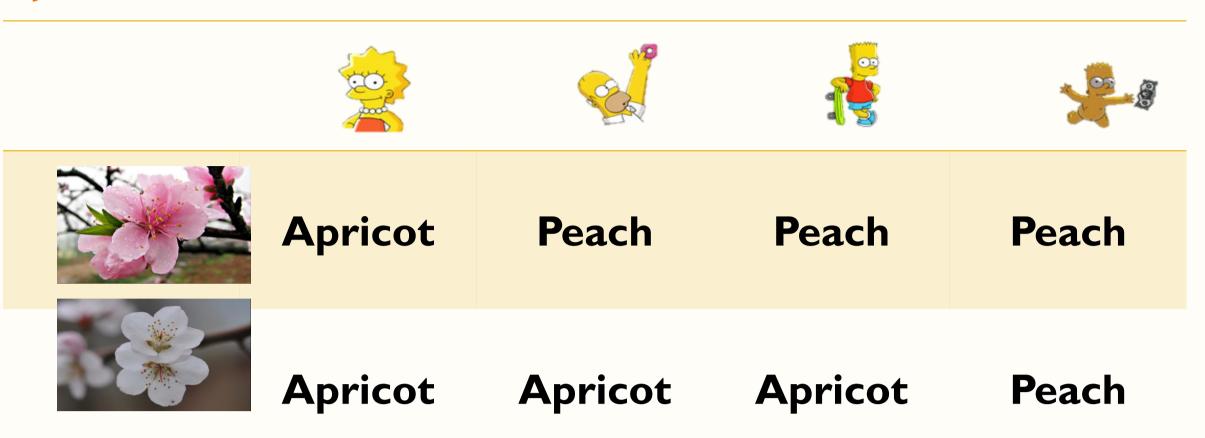


Max-Margin Majority Voting for Learning from Crowds

Tian Tian and Jun Zhu

from Department of Computer Science and Technology, Tsinghua University.

Objective



Aggregating **noisy** crowdsourcing labels to find **Ground Truths**.

Majority Voting (MV)

Items: $i \in [M]$ Workers: $j \in [N]$ Worker labels: $x_{ij} \in [D]$ Each item have a ground truth: $y_i \in [D]$ x_i : $\{x_{ij}, \forall j\}$

MV: find the most frequent labels

$$\hat{y}_i = \underset{d \in [D]}{\operatorname{argmax}} \sum_{j=1}^{N} \mathbb{I}(x_{ij} = d), \forall i \in [M]$$

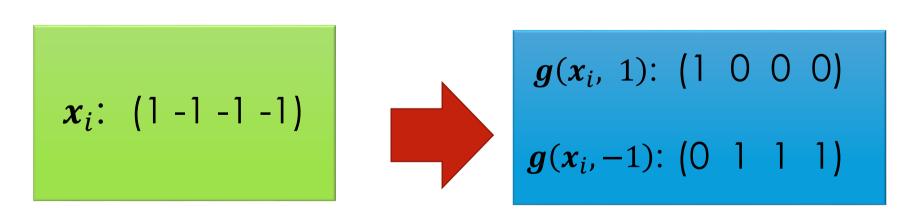
Limitations:

- . Workers are equal, lack of discrimination ability
- 2. Do not consider worker confusability

Constraint Formulation of MV

Expansion Expression

Def: $g(x_i, d) \in \{0,1\}^N$, element j is $\mathbb{I}(x_{ij} = d)$



Constraint Formulation

MV is equivalent to find y satisfying the constraints:

$$\mathbf{1}_{N}^{\mathsf{T}} \boldsymbol{g}(\boldsymbol{x}_{i}, y_{i}) - \mathbf{1}_{N}^{\mathsf{T}} \boldsymbol{g}(\boldsymbol{x}_{i}, d) \geq 0, \quad \forall i, d$$

Weighted MV

We introduce worker weights $\eta \in \mathbb{R}^N$, then the constraint formulation changed into

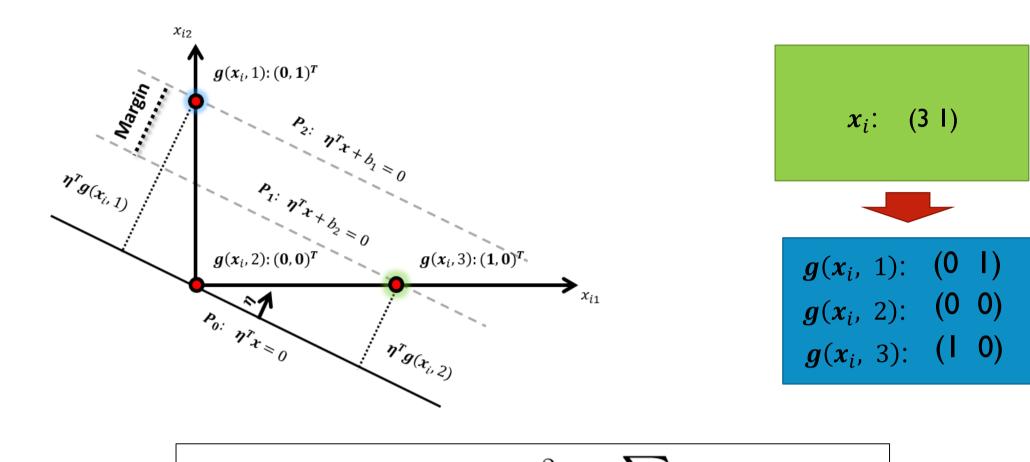
$$\boldsymbol{\eta}^{\top} \mathbf{g}(\mathbf{x}_i, y_i) - \boldsymbol{\eta}^{\top} \mathbf{g}(\mathbf{x}_i, d) \geq 0, \forall i, d,$$

