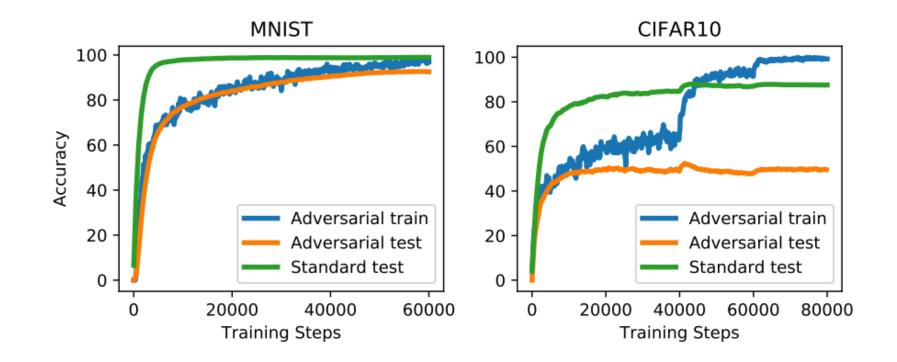
Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness

(ICLR 2020)

Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen and Jun Zhu

Motivation



The same dataset, e.g., CIFAR-10, which enables good standard accuracy may not suffice to train robust models.

(Schmidt et al. NeurIPS 2018)

Possible Solutions

Introducing extra labeled data

(Hendrycks et al. ICML 2019)

Introducing extra unlabeled data

(Alayrac et al. NeurIPS 2019; Carmon et al. NeurIPS 2019)

Possible Solutions

Introducing extra labeled data

(Hendrycks et al. ICML 2019)

• Introducing extra unlabeled data

(Alayrac et al. NeurIPS 2019; Carmon et al. NeurIPS 2019)

• Our solution: Increase sample density to induce locally sufficient training data for robust learning

Possible Solutions

Introducing extra labeled data

(Hendrycks et al. ICML 2019)

• Introducing extra unlabeled data

(Alayrac et al. NeurIPS 2019; Carmon et al. NeurIPS 2019)

• Our solution: Increase sample density to induce locally sufficient training data for robust learning

Q1: What is the definition of sample density?

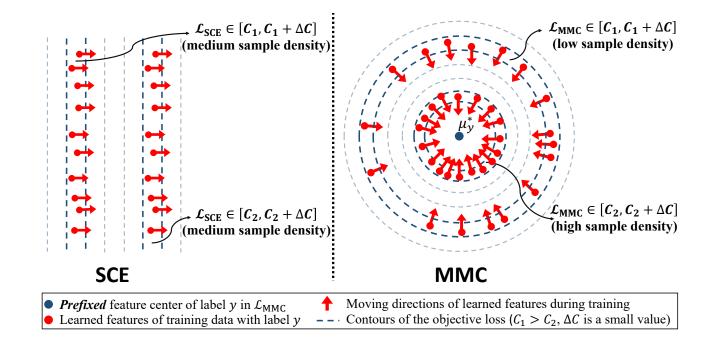
Q2: Can existing training objectives induce high sample density?

Sample Density

Given a training dataset \mathcal{D} with N input-label pairs, and the feature mapping Z trained by the objective $\mathcal{L}(Z(x), y)$ on this dataset, we define the sample density nearby the feature point z = Z(x) following the similar definition in physics (Jackson, 1999) as

$$\mathbb{SD}(z) = \frac{\Delta N}{\operatorname{Vol}(\Delta B)}.$$
(2)

Here $Vol(\cdot)$ denotes the volume of the input set, ΔB is a small neighbourhood containing the feature point z, and $\Delta N = |Z(\mathcal{D}) \cap \Delta B|$ is the number of training points in ΔB , where $Z(\mathcal{D})$ is the set of all mapped features for the inputs in \mathcal{D} . Note that the mapped feature z is still of the label y.



Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as

$$\mathcal{L}_{g-SCE}(Z(x), y) = -1_y^+ \log [\operatorname{softmax}(h)],$$

where $h_i = -(z - \mu_i)^\top \Sigma_i (z - \mu_i) + B_i$ is the logits in quadratic form.

Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as

$$\mathcal{L}_{g ext{-SCE}}(Z(x),y) = -1_y^ op \log [ext{softmax}(h)],$$

where $h_i = -(z - \mu_i)^ op \Sigma_i (z - \mu_i) + B_i$ is the logits in quadratic form.

We note that the SCE loss is included in the family of g-SCE loss as

$$\operatorname{softmax}(Wz+b)_{i} = \frac{\exp(W_{i}^{\top}z+b_{i})}{\sum_{l\in[L]}\exp(W_{l}^{\top}z+b_{l})} = \frac{\exp(-\|z-\frac{1}{2}W_{i}\|_{2}^{2}+b_{i}+\frac{1}{4}\|W_{i}\|_{2}^{2})}{\sum_{l\in[L]}\exp(-\|z-\frac{1}{2}W_{l}\|_{2}^{2}+b_{l}+\frac{1}{4}\|W_{l}\|_{2}^{2})}$$

To provide a formal representation of the sample density induced by the g-SCE loss, we first derive the formula of the contours

$$\mathcal{L}_{g\text{-SCE}}(Z(x), y) = C$$

To provide a formal representation of the sample density induced by the g-SCE loss, we first derive the formula of the contours

$$\mathcal{L}_{g\text{-SCE}}(Z(x), y) = C$$

$$\bigcup$$

$$\log\left(1 + \frac{\sum_{l \neq y} \exp(h_l)}{\exp(h_y)}\right) = C \implies h_y = \log\left[\sum_{l \neq y} \exp(h_l)\right] - \log(C_e - 1).$$

To provide a formal representation of the sample density induced by the g-SCE loss, we first derive the formula of the contours

$$\mathcal{L}_{g\text{-SCE}}(Z(x), y) = C$$

$$\log\left(1 + \frac{\sum_{l \neq y} \exp(h_l)}{\exp(h_y)}\right) = C \implies h_y = \log\left[\sum_{l \neq y} \exp(h_l)\right] - \log(C_e - 1).$$

Log-Sum-Exp function, which is a soft maximum function

To provide a formal representation of the sample density induced by the g-SCE loss, we first derive the formula of the contours

 $\mathcal{L}_{\sigma-SCE}(Z(x), y) = C$ $\log\left(1 + \frac{\sum_{l \neq y} \exp(h_l)}{\exp(h_y)}\right) = C \implies h_y = \log\left[\sum_{l \neq y} \exp(h_l)\right] - \log(C_e - 1).$ approximately $h_u - h_{\tilde{u}} = -\log(C_e - 1),$

where $C_e = \exp(C)$, and $\tilde{y} = \arg \max_{l \neq y} h_l$.

We can the approximate loss as

$$\mathcal{L}_{y,\tilde{y}}(z) = \log[\exp(h_{\tilde{y}} - h_y) + 1]$$

such that

The Neighborhood △*B* **in Sample Density**

Based on the above approximation, we can now approximate the neighborhood

$$\Delta B = \{ \mathbf{z} \in \mathbb{R}^d | \mathcal{L}(\mathbf{z}, y) \in [C, C + \Delta C] \}$$

approximately

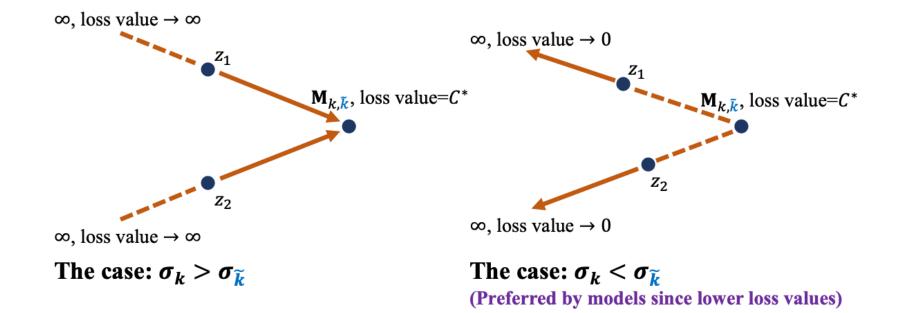
$$\Delta B_{y,\tilde{\mathbf{y}}} = \{ \mathbf{z} \in \mathbb{R}^d | \mathcal{L}_{y,\tilde{\mathbf{y}}}(\mathbf{z}) \in [C, C + \Delta C] \}$$

