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A Derivation Details of the Bayesian Aggregating Model

In this section, we first present the derivation details about the evidence lower bound of the Bayesian
aggregating model, then we show the gradients for updating the variational distribution and the
model parameters.

A.1 Evidence Lower Bound

According to our Bayesian aggregating model, the expansion of the evidence lower bound (ELBO)
is:
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In the formula above, we have seven terms to specify. We will present the detailed derivations for
each of them.

The first term is the expected log-likelihood. Since our likelihood is defined on the distribution
of y, this expectation can be calculated by plug the variational distribution ¢(y) into the likelihood
as
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where Dt is defined as the Jensen-Shannon divergence between two distributions P = ¢(y; 1)
and Q) = q(yjk) It has a form of D}, = JS(P|Q) = [KL(P||H) + KL(Q||H)]/2, where

H=

(P+Q)/2. D}y = JS(P||U), where U = N(0,5°).
For the second term, we have
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For the third term, we have:
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For the fourth term, we have:
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For the fifth term, we have:
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For the sixth term, we have:
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For the seventh term, we have:
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With above derivations for these seven terms, we can have an expanded formula for the ELBO.
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For computational simplicity, we fix 7,, = o, then we have
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A.2 Learning the Variational Parameters
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In this part, we take the derivative of the ELBO with respect to the variational parameters. Then we

can learn the variational distribution.
For updating ¢, we have
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By setting 0L/0¢ to zero, we can get
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So these two kinds of parameters have close-form updating expressions.
For updating 1), we have
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Since it is hard to find the close-form solution for 0L/ = 0, we use gradient based optimiza-
tion methods to update these parameters.

A.3 Estimating the Model Parameters

Similar to the variational inference, we take the derivative of the ELBO with respect to the model
parameters, and then update these values.

When updating o, since a1 + oy + a3 = 1, we import the Lagrange multipliers to the lower
bound, and then we have
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By setting 0L 4]/Ocx to zero, we can get
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When updating 3, since ) , f; = 1, similarly we import the Lagrange multipliers to the lower
bound, and then we have
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When updating o, since it is hard to find a close-form expression for updating, we use grid search
to find good values.

B More Details about the Nonparametric Initialization

The initialization strategy described in our paper involves the following nonparametric optimization
problem:

K
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where A = (1 — p)M is a similarity threshold, and p € [0, 1] is a relaxation factor. This problem ad-

mits two properties: (1) The final amount of the crowdsourced attributes K is potentially unbounded

and automatically determined by the data, and (2) the similarity between each signature to its most

similar crowdsourced attribute must be larger than pM.

To see the first property, since the amount of the crowdsourced attributes K is also a variable in
this objective, we need to learn this value in real time. So K will increases when data grows, which
is potentially unbounded. To see the second property, once the similarity between a signature h; to
its most similar crowdsourced attribute 7, is smaller than pM, we can create a new crowdsourced
attribute whose signature is h;, then the similarity between h, and this new crowdsourced attribute
will be M, and the total change on the objective is M — f(h;, i) — A = pM — f(hs,ri) > 0.

These two properties provide us an iterative way to find a local optimum of the problem. The final
algorithm is similar as K-means’ two-step update. For each iteration, we first assign each signature
into its nearest crowdsourced attribute, then update the centers based on the assignments. The main
difference between our algorithm and K-means is the assignment step. When dealing with a new
signature h;, we find its most similar crowdsourced attribute 7. If the similarity between h; and 7,
is smaller than p M, we generate a new crowdsourced attribute whose signature r 1 is h;. Then we
assign the signature h; to this new crowdsourced attribute 7 ;.



C Attribute Analysis for the Animals Dataset

No.| Pos Examples Neg Examples | Signatures| Worker Descriptions
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| Live on land or in
water

Not hooved or hooved

Common or rare

Can climb trees or not

Stand out colors or
blend in colors

Ground or tree dweller

Solid or patterned fur

Tropical or cool
climate dweller

Herbivore or
omnivorous

Figure 1: Crowdsourced attributes learned from the Animals dataset (Best viewed in color).

We visualize the crowdsourced attributes we learned from the Animals dataset in Fig. [I] The
meanings of the columns are the same to them in the yellow flowers dataset experiment. Signature
legend is also shown in Appendix C. When p = 0.55 we have 10 attributes in the results. Since 1
attribute is compatible with less than 4 categories, it is removed and then we show 9 crowdsourced
attributes here. The results show that the 9 discovered attributes cover a wide range of animal
properties. Some attributes are widely recognized, such as the living habitat, hooved or not and
ubiquitous or rare. Other attributes, such as the ability to climb trees, herbivore versus omnivorous,
etc, are more subtle. An interesting observation is that most of these attributes have meanings beyond
the visual information expressed by the pictures. They may come from the diverse knowledge
backgrounds of different annotators.



D Signature Legends for the Two Nature Scene Datasets
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Figure 2: Signature legends for the yellow flowers dataset and the animals dataset (Best viewed in

color).



E Analogical Interface for the Rabbits dataset

Find Difference between Rabbit Species!

Attention:

Qur purpose to collect these infomations is to know what attributes are important to distinguish different cartoon rabbit species, you
should keep this in mind.

Instructions:
« Each rabbit picture appears in this task represents one species of rabbits. There are 8 different rabbit species in total.

- You are first asked to view two different species of rabbits, then provide a short description about the Main Difference between them.
Only one most discriminative attribute need to be described.

« Then you are asked to view 6 other rabbit species, you compare each of them with the former two species.

- Please decide whether this rabbit is more similar to the first kind of rabbit, or the secend kind of rabbit? The similarity must be
measured ONLY by the attribute you described earlier.

Let's Begin!

Task:
Step 1: View two different species (species A and B) of rabbits.

A B

o b

1. Among all rabbits, please describe the main visual difference between these two
rabbit species:

Step 2: Label Visual Similarity with this attribute.

(All pictures are shown in the same plotting scale)

A B

o @0 b

2. Based on the discribed attribute, this rabbit species is similar to A or
B? (or None)

@ Similar to A
@ Similar to B
@ Cannot decide/ Do not have this attribute
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3. Based on the discribed attribute, this rabbit
species is similar to A or B? (or None)

@ Similar to A
@ Similar to B
@ Cannot decide/ Do not have this attribute
4. Based on the discribed attribute, this rabbit
species is similar to A or B? (or None)
@ Similar to A
(o] Similar to B
Q@ Cannot decide/ Do not have this attribute
5. Based on the discribed attribute, this rabbit
specdies is similar to A or B? (or None)
(o] Similar to A
@ Similar to B
(o] Cannot decide/ Do not have this attribute

A B
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6. Based on the discribed attribute, this rabbit
species is similar to A or B? (or None)

@ Similar to A
@ Similar to B
(@] Cannot decide/ Do not have this attribute

A B

o b

7. Based on the discribed attribute, this rabbit
species is similar to A or B? (or None)

@ Similar to A
@ Similar to B
@] Cannot decide/ Do not have this attribute

10
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