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Background

◼ An adversarial example should be visually indistinguishable
from the corresponding normal one, but yet are misclassified
by the target model. 

◼ Adversarial attacks find such examples.

Alps: 94.39% Dog: 99.99%

Puffer: 97.99% Crab: 100.00%
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Adversarial Attacks

◼ Goal: Given classifier 𝐶(𝑥) and input-label pair (𝑥, 𝑦), 

find an adversarial example 𝑥adv such that

𝐶 𝑥adv ≠ 𝑦, s.t. 𝑥adv − 𝑥
𝑝
≤ 𝜖.

◼ 𝑥𝑎𝑑𝑣 can be generated by solving

𝑥adv = arg max
𝑥′: 𝑥′−𝑥 𝑝≤𝜖

𝑓(𝑥′, 𝑦)

◼ 𝑓 is a loss function that we need to maximize in attacks. 
In untargeted attacks, it can be:

 Cross entropy loss of the original label 𝑦

 C&W loss max
𝑖≠𝑦

𝑍 𝑥 𝑖 − 𝑍 𝑥 𝑦, 𝑍(𝑥) is the logit

◼ 0-surface is the decision boundary
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White-box Attacks

◼ Projected gradient ascent (PGD)

𝑥𝑡+1
adv = Π𝐵𝑝 𝑥,𝜖 (𝑥𝑡

adv + 𝜂 ⋅ 𝑔𝑡)

 Π is the projection operation

 𝐵𝑝 𝑥, 𝜖 is the ℓ𝑝 ball centered at 𝑥 with radius 𝜖

 𝑔𝑡 is the normalized gradient under the ℓ𝑝 norm

◼ 𝑝 = 2: 𝑔𝑡 =
𝛻𝑥𝑓 𝑥𝑡

adv,𝑦

𝛻𝑥𝑓 𝑥𝑡
adv,𝑦

2

◼ 𝑝 = ∞: 𝑔𝑡 = sign(𝛻𝑥𝑓 𝑥𝑡
adv, 𝑦 )

◼ Key: We need to know 𝛻𝑥𝑓 𝑥𝑡
adv, 𝑦

 In the following part, we omit the dependency w.r.t. 𝑦, 
write the objective as 𝑓(𝑥) and write the gradient as 
𝛻𝑓(𝑥).
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Black-box Attacks

◼ Transfer-based

 Generate adversarial examples against white-box models,
and leverage transferability for attacks

 Require no knowledge of the target model, no queries

 Need white-box models (datasets), assumes similarity

◼ Query-based

 Get some information from the target model directly, 
through queries
◼ Score-based

◼ Decision-based

 Goal: Improve success rate (e.g., success rate under 
10000 queries) and save queries
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Score-based Attacks

◼ Query loss function 𝑓(𝑥) given 𝑥

◼ We need to maximize 𝑓(𝑥) until attack succeeds.

◼ Gradient-based method: Estimate 𝛻𝑓(𝑥) by queries, 
and apply first-order optimization methods.
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Random Gradient-Free (RGF) Method

◼ ො𝑔 =
1

𝑞
σ𝑖=1
𝑞

ො𝑔𝑖, where ො𝑔𝑖 =
𝑓 𝑥+𝜎𝑢𝑖 −𝑓 𝑥

𝜎
⋅ 𝑢𝑖

◼ 𝑢𝑖 𝑖=1
𝑞

are i.i.d. r.v. sampled from a distribution on R𝐷.

◼ In ordinary RGF method, 𝑢𝑖 is sampled uniformly from 
the 𝐷-dimensional Euclidean hypersphere.

◼ ො𝑔𝑖 ≈ 𝑢𝑖𝑢𝑖
⊤𝛻𝑓(𝑥) [1]

◼ Pros: Unbiased

◼ Cons: High variance

◼ How to improve: Incorporating informative priors

◼ Evaluation metric / Loss function: Something like MSE?

1. Assume 𝑓 is differentiable and 𝜎 → 0.
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Gradient estimation framework

◼ Suppose we want to choose a best estimator in the set G 
of all possible gradient estimators, so we want to design a 
loss function for a gradient estimator.