Induced Sample Density of g-SCE Loss

Theorem 1. (Proof in Appendix A.1) Given $(x, y) \in \mathcal{D}_{k,\tilde{k}}$, z = Z(x) and $\mathcal{L}_{g-SCE}(z, y) = C$, if there are $\Sigma_k = \sigma_k I$, $\Sigma_{\tilde{k}} = \sigma_{\tilde{k}} I$, and $\sigma_k \neq \sigma_{\tilde{k}}$, then the sample density nearby the feature point z based on the approximation in Eq. (6) is

$$\mathbb{SD}(z) \propto \frac{N_{k,\tilde{k}} \cdot p_{k,\tilde{k}}(C)}{\left[\mathbf{B}_{k,\tilde{k}} + \frac{\log(C_e - 1)}{\sigma_k - \sigma_{\tilde{k}}}\right]^{\frac{d-1}{2}}}, and \ \mathbf{B}_{k,\tilde{k}} = \frac{\sigma_k \sigma_{\tilde{k}} \|\mu_k - \mu_{\tilde{k}}\|_2^2}{(\sigma_k - \sigma_{\tilde{k}})^2} + \frac{B_k - B_{\tilde{k}}}{\sigma_k - \sigma_{\tilde{k}}}, \tag{7}$$

where for the input-label pair in $\mathcal{D}_{k,\tilde{k}}$, there is $\mathcal{L}_{g-SCE} \sim p_{k,\tilde{k}}(c)$.



The 'Curse' of Softmax Function

$$\mathcal{L}_{g\text{-SCE}}(Z(x), y) = -\mathbf{1}_{y}^{\top} \log [\operatorname{softmax}(h)],$$

- The softmax makes the loss value only depend on the relative relation among logits.
- This causes indirect and unexpected supervisory signals on the learned features.

Our Method: Max-Mahalanobis Center (MMC) Loss

$$\mathcal{L}_{\text{MMLDA}}(Z(x), y) = -\log\left[\frac{\exp(-\frac{\|z-\mu_y^*\|_2^2}{2})}{\sum_{l\in[L]}\exp(-\frac{\|z-\mu_l^*\|_2^2}{2})}\right] = -\log\left[\frac{\exp(z^\top \mu_y^*)}{\sum_{l\in[L]}\exp(z^\top \mu_l^*)}\right]$$

Our Method: Max-Mahalanobis Center (MMC) Loss

$$\mathcal{L}_{\text{MMLDA}}(Z(x), y) = \log \left[\frac{\exp(-\frac{\|z-\mu_y^*\|_2^2}{2})}{\sum_{l \in [L]} \exp(-\frac{\|z-\mu_l^*\|_2^2}{2})} \right] = -\log \left[\frac{\exp(z^\top \mu_y^*)}{\sum_{l \in [L]} \exp(z^\top \mu_l^*)} \right]$$
$$\mathcal{L}_{\text{MMC}}(Z(x), y) = \frac{1}{2} \|z - \mu_y^*\|_2^2$$

