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A Derivation Details of the Bayesian Aggregating Model
In this section, we first present the derivation details about the evidence lower bound of the Bayesian
aggregating model, then we show the gradients for updating the variational distribution and the
model parameters.

A.1 Evidence Lower Bound
According to our Bayesian aggregating model, the expansion of the evidence lower bound (ELBO)
is:

L(γ, φ, ψ, τ) = Eq[log p(c, z,y, b|θ)]− Eq[log q(c, z,y)] (1)
= Eq[log p(b|y, c)] + Eq[log p(y|z, σ)] + Eq[log p(z|α)] + Eq[log p(c|β)]−

Eq[log q(c)]− Eq[log q(z)]− Eq[log q(y)].

In the formula above, we have seven terms to specify. We will present the detailed derivations for
each of them.

The first term is the expected log-likelihood. Since our likelihood is defined on the distribution
of y, this expectation can be calculated by plug the variational distribution q(y) into the likelihood
as

Eq[log p(b|y, c)] =
∑
t

Eq(ct)
∑
(i,j,k)

Eq(y)
[
log p(bti,j,s|yi,yj,ys, ct)

]
(2)

=
∑
t

Eq(ct)
∑
(i,j,s)

[
log

∫
p(bti,j,s|yi,yj,ys, ct)q(y)dy

]
=

∑
t

Eq(ct)
∑
(i,j,s)

log p
(
bti,j,s|q(yi,yj,ys), ct

)
= −

∑
t

∑
k

γt,k
∑
(i,j,s)

[
bti,j,sD

t
i,j + (1− bti,j,s)Dt

i,0+

log (e−D
t
i,j+e−D

t
i,s+e−D

t
i,0)
]
,
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where Dt
i,j is defined as the Jensen-Shannon divergence between two distributions P = q(yi,k)

and Q = q(yj,k). It has a form of Dt
i,j = JS(P‖Q) = [KL(P‖H) + KL(Q‖H)]/2, where

H = (P +Q)/2. Dt
i,0 = JS(P‖U), where U = N (0, σ2).

For the second term, we have

Eq[log p(y|z, σ)] (3)

= − 1

2σ2

∑
n

Eq
[
(yn − µn)>(yn − µn)

]
−NK log σ − NK

2
log (2π)

= − 1

2σ2

(∑
n

Eq(yn)[y
>
nyn]− 2

∑
n

Eq(µn)[µn]
>Eq(yn)[yn] +

∑
n

Eq(µn)[µ
>
nµn]

)
−

NK log σ − NK

2
log (2π)

= − 1

2σ2

(∑
n

[Kτ 2n +ψ
>
nψn]− 2

∑
n

∑
k

[(φln,k,1 · 1 + φln,k,−1 · −1)ψn,k] +∑
n

∑
k

(φln,k,−1 + φln,k,1)
)
−NK log σ − NK

2
log (2π).

For the third term, we have:

Eq[log p(z|α)] =
∑
m,k

Eq(zm,k)[log p(zm,k|α)] (4)

=
∑
m,k

[φm,k,−1 logα−1 + φm,k,0 logα0 + φm,k,1 logα1].

For the fourth term, we have:

Eq[log p(c|β)] =
∑
t

Eq(ct)[log p(ct|β)] =
∑
t

∑
k

[γt,k log βk]. (5)

For the fifth term, we have:

Eq[log q(c)] =
∑
t

∑
k

γt,k log γt,k. (6)

For the sixth term, we have:

Eq[log q(z)] =
∑
m,k

[φm,k,−1 log φm,k,−1 + φm,k,0 log φm,k,0 + φm,k,1 log φm,k,1]. (7)

For the seventh term, we have:

Eq[log q(y)] =
∑
n

∑
k

Eq(yn,k)[log q(yn,k)] (8)

= −
∑
n

K log τn −
NK

2
log (2π)− NK

2
.