◼ Our loss function for ො𝑔:

𝐿 ො𝑔 = min
𝑏≥0

𝔼 𝛻𝑓 𝑥 − 𝑏 ො𝑔 2
2

◼ Minimized mean square error w.r.t. the scale coefficient 𝑏

 Usually the normalized gradient is used, hence the norm 
does not matter
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Application to the RGF estimator

◼ For example, when ො𝑔 is an RGF estimator with 𝑢𝑖 i.i.d. 
sampled from any distribution on the hypersphere:

◼ Theorem 1. Suppose 𝑢𝑖 2 = 1 in the RGF method. If 𝑓
is differentiable at 𝑥, the loss of the RGF estimator ො𝑔 is

lim
𝜎→0

𝐿 ො𝑔 =

𝛻𝑓 𝑥 2
2 −

𝛻𝑓 𝑥 ⊤𝐂𝛻𝑓 𝑥
2

1 −
1
𝑞

𝛻𝑓 𝑥 ⊤𝐂2𝛻𝑓 𝑥 +
1
𝑞
𝛻𝑓 𝑥 ⊤𝐂𝛻𝑓 𝑥

where 𝐂 = 𝔼[𝑢𝑖𝑢𝑖
⊤].
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Prior-guided RGF (P-RGF) method

◼ For the ordinary RGF estimator, 𝐂 =
𝐈

𝐷
. Any better one?

◼ Suppose we know 𝑣, the normalized ( 𝑣 2 = 1) 
transfer gradient of a surrogated model. Then we can 
design 𝐂 as

𝐂 = 𝜆𝑣𝑣⊤ +
1 − 𝜆

𝐷 − 1
(𝐈 − 𝑣𝑣⊤)

◼ which can be implemented by 𝑢𝑖 = 𝜆 ⋅ 𝑣 + 1 − 𝜆 ⋅

𝐈 − 𝑣𝑣⊤ 𝜉𝑖, where 𝜉𝑖 is sampled uniformly from the 
unit hypersphere.
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Prior-guided RGF (P-RGF) method

◼ 𝜆 =
1

𝐷
≈ 0 is ordinary RGF estimator: unbiased, high 

variance

◼ 𝜆 = 1 corresponds to 𝑢𝑖 = 𝑣, i.e. directly using the 
transfer gradient without queries: highly biased, no 
variance

◼ We need to find the optimal 𝜆.

𝑣

𝐈 − 𝑣𝑣⊤ 𝜉𝑖 is uniformly 

sampled from the navy ring

𝑢𝑖 is uniformly sampled from 

this red ring
𝜆 ⋅ 𝑣

1 − 𝜆 ⋅ 𝐈 − 𝑣𝑣⊤ 𝜉𝑖

Note: 𝐈 − 𝑣𝑣⊤ is a 

projection matrix that 

remove the component of 𝑣

𝔼[𝑢𝑖𝑢𝑖
⊤] = 𝜆𝑣𝑣⊤ +

1 − 𝜆

𝐷 − 1
(𝐈 − 𝑣𝑣⊤)

𝑢𝑖 = 𝜆 ⋅ 𝑣 + 1 − 𝜆 ⋅ 𝐈 − 𝑣𝑣⊤ 𝜉𝑖
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Solving for the optimal 𝜆

◼ Let 𝛼 = 𝑣⊤𝛻𝑓(𝑥) where 𝛻𝑓(𝑥) is the 𝑙2 normalization 
of the true gradient 𝛻𝑓(𝑥).

 𝛼 denotes the usefulness of the prior 𝑣

◼ By our gradient estimation framework, the optimal 𝜆 is

solved by minimizing 𝐿( ො𝑔).
1

𝑂 𝛼

𝜆∗

1

𝐷 + 2𝑞 − 2

2𝑞 − 1

𝐷 + 2𝑞 − 2

(1 − 𝛼2)(𝛼2 𝐷 + 2𝑞 − 2 − 1)

2𝛼2𝐷𝑞 − 𝛼4𝐷 𝐷 + 2𝑞 − 2 − 1
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Estimating 𝛼

◼ The ground truth value of 𝛼 = 𝛻𝑓 𝑥
⊤
𝑣 is not 

accessible, which needs an estimation[1].

◼ Note that 𝛼 =
𝛻𝑓 𝑥 ⊤𝑣

𝛻𝑓 𝑥 2
. The numerator is easy to 

estimate by finite difference. Hence the key problem is 
to estimate 𝛻𝑓 𝑥 2.

 Finite difference: 𝛻𝑓 𝑥 ⊤𝑣 ≈
𝑓 𝑥+𝜎𝑣 −𝑓 𝑥

𝜎
.

◼ Good thing: A scalar is much easier to estimate than a 
vector!

1. 𝑥 denotes the ℓ2 normalization of 𝑥 in this work.
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Norm estimation: The framework

◼ Suppose by 𝑆 queries, we can get 𝛻𝑓 𝑥 𝑇𝑤1, … , 𝛻𝑓 𝑥 𝑇𝑤𝑆

by finite difference, and 𝑤𝑖 = 1.

