

Shuyu Cheng*, Yinpeng Dong*, Tianyu Pang, Hang Su, Jun Zhu

Dept. of Comp. Sci. and Tech., Tsinghua University {chengsy18, dyp17, pty17}@mails.tsinghua.edu.cn, {suhangss, dcszj}@mail.tsinghua.edu.cn

Background

An adversarial example should be visually indistinguishable from the corresponding normal one, but yet are misclassified by the target model.

Dog: 99.99%

Puffer: 97.99%

Crab: 100.00%

Adversarial attacks find such examples.

Adversarial Attacks

Goal: Given classifier C(x) and input-label pair (x, y), find an adversarial example x^{adv} such that

$$C(x^{\mathrm{adv}}) \neq y$$
, s.t. $||x^{\mathrm{adv}} - x||_p \leq \epsilon$.

• x^{adv} can be generated by solving $x^{adv} = \underset{x':\|x'-x\|_{p} \le \epsilon}{\arg \max} f(x', y)$

- f is a loss function that we need to maximize in attacks.
 In untargeted attacks, it can be:
 - \Box Cross entropy loss of the original label y
 - \Box C&W loss $\max_{i \neq y} Z(x)_i Z(x)_y$, Z(x) is the logit
 - 0-surface is the decision boundary

White-box Attacks

 \Box Π is the projection operation

 $\Box B_p(x,\epsilon)$ is the ℓ_p ball centered at x with radius ϵ

 $\Box g_t$ is the normalized gradient under the ℓ_p norm

•
$$p = 2$$
: $g_t = \frac{\nabla_x f(x_t^{\text{adv}}, y)}{\|\nabla_x f(x_t^{\text{adv}}, y)\|_2}$
• $p = \infty$: $g_t = \text{sign}(\nabla_x f(x_t^{\text{adv}}, y))$

- Key: We need to know $\nabla_x f(x_t^{adv}, y)$
 - □ In the following part, we omit the dependency w.r.t. y, write the objective as f(x) and write the gradient as $\nabla f(x)$.

Black-box Attacks

Transfer-based

- Generate adversarial examples against white-box models, and leverage transferability for attacks
- Require no knowledge of the target model, no queries
- Need white-box models (datasets), assumes similarity
- Query-based
 - Get some information from the target model directly, through queries
 - Score-based
 - Decision-based
 - Goal: Improve success rate (e.g., success rate under 10000 queries) and save queries

Score-based Attacks

• Query loss function f(x) given x

- We need to maximize f(x) until attack succeeds.
- Gradient-based method: Estimate \(\nabla f(x)\) by queries, and apply first-order optimization methods.

Random Gradient-Free (RGF) Method

•
$$\hat{g} = \frac{1}{q} \sum_{i=1}^{q} \hat{g}_i$$
, where $\hat{g}_i = \frac{f(x + \sigma u_i) - f(x)}{\sigma} \cdot u_i$

- $\{u_i\}_{i=1}^q$ are i.i.d. r.v. sampled from a distribution on \mathbb{R}^D .
- In ordinary RGF method, u_i is sampled uniformly from the D-dimensional Euclidean hypersphere.
- $\widehat{g}_i \approx u_i u_i^\top \nabla f(x)$ ^[1]
- Pros: Unbiased
- Cons: High variance
- How to improve: Incorporating informative priors
- Evaluation metric / Loss function: Something like MSE?

^{1.} Assume f is differentiable and $\sigma \rightarrow 0$.