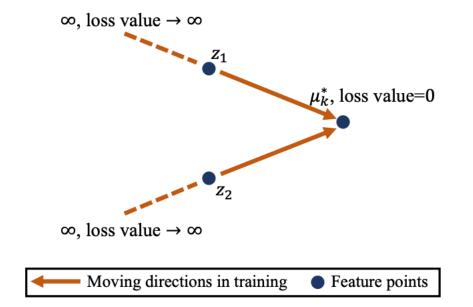
• No softmax normalization

Induced Sample Density of MMC Loss

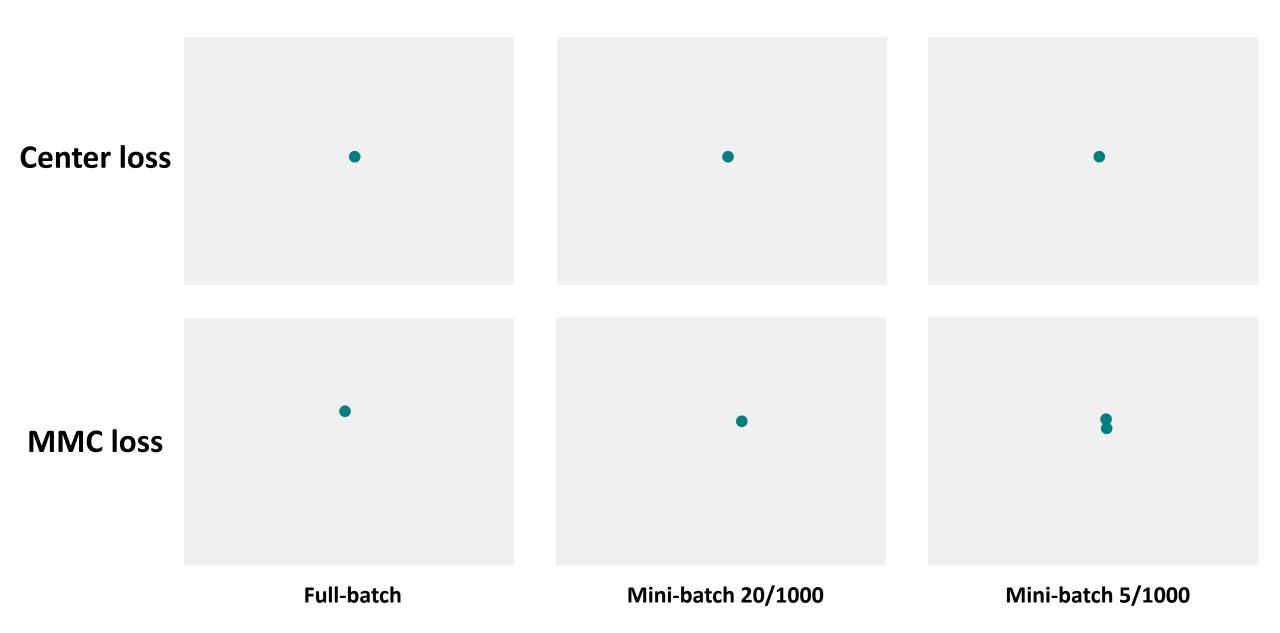
Theorem 2. (Proof in Appendix A.2) Given $(x, y) \in D_k$, z = Z(x) and $\mathcal{L}_{MMC}(z, y) = C$, the sample density nearby the feature point z is

$$\mathbb{SD}(z) \propto \frac{N_k \cdot p_k(C)}{C^{\frac{d-1}{2}}},\tag{9}$$

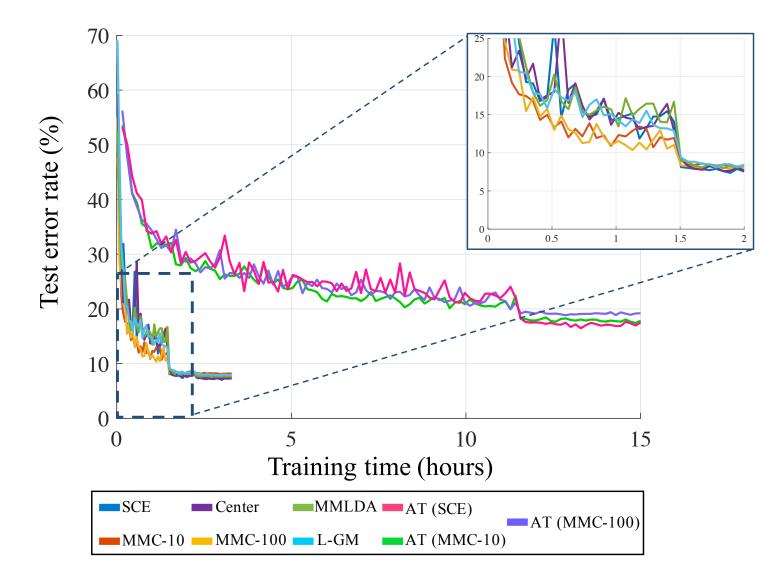
where for the input-label pair in \mathcal{D}_k , there is $\mathcal{L}_{MMC} \sim p_k(c)$.