With above derivations for these seven terms, we can have an expanded formula for the ELBO.
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We have

L(γ, φ, ψ, τ)= (9)

−
∑
t

∑
k

γt,k
∑
(i,j,s)

[
bti,j,sD

t
i,j + (1− bti,j,s)Dt

i,0 + log (e−D
t
i,j+e−D

t
i,s+e−D

t
i,0)
]
−

1

2σ2

(∑
n

[Kτ 2n +ψ
>
nψn]− 2

∑
n

∑
k

[(φln,k,1 · 1 + φln,k,−1 · −1)ψn,k] +∑
n

∑
k

(φln,k,−1 + φln,k,1)
)
−NK log σ − NK

2
log (2π) +∑

m,k

[φm,k,−1 logα−1 + φm,k,0 logα0 + φm,k,1 logα1] +∑
t

∑
k

γt,k log βk −
∑
t

∑
k

γt,k log γt,k −∑
m,k

[φm,k,−1 log φm,k,−1 + φm,k,0 log φm,k,0 + φm,k,1 log φm,k,1] +

∑
n

K log τn +
NK

2
log (2π) +

NK

2
.

For computational simplicity, we fix τn = σy, then we have

L(γ, φ, ψ)= (10)

−
∑
t

∑
k

γt,k
∑
(i,j,s)

[
bti,j,sD

t
i,j + (1− bti,j,s)Dt

i,0 + log (e−D
t
i,j+e−D

t
i,s+e−D

t
i,0)
]
−

1

2σ2

∑
n

∑
k

[
ψ2
n,k − 2(φln,k,1 − φln,k,−1)ψn,k + (φln,k,1 + φln,k,−1)

]
−∑

t

∑
k

γt,k log γt,k +
∑
t

∑
k

γt,k log βk +∑
m,k

[φm,k,−1 logα−1 + φm,k,0 logα0 + φm,k,1 logα1]−∑
m,k

[φm,k,−1 log φm,k,−1 + φm,k,0 log φm,k,0 + φm,k,1 log φm,k,1].

where Dt
i,j =

1
2σ2 (ψi,k − ψj,k)2 and Dt

i,0 =
1

2σ2ψ
2
i,k.

A.2 Learning the Variational Parameters
In this part, we take the derivative of the ELBO with respect to the variational parameters. Then we
can learn the variational distribution.

For updating φ, we have

∂

∂φm,k,1
L =

1

σ2

∑
n

I(ln = m)(ψn,k −
1

2
) + logαz,1 − log φm,k,1 − 1, (11)

∂

∂φm,k,−1
L =

1

σ2

∑
n

I(ln = m)(−ψn,k −
1

2
) + logαz,−1 − log φm,k,−1 − 1,

∂

∂φm,k,0
L = logαz,0 − log φm,k,0 − 1.

3



By setting ∂L/∂φ to zero, we can get

φm,k,1 = α1 exp(
1

σ2

∑
n

I(ln = m)(ψn,k −
1

2
)− 1), (12)

φm,k,−1 = α−1 exp(
1

σ2

∑
n

I(ln = m)(−ψn,k −
1

2
)− 1),

φm,k,0 = α0 exp(−1).

For updating γ, we have

∂

∂γt,k
L = −

∑
(i,j,s)∈Tt

[
bti,j,sD

t
i,j + (1− bti,j,s)Dt

i,0 + log (e−D
t
i,j+e−D

t
i,s+e−D

t
i,0)
]
+ (13)

log βk − log γt,k − 1.

By setting ∂L/∂γ to zero, we can get

γt,k ∝ βk exp

− ∑
(i,j,s)∈Tt

[
bti,j,sD

t
i,j + (1− bti,j,s)Dt

i,0 + log (e−D
t
i,j+e−D

t
i,s+e−D

t
i,0)
]
− 1

 . (14)

So these two kinds of parameters have close-form updating expressions.
For updating ψ, we have

∂

∂ψn,k
L=− 1

σ2

{∑
t

γt,k

(
(15)

∑
(n,j,s)∈Tt

[
ψn,k − btn,j,sψj,k −

e−D
t
n,j(ψn,k − ψj,k) + e−D

t
n,s(ψn,k − ψs,k) + e−D

t
n,0ψn,k

e−D
t
i,j + e−D

t
i,s + e−D

t
i,0

]
+

∑
(i,n,s)∈Tt

[
bti,n,s(ψn,k − ψi,k)−

e−D
t
i,n(ψn,k − ψi,k)

e−D
t
i,j + e−D

t
i,s + e−D

t
i,0

]
+

∑
(i,j,n)∈Tt

[
− e−D

t
i,n(ψn,k − ψi,k)

e−D
t
i,j + e−D

t
i,s + e−D

t
i,0

])
+ ψn,k − (φln,k,1 − φln,k,−1)

}
.