Gradient estimation framework

- Suppose we want to choose a best estimator in the set G of all possible gradient estimators, so we want to design a loss function for a gradient estimator.
- Our loss function for \hat{g} :

$$L(\hat{g}) = \min_{b \ge 0} \mathbb{E} \|\nabla f(x) - b\hat{g}\|_2^2$$

Minimized mean square error w.r.t. the scale coefficient b
 Usually the normalized gradient is used, hence the norm does not matter

Application to the RGF estimator

- For example, when \hat{g} is an RGF estimator with u_i i.i.d. sampled from any distribution on the hypersphere:
- Theorem 1. Suppose $||u_i||_2 = 1$ in the RGF method. If f is differentiable at x, the loss of the RGF estimator \hat{g} is

$$\begin{split} \lim_{\sigma \to 0} L(\hat{g}) &= \\ \|\nabla f(x)\|_2^2 - \frac{\left(\nabla f(x)^\top \mathbf{C} \nabla f(x)\right)^2}{\left(1 - \frac{1}{q}\right) \nabla f(x)^\top \mathbf{C}^2 \nabla f(x) + \frac{1}{q} \nabla f(x)^\top \mathbf{C} \nabla f(x)} \end{split}$$

where $\mathbf{C} = \mathbb{E}[u_i u_i^{\mathsf{T}}].$

Prior-guided RGF (P-RGF) method

- For the ordinary RGF estimator, $\mathbf{C} = \frac{\mathbf{I}}{D}$. Any better one?
- Suppose we know v, the normalized (||v||₂ = 1) transfer gradient of a surrogated model. Then we can design C as

$$\mathbf{C} = \lambda \boldsymbol{v} \boldsymbol{v}^{\mathsf{T}} + \frac{1-\lambda}{D-1} (\mathbf{I} - \boldsymbol{v} \boldsymbol{v}^{\mathsf{T}})$$

• which can be implemented by $u_i = \sqrt{\lambda} \cdot v + \sqrt{1 - \lambda} \cdot (\mathbf{I} - vv^{\top})\xi_i$, where ξ_i is sampled uniformly from the unit hypersphere.

Prior-guided RGF (P-RGF) method

 u_i is uniformly sampled from this red ring

 $\overline{(\mathbf{I} - vv^{\top})\xi_i}$ is uniformly sampled from the navy ring

Note: $(\mathbf{I} - vv^{\mathsf{T}})$ is a projection matrix that remove the component of v

$$u_i = \sqrt{\lambda} \cdot v + \sqrt{1 - \lambda} \cdot \overline{(\mathbf{I} - vv^{\top})\xi_i}$$

$$\mathbb{E}[u_i u_i^{\mathsf{T}}] = \lambda v v^{\mathsf{T}} + \frac{1 - \lambda}{D - 1} (\mathbf{I} - v v^{\mathsf{T}})$$

■ $\lambda = \frac{1}{D} \approx 0$ is ordinary RGF estimator: **unbiased**, high variance

- λ = 1 corresponds to u_i = v, i.e. directly using the transfer gradient without queries: highly biased, no variance
- We need to find the optimal λ .

Solving for the optimal λ

• Let $\alpha = v^{\top} \overline{\nabla f(x)}$ where $\overline{\nabla f(x)}$ is the l_2 normalization of the true gradient $\nabla f(x)$.

 $\Box \alpha$ denotes the usefulness of the prior v

By our gradient estimation framework, the optimal λ is

$$\lambda^{*} = \begin{cases} 0 & \text{if } \alpha^{2} \leq \frac{1}{D + 2q - 2} \\ \frac{(1 - \alpha^{2})(\alpha^{2}(D + 2q - 2) - 1)}{2\alpha^{2}Dq - \alpha^{4}D(D + 2q - 2) - 1} & \text{if } \frac{1}{D + 2q - 2} < \alpha^{2} < \frac{2q - 1}{D + 2q - 2} \\ 1 & \text{if } \alpha^{2} \geq \frac{2q - 1}{D + 2q - 2} \end{cases}$$
solved by minimizing $L(\hat{g})$.

Estimating α

- The ground truth value of $\alpha = \overline{\nabla f(x)}^{\mathsf{T}} v$ is not accessible, which needs an estimation^[1].
- Note that $\alpha = \frac{\nabla f(x)^{\top} v}{\|\nabla f(x)\|_2}$. The numerator is easy to estimate by finite difference. Hence the key problem is to estimate $\|\nabla f(x)\|_2$.

