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Motivation
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The same dataset, e.g., CIFAR-10, which enables good standard accuracy
may not suffice to train robust models.

(Schmidt et al. NeurlPS 2018)
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Possible Solutions

* Introducing extra labeled data
(Hendrycks et al. ICML 2019)

* Introducing extra unlabeled data
(Alayrac et al. NeurlIPS 2019; Carmon et al. NeurlPS 2019)

* Our solution: Increase sample density to induce locally
sufficient training data for robust learning

Q1: What is the definition of sample density?

Q2: Can existing training objectives induce high sample density?



Sample Density

Given a training dataset D with N input-label pairs, and the feature mapping Z trained by the
objective L(Z(x),y) on this dataset, we define the sample density nearby the feature point z = Z(z)
following the similar definition in physics (Jackson, 1999) as

AN
SD(z) = ————. 2
) = VolaB) )
Here Vol(-) denotes the volume of the input set, A B is a small neighbourhood containing the feature
point z, and AN = |Z(D) N AB| is the number of training points in A B, where Z(D) is the set of

all mapped features for the inputs in D. Note that the mapped feature 2 is still of the label y.
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Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as
Lesce(Z(x),y) = —1; log [softmax(h)],

where h;, = —(z — ,uz-)TEz-(z — u;) + B; is the logits in quadratic form.



Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as
Lesce(Z(x),y) = —1; log [softmax(h)],

where h;, = —(z — ,uz-)TEz-(z — u;) + B; is the logits in quadratic form.

We note that the SCE loss is included in the family of g-SCE loss as

softmax(Wz + b); = exp(W; 2+ bi) — exp(— ||z — %W"”% 1o+ i”Wz”%)
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[L]




The Contour of g-SCE Loss

To provide a formal representation of the sample density induced by the g-
SCE loss, we first derive the formula of the contours
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The Contour of g-SCE Loss

To provide a formal representation of the sample density induced by the g-
SCE loss, we first derive the formula of the contours

‘Cg'SCE(Z(x)a y) =C

y

exp(h
log <1—|—Zl#y p( l)> =C = hy=log Zexp (hy)| —log(C.—1).
exp(hy) —

\_'_I

Log-Sum-Exp function, which is a soft maximum function




The Contour of g-SCE Loss

To provide a formal representation of the sample density induced by the g-
SCE loss, we first derive the formula of the contours

‘Cg'SCE(Z(x)a y) =C

y

exp(h
log (1—|— Zl#y p( l)) =C = hy=log Zexp (hy) | — log(C.—1).
exp(hy) =

@ approximately

hy — hy = —log(Ce — 1),

where C, = exp(C), and § = arg max,, h;.



The Contour of g-SCE Loss

We can the approximate loss as

L, (z) =loglexp(hy — hy) + 1]
such that

hy — hy = —log(Ce — 1) =)  L,:(z)=C

ﬁ approximately ﬁ approximately

h, =log Z exp(h;) | — log(C.—1) > Lysce(Z(x),y) =C
a




The Neighborhood AB in Sample Density

Based on the above approximation, we can now approximate the neighborhood

AB = {z € RYL(z,y) € [C,C + AC]}

@ approximately

AB,; = {z € R¥L, ;(z) € [C,C + AC]}




Induced Sample Density of g-SCE Loss

Theorem 1. (Proof in Appendix A.1) Given (z,y) € D, ;, 2 = Z(z) and Ly.sce(z,y) = C, if there

are Y, = oyl, X5 = o1, and oy, # 0y, then the sample density nearby the feature point z based on
the approximation in Eq. (6) is
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The ‘Curse’ of Softmax Function

Lesce(Z(x),y) = —1; log [softmax(h)],

U

* The softmax makes the loss value only depend on the relative relation among logits.

* This causes indirect and unexpected supervisory signals on the learned features.



