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A Proof of Proposition 1
Proposition 1. Define IL(W ) := Ex∼L[I(x,W )] and IX (W ) := Ex∼X [I(x,W )], the expected
loss error of the semi-supervised estimate E[G(Ŵ L,X )−G(W ∗,X )] with respect to B ground
truths sampled fromL is upper bounded byO
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Proof. We follow the notations of Chaudhuri et al. [1]. We denote

ψi(W ) := U(W ∗)− λB log p(yi|xi,W ), ∀xi ∈ L,

where yi is sampled from p(yi|xi,W ∗). When E[xx>] exists and is positive definite, ψi(W ) is
smooth and strong convex. We denote P (W ) := E[ψi(W )] and Q(W ) := GX(W ), and the latter
is the expected loss when the distribution of the ground truths for all tasks are observed. We also
have ∇Q(W ∗) = 0.

The Hessian of the loss on one verification sample x is

∂2G(W ,x)

∂W 2
= −N · ∂

2U(W )

∂W 2
− λB · ∂

2 log p(y|x,W )

∂W 2

= N · Ex∼X [I(x,W )] + λB · I(x,W )

= N · IX (W ) + λB · I(x,W ).

Then we directly apply the Lemma 1 of Chaudhuri et al. [1] on GX (W ), we have that

E[G(Ŵ L,X )−G(W ∗,X )] = O
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Here we ignore all the constants and small quantities, since we only care about the relationship
between the expected loss error and the verification subset.
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