 \Box Finite difference: $\nabla f(x)^{\mathsf{T}} v \approx \frac{f(x+\sigma v)-f(x)}{\sigma}$.

Good thing: A scalar is much easier to estimate than a <u>vector!</u>

^{1.} \overline{x} denotes the ℓ_2 normalization of x in this work.

Norm estimation: The framework

• Suppose by S queries, we can get $\nabla f(x)^T w_1, \dots, \nabla f(x)^T w_S$ by finite difference, and $||w_i|| = 1$.

If we have a S-variable function g such that $g(ax_1, ax_2, ..., ax_n) = a^r g(x_1, x_2, ..., x_n)$

Then

$$g(w_1^{\top} \nabla f(x), \dots, w_S^{\top} \nabla f(x)) = \|\nabla f(x)\|_2^r \cdot g\left(w_1^{\top} \overline{\nabla f(x)}, \dots, w_S^{\top} \overline{\nabla f(x)}\right)$$

Hence

Each $w_s^\top \nabla f(x)$ can be estimated by finite difference!

 $\left(w_1^{\mathsf{T}} \nabla f(x), \dots, w_S^{\mathsf{T}} \nabla f(x)\right)$ $\mathbb{E}\left[g\left(w_{1}^{\mathsf{T}}\overline{\nabla f(x)},\ldots,w_{S}^{\mathsf{T}}\overline{\nabla f(x)}\right)\right]$

is an unbiased estimator of $\|\nabla f(x)\|_2^r$.

g

The expectation can be computed when each w_s is uniformly distributed on the sphere!

Norm estimation

Here, we choose

$$g(z_1, z_2, ..., z_S) = \frac{1}{S} \sum_{s=1}^{S} z_s^2$$

C

when r = 2.

• Then the estimator of $\|\nabla f(x)\|_2$ is

$$\|\nabla f(x)\|_2 \approx \sqrt{\frac{D}{S} \sum_{s=1}^{S} (w_s^\top \nabla f(x))^2}$$

where $\{w_s\}_{s=1}^S$ is i.i.d. uniformly sampled from the unit hypersphere.

Summary of the P-RGF method

Algorithm 1 Prior-guided random gradient-free (P-RGF) method

Input: The black-box model f; input x and label y; the normalized transfer gradient v; sampling variance σ ; number of queries q; input dimension D.

Output: Estimate of the gradient $\nabla f(x)$.

- 1: Estimate the cosine similarity $\alpha = v^{\top} \overline{\nabla f(x)}$ (detailed in Sec. 3.3);
- 2: Calculate λ^* according to Eq. (12) given α , q, and D;

 σ

- 3: if $\lambda^* = 1$ then
- 4: return v;
- 5: end if
- 6: $\hat{g} \leftarrow \mathbf{0}$;
- 7: for i = 1 to q do
- 8: Sample ξ_i from the uniform distribution on the *D*-dimensional unit hypersphere;

9:
$$u_i = \sqrt{\lambda^*} \cdot v + \sqrt{1 - \lambda^*} \cdot \overline{(\mathbf{I} - vv^\top)\xi_i};$$

10: $\hat{g} \leftarrow \hat{g} + \frac{f(x + \sigma u_i, y) - f(x, y)}{1 - \sigma u_i} \cdot u_i;$

11: end for

12: return $\nabla f(x) \leftarrow \frac{1}{q}\hat{g}$.