Toy Demo on Faster Convergence



Empirical Faster Convergence

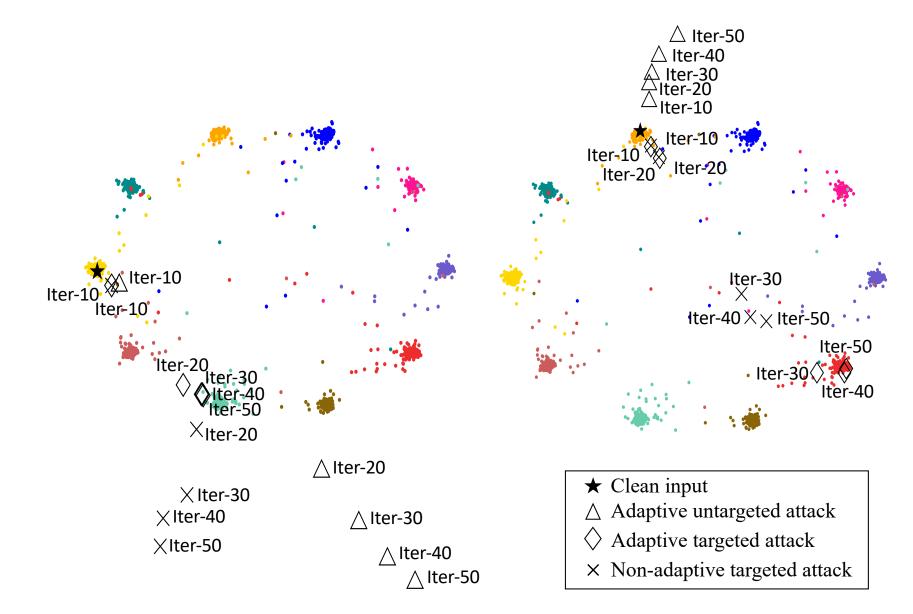


White-box Robustness (Adaptive Attacks)

		Perturbation $\epsilon = 8/255$				Perturbation $\epsilon = 16/255$				
Methods	Clean	PGD ₁₀ ^{tar}	PGD ₁₀ ^{un}	PGD ₅₀ ^{tar}	PGD ₅₀ ^{un}	$\mathbf{PGD}_{10}^{\mathbf{tar}}$	PGD ₁₀ ^{un}	PGD ₅₀ ^{tar}	PGD ₅₀ ^{un}	
SCE	92.9	≤ 1	3.7	≤ 1	3.6	≤ 1	2.9	≤ 1	2.6	
Center loss	92.8	≤ 1	4.4	≤ 1	4.3	≤ 1	3.1	≤ 1	2.9	
MMLDA	92.4	≤ 1	16.5	≤ 1	9.7	≤ 1	6.7	≤ 1	5.5	
L-GM	92.5	37.6	19.8	8.9	4.9	26.0	11.0	2.5	2.8	
MMC-10 (rand)	92.3	43.5	29.2	20.9	18.4	31.3	17.9	8.6	11.6	
MMC-10	92.7	48.7	36.0	26.6	24.8	36.1	25.2	13.4	17.5	
AT ₁₀ ^{tar} (SCE)	83.7	70.6	49.7	69.8	47.8	48.4	26.7	31.2	16.0	
$AT_{10}^{tar} (MMC-10)$	83.0	69.2	54.8	67.0	53.5	58.6	47.3	44.7	45.1	
AT ^{un} ₁₀ (SCE)	80.9	69.8	55.4	69.4	53.9	53.3	34.1	38.5	21.5	
AT ^{un} ₁₀ (MMC-10)	81.8	70.8	56.3	70.1	55.0	54.7	37.4	39.9	27.7	

CIFAR-10

White-box Robustness (Adaptive Attacks)