Our Method: Max-Mahalanobis Center (MMC) Loss
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Our Method: Max-Mahalanobis Center (MMC) Loss
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Lvmve(Z(z),y) = §||Z — M;”g

* No softmax normalization



Induced Sample Density of MMC Loss

Theorem 2. (Proof in Appendix A.2) Given (z,y) € Dx, z = Z(x) and Lyyc(z,y) = C, the
sample density nearby the feature point z is
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Toy Demo on Faster Convergence
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Empirical Faster Convergence
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White-box Robustness (Adaptive Attacks)

Perturbation ¢ = 8 /255

Perturbation ¢ = 16/255

Methods Clean | PGDY¥ | PGDY | PGDY | PGDY | PGDY | PGD: | PGDY" | PGDS
SCE 92.9 <1 3.7 <1 3.6 <1 2.9 <1 2.6
Center loss 92.8 <1 4.4 <1 4.3 <1 3.1 <1 2.9
MMLDA 92.4 <1 16.5 <1 9.7 <1 6.7 <1 5.5
L-GM 92.5 37.6 19.8 8.9 4.9 26.0 11.0 2.5 2.8
MMC-10 (rand) | 92.3 43.5 29.2 20.9 18.4 31.3 17.9 8.6 11.6
MMC-10 92.7 48.7 36.0 26.6 24.8 36.1 25.2 13.4 17.5
AT® (SCE) 83.7 70.6 49.7 69.8 47.8 48.4 26.7 31.2 16.0
ATYS (MMC-10) | 83.0 69.2 54.8 67.0 53.5 58.6 47.3 44.7 45.1
ATY? (SCE) 80.9 69.8 55.4 69.4 53.9 53.3 34.1 38.5 21.5
ATYH (MMC-10) | 81.8 70.8 56.3 70.1 55.0 54.7 37.4 39.9 27.7

CIFAR-10
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White-box Robustness (Adaptive Attacks)

Part 1 Part II (e=8/255) | PartII (e=16/255) Part 111

Methods C&W™ | C&W" | SPSAYS | SPSAY) | SPSAYS | SPSAYf | Noise | Rotation
SCE 0.12 0.07 12.3 1.2 5.1 <1 52.0 83.5
Center loss 0.13 0.07 21.2 6.0 10.6 2.0 554 84.9
MMLDA 0.17 0.10 25.6 13.2 11.3 5.7 57.9 84.8
L-GM 0.23 0.12 61.9 45.9 46.1 28.2 59.2 82.4
MMC-10 0.34 0.17 69.5 56.9 57.2 41.5 69.3 87.2
AT (SCE) 1.19 0.63 81.1 67.8 77.9 594 82.2 76.0
AT (MMC-10) 1.91 0.85 79.1 69.2 74.5 62.7 83.5 75.2
ATY5 (SCE) 1.26 0.68 78.8 67.0 73.7 60.3 78.9 73.7
AT (MMC-10) 1.55 0.73 80.4 69.6 74.6 62.4 80.3 75.8

CIFAR-10



Black-box Robustness (Exclude Gradient Masking)
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Different Architectures

Perturbation ¢ = 8/255

Perturbation ¢ = 16/255

Methods Cle. | PGDY | PGDY | PGD¥ | PGD% | PGD | PGD | PGDY | PGDY

CIFAR-10

SCE (Res.32) | 936 | <1 3.7 <1 3.6 <1 2.7 <1 2.9

MMC (Res.32) | 927 | 487 | 360 | 26.6 24.8 36.1 25.2 13.4 17.5

SCE (Res.110) | 947 | <1 3.0 <1 2.9 <1 2.1 <1 2.0

MMC (Res.110) | 93.6 | 547 | 460 | 344 31.4 41.0 | 307 16.2 21.6
CIFAR-100

SCE (Res32) | 723 | <1 7.8 <1 74 <1 4.8 <1 4.7

MMC (Res.32) | 719 | 239 | 234 15.1 21.9 16.4 16.7 8.0 15.7

SCE (Res.110) | 748 | <1 75 <1 73 <1 4.7 <1 45

MMC (Res.110) | 732 | 34.6 | 224 | 237 16.5 24.1 14.9 13.9 10.5
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