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Motivitions

A typical feed-forward deep neural network (DNN) is a combina-
tion of a nonlinear transformation from the input x to the latent
feature vector z and a linear classifier acting on z to return a pre-
diction for x. Our work is proposed under the two motivitions:

1 Compared to the nonlinear transformation part, the linear
classifier part is under-explored, which is by default defined
as a softmax regression (SR).

2 DNNs with a SR classifier are vulnerable to adversarial
attacks, where human imperceivable noises can be crafted
to fool a high-accuracy network.

Thus, we attempt to design a network with a novel linear classi-
fier part substituted for SR, expecting for better performance.

Inspirations

In the binary-class classification cases, Efron (1975) shows that
if the input pair (x, y) distributes as

P(y = i) = πi, P(x|y = i) = N (µi, Σ), (1)
where i ∈ {0, 1}, then logistic regression (LR) is less efficient
than linear discriminant analysis (LDA). The relative efficiency of
LR to LDA can be represented as Effp(ζ, ∆), where ζ = log(π0

π1
),

and ∆ = [(µ1−µ0)
>Σ−1(µ1−µ0)]

1
2 is the Mahalanobis distance

of two Gaussian components. Generally, larger values of |ζ| or
∆ imply lower values of Effp(ζ, ∆).

Max-Mahalanobis Distribution

We consider the multi-class cases, L is #class, [L] = {1, · · · , L}.
Under a linear transformation on the input, the distribution as-
sumption (1) can be standardized and extended to

P(y = i) = πi, P(x̃|y = i) = N (µ̃i, I), (2)
where i ∈ [L],

∑L
i=1 πi = 1 and

∑L
i=1 µ̃i = 0. Then the deci-

sion boundary obtained by LDA between class i and j is decided
by the Fisher’s linear discriminant function λi,j(x) = 0.
In the adversarial setting, the nearest adversarial example x∗
w.r.t the normal example x must be located on the decision

boundary. We randomly sample a normal example of class i
as x(i), i.e., x(i) ∼ N (µi, I), and denote its nearest adversar-
ial counterpart on the decision boundary λi,j(x) = 0 as x∗(i,j).
There is ŷ(x(i)) = i, ŷ(x∗(i,j)) = j or ŷ(x(i)) = j, ŷ(x∗(i,j)) = i,
where ŷ(·) refers to the LDA classifier. We define the distance
between x(i) and x∗(i,j) as d(i,j), then there is:

Theorem 1 The expectation of the distance d(i,j) is a function
of the Mahalanobis distance ∆i,j:

E[d(i,j)] =
√√√√√√√√√√
2

π
exp(−α

2
i,j

2
) + αi,j[1− 2Φ(−αi,j)],

where αi,j = 1
2
∆i,j+ζi,j/∆i,j, and Φ(·) is the normal cumulative

distribution function. Further there is ∂E[d(i,j)]/∂∆i,j > 0.

Upper Bound for Robustness
We define the robustness of the classifier as

RB = min
i,j∈[L]

E[d(i,j)].

According to Theorem 1, there is RB ≈ RB = mini,j∈[L]∆i,j/2.
Let µ = {µi|i ∈ [L]}, ‖µ‖2 be maxi ‖µi‖2. The following theo-
rem gives a tight upper bound for RB w.r.t µ:

Theorem 2 Assume that
∑L
i=1µi = 0 and ‖µ‖22 = C. Then

we have
RB ≤

√√√√√√√√√√√
LC

2(L− 1)
.

The equality holds if and only if

µ>i µj =

C, i = j,
C/(1− L), i 6= j,

(3)

where i, j ∈ [L] and µi, µj ∈ µ.
We denote any set of means that satisfy the optimal condition (3)
as µ∗. We define the distribution of assumption (2) with µ = µ∗

as Max-Mahalanobis distribution (MMD).
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Figure 1: MMD under different values of L. L = 2, straight line;
L = 3, equilateral triangle; L = 4, regular tetrahedron.