◼ If we have a 𝑆-variable function 𝑔 such that
𝑔 𝑎𝑥1, 𝑎𝑥2, … , 𝑎𝑥𝑛 = 𝑎𝑟𝑔(𝑥1, 𝑥2, … , 𝑥𝑛)

◼ Then

𝑔 𝑤1
⊤𝛻𝑓 𝑥 ,… ,𝑤𝑆

⊤𝛻𝑓(𝑥)

= 𝛻𝑓 𝑥 2
𝑟 ⋅ 𝑔 𝑤1

⊤𝛻𝑓 𝑥 ,… ,𝑤𝑆
⊤𝛻𝑓 𝑥

◼ Hence

𝑔 𝑤1
⊤𝛻𝑓 𝑥 ,… ,𝑤𝑆

⊤𝛻𝑓 𝑥

𝔼 𝑔 𝑤1
⊤𝛻𝑓 𝑥 ,… ,𝑤𝑆

⊤𝛻𝑓 𝑥

is an unbiased estimator of 𝛻𝑓 𝑥 2
𝑟.

The expectation can be 
computed when each 𝑤𝑠

is uniformly distributed 
on the sphere!

Each 𝑤𝑠
⊤𝛻𝑓 𝑥 can be 

estimated by finite difference!
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Norm estimation

◼ Here, we choose

𝑔 𝑧1, 𝑧2, … , 𝑧𝑆 =
1

𝑆
෍

𝑠=1

𝑆

𝑧𝑠
2

when 𝑟 = 2.

◼ Then the estimator of 𝛻𝑓 𝑥 2 is

𝛻𝑓 𝑥 2 ≈
𝐷
𝑆
෍

𝑠=1

𝑆

𝑤𝑠
⊤𝛻𝑓(𝑥) 2

where 𝑤𝑠 𝑠=1
𝑆 is i.i.d. uniformly sampled from the unit 

hypersphere.
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Summary of the P-RGF method
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Incorporating data-dependent prior

◼ Restrict the adversarial perturbations to lie in a 𝑑-
dimensional linear subspace spanned by {𝑣1, 𝑣2, … , 𝑣𝑑}

◼ For example, for 4 × 4 × 1 images, 𝐷 = 16, 𝑑 = 4, we 
choose the subspace to be “in lower resolution”:

𝑣1 = 𝑣2 =

𝑣3 = 𝑣4 =
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Incorporating data-dependent prior

◼ To perform the RGF method incorporating data-
dependent prior, we need to set

𝐂 =
1

𝑑
෍

𝑖=1

𝑑

𝑣𝑖𝑣𝑖
⊤

◼ To further incorporate the transfer-based prior, we can 
set

𝐂 = 𝜆𝑣𝑣⊤ +
1 − 𝜆

𝑑
෍

𝑖=1

𝑑

𝑣𝑖𝑣𝑖
⊤

◼ Similarly we can obtain the optimal 𝜆.
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Performance of gradient estimation

◼ Average cosine similarity between the gradient 
estimate and the true gradient:

◼ which shows the effectiveness of the derived optimal 𝜆
(i.e., 𝜆∗) for gradient estimation compared with any 
fixed 𝜆 ∈ 0,1
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Performance of gradient estimation

◼ Cosine similarity (averaged over all images) between 
the gradient estimate and the true gradient w.r.t. attack 
iterations:

◼ The transfer gradient is more useful at the beginning 
and less useful later

 Showing the advantage of using adaptive 𝜆∗
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Gradient averaging

◼ Alternative method of biased sampling

 Also integrate the transfer-based prior into the query-
based algorithm

ො𝑔 = 1 − 𝜇 𝑣 + 𝜇 ො𝑔𝑈

 ො𝑔𝑈 is the normalized ordinary RGF estimator with 𝐂 =
𝐈

𝑑

 The optimal coefficient 𝜇∗ can be derived by the gradient 
estimation framework too.
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Results of black-box attacks on normal models

◼ ASR: Attack Success Rate (#queries is under 10,000); 
AVG. Q: Average #queries over successful attacks.

◼ Methods with the subscript “D” refers to the data-
dependent version of the P-RGF method.
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Results on defensive models

◼ ASR: Attack Success Rate (#queries is under 10,000); 
AVG. Q: Average #queries over successful attacks.

◼ Methods with the subscript “D” refers to the data-
dependent version of the P-RGF method.



Thanks!


