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Objective

Aggregating noisy crowdsourcing labels to find Ground Truths.

Majority Voting (MV)
Items: 𝑖 ∈ 𝑀 Workers: 𝑗 ∈ 𝑁 Worker labels: 𝑥𝑖𝑗∈ 𝐷

Each item have a ground truth: 𝑦𝑖 ∈ [𝐷] 𝒙𝑖：{𝑥𝑖𝑗，∀𝑗}

MV:  find the most frequent labels

Limitations:
1. Workers are equal, lack of discrimination ability

2. Do not consider worker confusability

Constraint Formulation of MV
Expansion Expression

Def:   𝒈 𝒙𝑖 , 𝑑 ∈ {0,1}𝑁 , element 𝑗 is 𝕀(𝑥𝑖𝑗 = 𝑑)

Constraint Formulation  

MV is equivalent to find 𝒚 satisfying the constraints:
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Dawid-Skene Model (DS)

Define and estimate worker confusion matrices.
𝜙𝑗 is the confusion matrix of worker 

𝜙𝑗𝑘𝑑 = 𝑝 𝑥𝑖𝑗 = 𝑑 𝑦𝑖 = 𝑘 , ∀𝑖

CrowdSVM

Consider Majority Voting and confusability in a single model.

Max Margin Majority Voting (M3V)

Incorporate max-margin principle to estimate 𝜼

Here we using soft-margin for robustness.
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Solving by iteratively updating 𝜼 and 𝒚.

Solver for 𝜼:

𝝎 is the solution of the dual problem:

Solver for 𝒚: 

Experimental Results

Convergence:

Generative vs. Discriminative:

Conclusion: 

1.Max-margin principle can enhance majority voting.

2.Both generative and discriminative component benefits 

from the other.
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Weighted MV
We introduce worker weights  𝜼 ∈ ℝ𝑁, then the constraint 

formulation changed into 

The discriminative function for infer ground truth:

We test the aggregation error rate on several popular 

datasets.
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