The discriminative function for infer ground truth:

$$\hat{y}_i = \operatorname{argmax}_{d \in [D]} \boldsymbol{\eta}^{\top} \boldsymbol{g}(\boldsymbol{x}_i, d)$$

Max Margin Majority Voting (M³V)

Incorporate max-margin principle to estimate η



$$\inf_{\xi_i \geq 0, \boldsymbol{\eta}, \boldsymbol{y}} \|\boldsymbol{\eta}\|_2^2 + c \sum_i \xi_i$$

s. t. : $\boldsymbol{\eta}^{\top} \boldsymbol{g}_i^{\Delta}(d) \geq \ell_i^{\Delta}(d) - \xi_i, \forall i \in [M], d \in [D]$

where $\boldsymbol{g}_i^{\Delta}(d) := \boldsymbol{g}(\boldsymbol{x}_i, y_i) - \boldsymbol{g}(\boldsymbol{x}_i, d)^2$ and $\ell_i^{\Delta}(d) = \ell \mathbb{I}(y_i \neq d)$.

Here we using soft-margin for robustness.

Solving by iteratively updating η and y.

Solver for η : $oldsymbol{\eta} = \sum_{i=1}^{M} \sum_{d=1}^{D} \omega_i^d oldsymbol{g}_i^{\Delta}(d)$

 ω is the solution of the dual problem:

$$\sup_{0 < \omega_i^d < c/2} -\frac{1}{2} \boldsymbol{\eta}^\top \boldsymbol{\eta} + \sum_i \sum_d \omega_i^d \ell_i^{\Delta}(d),$$

Solver for \mathbf{y} : $\hat{y}_i = \operatorname*{argmax}_{y_i \in [D]} \left(-c \max_{d \in [D]} \left(\ell_i^{\Delta}(d) - \hat{\boldsymbol{\eta}}^{\top} \boldsymbol{g}_i^{\Delta}(d) \right)_+ \right),$

Dawid-Skene Model (DS)

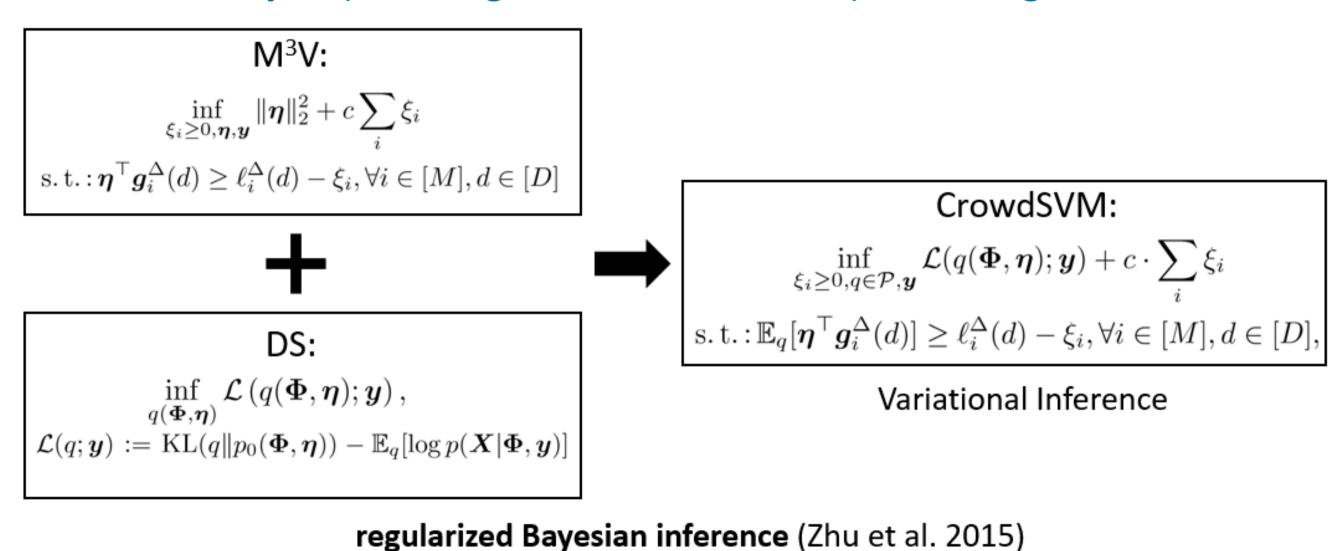
Define and estimate worker confusion matrices.

