).

mizing It

Thus, minimizing H(Qg, P) equals to mini-

L (z)~Qs — 10g P(ylz)], which further leads to a similar
loss function with SR networks under the MC approximation,
and the only difference is that for MM-LDA networks P(y|z) is
obtained by LDA classifier rather than SR.

Experiments

Class-biased Datasets

Class-biased datasets (both training and test sets) are con-
structed by randomly sampling each data point of class 1 from
CIFAR-10 with probability o;. For a fair comparison, we still use
uniform class priors 71, = 1/L when using MM-LDA networks.

o Bias Probability 1 has o« = (0.1,0.2,0.3,---,1.0).
@ Bias Probability 2 has o« = (0.2,0.2,---,0.2,1.0).
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Figure 2: Each index corresponds to a counterpart of class-biased
datasets under the bias probability.
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Adversarial Setting

® SAT fine-tunes the classifiers on the adversarial examples

with the same value of perturbation.

® HAT fine-tunes the classifiers on the adversarial examples

with various values of perturbation from [0.02,0.20].

Table 1: Classification accuracy (%) on adversarial examples of

MNIST and CIFAR-10. Res. refers to Resnet-32.

Pert Model MNIST CIFAR-10
FGSM | BIM | ILCM|JSMA | FGSM | BIM | ILCM | JSMA
Res.(SR) 93.6 187.9 948 | 929  20.0 55 0.2 | 65.6
1os Res(SR)+SAT 867 685 984 - 244 70 04 -
Res.(SR)+HAT | 887 963 99.8 - 303 53 13 -
Res.(MM-LDA) 99.2 99.2 99.0 99.1 91.3 91.2 70.0 91.2
Res.(SR) 281 | 3.4 209 560 102 41 | 03 | 205
11, Res(SR)+SAT 405 87 888 - 82 69 01 -
Res.(SR)+HAT| 40.3 1401 926 - 441 87 00 -
Res.(MM-LDA) 99.3 98.6 99.6 99.7 90.7 90.1 42.5 91.1
Res.(SR) 155 | 03 | 1.7 | 256 | 10.7 42 | 0.6 | 115
020 Res.(SR)+SAT | 173 | 1.1 1 694 - | 91.7 94 | 00 -
Res.(SR)+HAT | 10.1 105 461 - 407 60 02 | -
Res.(MM-LDA) | 97.5 97.3 96.6 99.6 | 89.5 89.7 31.2 91.8
Model MNIST | CIFAR-10 Mode MNIST | CIFAR-10
Res.(SR) 0.38 7.13 Res.(SR) 8.56 0.67
Res.(MM-LDA) | 0.35 8.04 Res.(MM-LDA)| 16.32 | 2.80

Table 2: Error rates (%) on the

normal examples in test sets.

Table 3: Average minimal dis-
tortions (C&W attack).
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Figure 3: Ist row: normal examples; 2nd row: adversarlal noises

on SR nets: 3rd row: those on MM-LDA nets.
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