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Motivation

The same dataset, e.g., CIFAR-10, which enables good standard accuracy 
may not suffice to train robust models.

(Schmidt et al. NeurIPS 2018)
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• Our solution: Increase sample density to induce locally 
sufficient training data for robust learning

Q1: What is the definition of sample density?

Q2: Can existing training objectives induce high sample density?



Sample Density
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Generalized Softmax Cross Entropy Loss (g-SCE loss)

We define g-SCE loss as

where                                                                     is the logits in quadratic form.
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We define g-SCE loss as

where                                                                     is the logits in quadratic form.

We note that the SCE loss is included in the family of g-SCE loss as
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Log-Sum-Exp function, which is a soft maximum function



The Contour of g-SCE Loss 

To provide a formal representation of the sample density induced by the g-
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where                         , and 

approximately



The Contour of g-SCE Loss 

We can the approximate loss as

such that 

approximatelyapproximately



The Neighborhood ∆𝑩 in Sample Density

Based on the above approximation, we can now approximate the neighborhood 

approximately



Induced Sample Density of g-SCE Loss



The ‘Curse’ of Softmax Function

• The softmax makes the loss value only depend on the relative relation among logits. 

• This causes indirect and unexpected supervisory signals on the learned features.



Our Method: Max-Mahalanobis Center (MMC) Loss



Our Method: Max-Mahalanobis Center (MMC) Loss

• No softmax normalization



Induced Sample Density of MMC Loss



Mini-batch 5/1000Mini-batch 20/1000Full-batch

Toy Demo on Faster Convergence

Center loss

MMC loss



Empirical Faster Convergence
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White-box Robustness (Adaptive Attacks)

CIFAR-10



White-box Robustness (Adaptive Attacks)
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White-box Robustness (Adaptive Attacks)

CIFAR-10



Black-box Robustness (Exclude Gradient Masking)
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Different Architectures



Thanks