The MM-LDA Network
According to above analysis, we propose the Max-Mahalanobis
linear discriminant analysis (MM-LDA) network. Specifically,
considering the joint distribution Qθ(z, y) induced by the net-
work with parameters θ. We denote the MMD as P(z, y),
H(P,Q) as the cross-entropy function. Then the training ob-
jective for MM-LDA networks could be designed as

H(Qθ, P) = E(z,y)∼Qθ[− log P(y|z) − log P(z)]
= E(z,y)∼Qθ[− log P(y|z)] + Ez∼Q ′θ[− log P(z)].

Here Q ′

θ is the marginal distribution of Qθ for z. Since we
are focusing on classification tasks, we assume for tractability
that the marginal distribution Q ′

θ(z) is consistent with it of the
MMD, i.e., P(z). Thus, minimizing H(Qθ, P) equals to mini-
mizing E(z,y)∼Qθ[− log P(y|z)], which further leads to a similar
loss function with SR networks under the MC approximation,
and the only difference is that for MM-LDA networks P(y|z) is
obtained by LDA classifier rather than SR.

Experiments
Class-biased Datasets

Class-biased datasets (both training and test sets) are con-
structed by randomly sampling each data point of class i from
CIFAR-10 with probability αi. For a fair comparison, we still use
uniform class priors πk = 1/L when using MM-LDA networks.

1 Bias Probability 1 has α = (0.1, 0.2, 0.3, · · · , 1.0).
2 Bias Probability 2 has α = (0.2, 0.2, · · · , 0.2, 1.0).
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Figure 2: Each index corresponds to a counterpart of class-biased
datasets under the bias probability.

Adversarial Setting
1 SAT fine-tunes the classifiers on the adversarial examples
with the same value of perturbation.

2 HAT fine-tunes the classifiers on the adversarial examples
with various values of perturbation from [0.02, 0.20].

Table 1: Classification accuracy (%) on adversarial examples of
MNIST and CIFAR-10. Res. refers to Resnet-32.

Pert. Model MNIST CIFAR-10
FGSM BIM ILCM JSMA FGSM BIM ILCM JSMA

0.04

Res.(SR) 93.6 87.9 94.8 92.9 20.0 5.5 0.2 65.6
Res.(SR)+SAT 86.7 68.5 98.4 - 24.4 7.0 0.4 -
Res.(SR)+HAT 88.7 96.3 99.8 - 30.3 5.3 1.3 -
Res.(MM-LDA) 99.2 99.2 99.0 99.1 91.3 91.2 70.0 91.2

0.12

Res.(SR) 28.1 3.4 20.9 56.0 10.2 4.1 0.3 20.5
Res.(SR)+SAT 40.5 8.7 88.8 - 88.2 6.9 0.1 -
Res.(SR)+HAT 40.3 40.1 92.6 - 44.1 8.7 0.0 -
Res.(MM-LDA) 99.3 98.6 99.6 99.7 90.7 90.1 42.5 91.1

0.20

Res.(SR) 15.5 0.3 1.7 25.6 10.7 4.2 0.6 11.5
Res.(SR)+SAT 17.3 1.1 69.4 - 91.7 9.4 0.0 -
Res.(SR)+HAT 10.1 10.5 46.1 - 40.7 6.0 0.2 -
Res.(MM-LDA) 97.5 97.3 96.6 99.6 89.5 89.7 31.2 91.8

Model MNIST CIFAR-10
Res.(SR) 0.38 7.13

Res.(MM-LDA) 0.35 8.04

Table 2: Error rates (%) on the
normal examples in test sets.

Model MNIST CIFAR-10
Res.(SR) 8.56 0.67

Res.(MM-LDA) 16.32 2.80

Table 3: Average minimal dis-
tortions (C&W attack).

CIFAR-10

MNIST

Figure 3: 1st row: normal examples; 2nd row: adversarial noises
on SR nets; 3rd row: those on MM-LDA nets.
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