Since it is hard to find the close-form solution for ∂L/∂ψ = 0, we use gradient based optimiza-
tion methods to update these parameters.

A.3 Estimating the Model Parameters
Similar to the variational inference, we take the derivative of the ELBO with respect to the model
parameters, and then update these values.

When updating α, since α−1 + α0 + α1 = 1, we import the Lagrange multipliers to the lower
bound, and then we have

∂

∂α1

L[α] =

∑
m,k φm,k,1

α1

− λ, (16)

∂

∂α−1
L[α] =

∑
m,k φm,k,−1

α−1
− λ,

∂

∂α0

L[α] =

∑
m,k φm,k,0

α0

− λ.
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By setting ∂L[α]/∂α to zero, we can get

α1 =

∑
m,k φm,k,1

MK
, (17)

α−1 =

∑
m,k φm,k,−1

MK
,

α0 =

∑
m,k φm,k,0

MK
.

When updating β, since
∑

k βk = 1, similarly we import the Lagrange multipliers to the lower
bound, and then we have

∂

∂βk
L[β] =

∑
t,k γt,k

βk
− λ. (18)

By setting ∂L[β]/∂β to zero, we can get

βk =

∑
t,k γt,k

TK
. (19)

When updating σ, since it is hard to find a close-form expression for updating, we use grid search
to find good values.

B More Details about the Nonparametric Initialization
The initialization strategy described in our paper involves the following nonparametric optimization
problem:

max
R,{lk}

K∑
k=1

∑
t∈lk

f(ht, rk)− λK, (20)

where λ = (1− ρ)M is a similarity threshold, and ρ ∈ [0, 1] is a relaxation factor. This problem ad-
mits two properties: (1) The final amount of the crowdsourced attributes K is potentially unbounded
and automatically determined by the data, and (2) the similarity between each signature to its most
similar crowdsourced attribute must be larger than ρM .

To see the first property, since the amount of the crowdsourced attributes K is also a variable in
this objective, we need to learn this value in real time. So K will increases when data grows, which
is potentially unbounded. To see the second property, once the similarity between a signature ht to
its most similar crowdsourced attribute rk is smaller than ρM , we can create a new crowdsourced
attribute whose signature is ht, then the similarity between ht and this new crowdsourced attribute
will be M , and the total change on the objective is M − f(ht, rk)− λ = ρM − f(ht, rk) > 0.

These two properties provide us an iterative way to find a local optimum of the problem. The final
algorithm is similar as K-means’ two-step update. For each iteration, we first assign each signature
into its nearest crowdsourced attribute, then update the centers based on the assignments. The main
difference between our algorithm and K-means is the assignment step. When dealing with a new
signature ht, we find its most similar crowdsourced attribute rk. If the similarity between ht and rk
is smaller than ρM , we generate a new crowdsourced attribute whose signature rK+1 is ht. Then we
assign the signature ht to this new crowdsourced attribute rK+1.
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C Attribute Analysis for the Animals Dataset

No. Pos Examples Neg Examples Signatures Worker Descriptions 

1 Live on land or in 
water 

2 Not hooved or hooved 

3 Common or rare 

4 Can climb trees or not 

5 Stand out colors or 
blend in colors 

6 Ground or tree dweller 

7 Solid or patterned fur 

8 Tropical or cool 
climate dweller 

9 Herbivore or 
omnivorous 

Figure 1: Crowdsourced attributes learned from the Animals dataset (Best viewed in color).

We visualize the crowdsourced attributes we learned from the Animals dataset in Fig. 1. The
meanings of the columns are the same to them in the yellow flowers dataset experiment. Signature
legend is also shown in Appendix C. When ρ = 0.55 we have 10 attributes in the results. Since 1
attribute is compatible with less than 4 categories, it is removed and then we show 9 crowdsourced
attributes here. The results show that the 9 discovered attributes cover a wide range of animal
properties. Some attributes are widely recognized, such as the living habitat, hooved or not and
ubiquitous or rare. Other attributes, such as the ability to climb trees, herbivore versus omnivorous,
etc, are more subtle. An interesting observation is that most of these attributes have meanings beyond
the visual information expressed by the pictures. They may come from the diverse knowledge
backgrounds of different annotators.
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D Signature Legends for the Two Nature Scene Datasets
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Figure 2: Signature legends for the yellow flowers dataset and the animals dataset (Best viewed in
color).
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E Analogical Interface for the Rabbits dataset
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