 ϕ_i is the confusion matrix of worker

$$\phi_{jkd} = p(x_{ij} = d \, | \, y_i = k), \, \forall i$$
 Apricot Peach Worker Label Apricot 0.8 0.2 Peach 0.4 0.6

CrowdSVM

Consider Majority Voting and confusability in a single model.



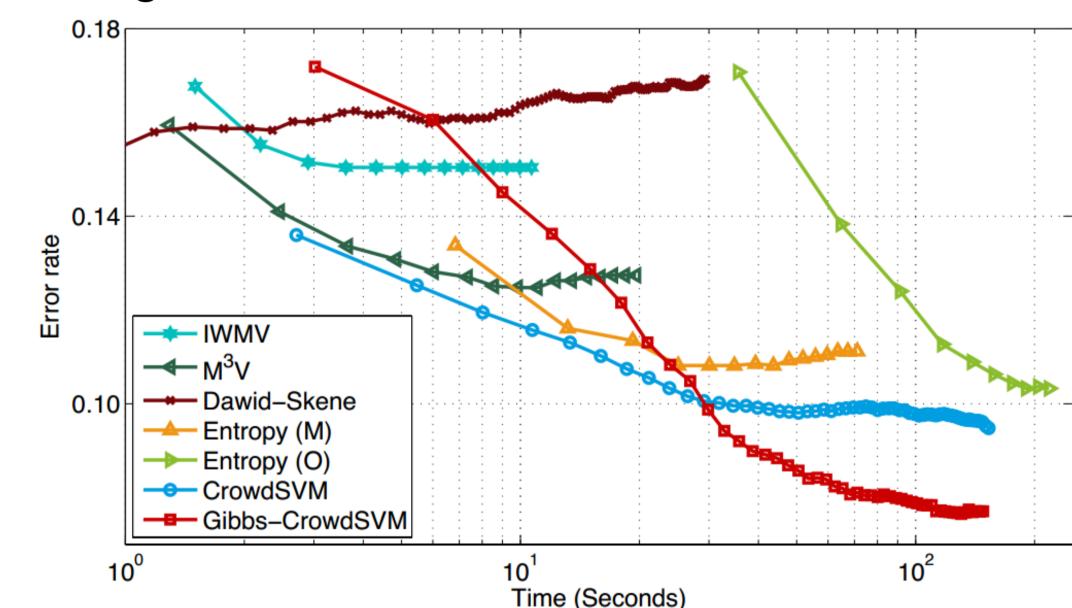
Experimental Results

We test the aggregation error rate on several popular datasets.

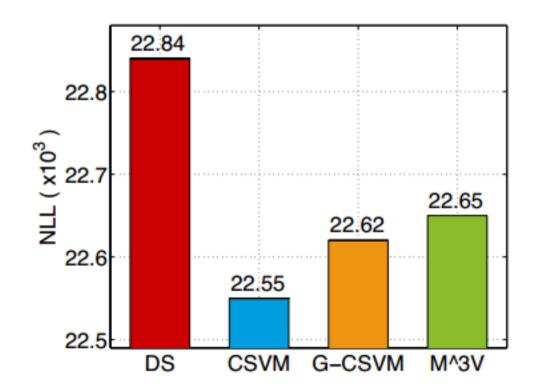
Table 2: Error-rates (%) of different estimators on four datasets.

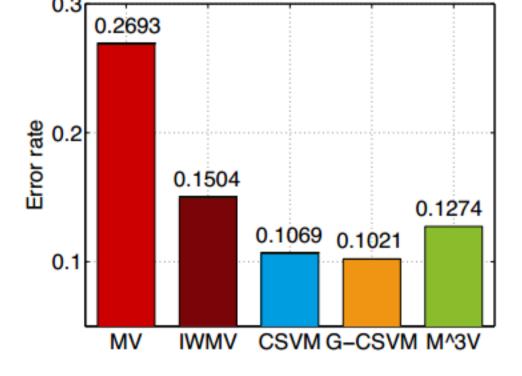
	Метнор	WEB SEARCH	AGE	BLUEBIRDS	FLOWERS
I	MV	26.90	34.88	24.07	22.00
	IWMV	15.04	34.53	27.78	19.00
	M^3V	12.74	33.33	20.37	13.50
II	DS	16.92	39.62	10.19	13.00
	DS+Prior	13.26	34.53	10.19	13.50
	CROWDSVM	9.42	33.33	10.19	13.50
	ME	10.40	31.14	8.33	13.00
_III	G-CROWDSVM	7.99 ± 0.26	32.98 ± 0.36	10.37 ± 0.41	12.10 ± 1.07

Convergence:



Generative vs. Discriminative:





Conclusion:

1.Max-margin principle can enhance majority voting. 2.Both generative and discriminative component benefits from the other.

Contact Info

Tian Tian (田天) PhD Student@THU

Email: tiant13@mails.Tsinghua.edu.cn

Welcome for discussing!