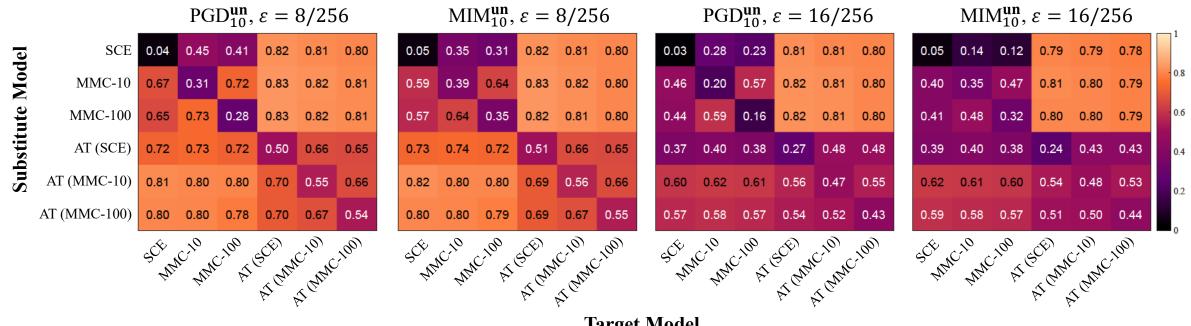


White-box Robustness (Adaptive Attacks)

	Part I		Part II ($\epsilon = 8/255$)		Part II ($\epsilon = 16/255$)		Part III	
Methods	C&W ^{tar}	C&W ^{un}	$\mathbf{SPSA}_{10}^{\mathbf{tar}}$	SPSA ^{un} ₁₀	$SPSA_{10}^{tar}$	SPSA ^{un} ₁₀	Noise	Rotation
SCE	0.12	0.07	12.3	1.2	5.1	≤ 1	52.0	83.5
Center loss	0.13	0.07	21.2	6.0	10.6	2.0	55.4	84.9
MMLDA	0.17	0.10	25.6	13.2	11.3	5.7	57.9	84.8
L-GM	0.23	0.12	61.9	45.9	46.1	28.2	59.2	82.4
MMC-10	0.34	0.17	69.5	56.9	57.2	41.5	69.3	87.2
AT ₁₀ ^{tar} (SCE)	1.19	0.63	81.1	67.8	77.9	59.4	82.2	76.0
AT ₁₀ ^{tar} (MMC-10)	1.91	0.85	79.1	69.2	74.5	62.7	83.5	75.2
AT ₁₀ ^{un} (SCE)	1.26	0.68	78.8	67.0	73.7	60.3	78.9	73.7
AT ^{un} ₁₀ (MMC-10)	1.55	0.73	80.4	69.6	74.6	62.4	80.3	75.8

CIFAR-10

Black-box Robustness (Exclude Gradient Masking)



Target Model

Different Architectures

		Perturbation $\epsilon = 8/255$				Perturbation $\epsilon = 16/255$				
Methods	Cle.	PGD ₁₀ ^{tar}	PGD ₁₀ ^{un}	PGD ₅₀ ^{tar}	PGD ₅₀ ^{un}	PGD ₁₀ ^{tar}	PGD_{10}^{un}	PGD ₅₀ ^{tar}	PGD ₅₀	
CIFAR-10										
SCE (Res.32)	93.6	≤ 1	3.7	≤ 1	3.6	≤ 1	2.7	≤ 1	2.9	
MMC (Res.32)	92.7	48.7	36.0	26.6	24.8	36.1	25.2	13.4	17.5	
SCE (Res.110)	94.7	≤ 1	3.0	≤ 1	2.9	≤ 1	2.1	≤ 1	2.0	
MMC (Res.110)	93.6	54.7	46.0	34.4	31.4	41.0	30.7	16.2	21.6	
CIFAR-100										
SCE (Res.32)	72.3	≤ 1	7.8	≤ 1	7.4	≤ 1	4.8	≤ 1	4.7	
MMC (Res.32)	71.9	23.9	23.4	15.1	21.9	16.4	16.7	8.0	15.7	
SCE (Res.110)	74.8	≤ 1	7.5	≤ 1	7.3	≤ 1	4.7	≤ 1	4.5	
MMC (Res.110)	73.2	34.6	22.4	23.7	16.5	24.1	14.9	13.9	10.5	

Thanks