16

Incorporating data-dependent prior

- Restrict the adversarial perturbations to lie in a ddimensional linear subspace spanned by {v₁, v₂, ..., v_d}
- For example, for 4 × 4 × 1 images, D = 16, d = 4, we choose the subspace to be "in lower resolution":

Incorporating data-dependent prior

To perform the RGF method incorporating datadependent prior, we need to set

$$\mathbf{C} = \frac{1}{d} \sum_{i=1}^{d} \boldsymbol{v}_i \boldsymbol{v}_i^{\mathsf{T}}$$

To further incorporate the transfer-based prior, we can set

$$\mathbf{C} = \lambda \boldsymbol{v} \boldsymbol{v}^{\mathsf{T}} + \frac{1-\lambda}{d} \sum_{i=1}^{d} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\mathsf{T}}$$

Similarly we can obtain the optimal λ .

Performance of gradient estimation

Average cosine similarity between the gradient estimate and the true gradient:

which shows the effectiveness of the derived optimal λ
 (i.e., λ*) for gradient estimation compared with any
 fixed λ ∈ [0,1]

Performance of gradient estimation

Cosine similarity (averaged over all images) between the gradient estimate and the true gradient w.r.t. attack iterations:

The transfer gradient is more useful at the beginning and less useful later

 \square Showing the advantage of using adaptive λ^*

Gradient averaging

- Alternative method of biased sampling
 - Also integrate the transfer-based prior into the querybased algorithm

$$\hat{g} = (1 - \mu)\nu + \mu \overline{\hat{g}^U}$$

 $\Box \ \widehat{g}^{U}$ is the normalized **ordinary** RGF estimator with $\mathbf{C} = \frac{\mathbf{I}}{d}$

□ The optimal coefficient μ^* can be derived by the gradient estimation framework too.

Results of black-box attacks on normal models

Methods	Inception-v3		VGG-16		ResNet-50	
Ivicuious	ASR	AVG. Q	ASR	AVG. Q	ASR	AVG. Q
NES	95.5%	1718	98.7%	1081	98.4%	969
Bandits _T	92.4%	1560	94.0%	584	96.2%	1076
Bandits _{TD}	97.2%	874	94.9%	278	96.8%	512
AutoZoom	85.4%	2443	96.2%	1589	94.8%	2065
RGF	97.7%	1309	99.8%	935	99.5%	809
$P-RGF (\lambda = 0.5)$	96.5%	1119	97.3%	1075	98.3%	990
P-RGF (λ^*)	98.1%	745	99.8%	521	99.6%	452
Averaging ($\mu = 0.5$)	96.9%	1140	94.6%	2143	96.3%	2257
Averaging (μ^*)	97.9%	735	99.8%	516	99.5%	446
RGF _D	99.1%	910	100.0%	464	99.8%	521
$P-RGF_D \ (\lambda = 0.5)$	98.2%	1047	99.3%	917	99.3%	893
$P-RGF_D(\lambda^*)$	99.1%	649	99.7%	370	99.6%	352
Averaging _D ($\mu = 0.5$)	99.2%	768	99.9%	900	99.2%	1177
Averaging _D (μ^*)	99.2%	644	99.8%	366	99.5%	355

- ASR: Attack Success Rate (#queries is under 10,000); AVG. Q: Average #queries over successful attacks.
- Methods with the subscript "D" refers to the datadependent version of the P-RGF method.

Results on defensive models

Methods	JPEG Compression		Randomization		Guided Denoiser	
	ASR	AVG. Q	ASR	AVG. Q	ASR	AVG. Q
NES	47.3%	3114	23.2%	3632	48.0%	3633
SPSA	40.0%	2744	9.6%	3256	46.0%	3526
RGF	41.5%	3126	19.5%	3259	50.3%	3569
P-RGF	61.4%	2419	60.4%	2153	51.4%	2858
Averaging	69.4%	2134	72.8%	1739	66.6%	2441
RGF _D	70.4%	2828	54.9%	2819	83.7%	2230
P-RGF _D	81.1%	2120	82.3%	1816	89.6%	1784
Averaging _D	80.6%	2087	77.4%	1700	87.2%	1777

- ASR: Attack Success Rate (#queries is under 10,000); AVG. Q: Average #queries over successful attacks.
- Methods with the subscript "D" refers to the datadependent version of the P-RGF method.

