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Background

m An adversarial example should be visually indistinguishable
from the corresponding normal one, but yet are misclassified
by the target model.

- 3 < ..‘, ‘:{"
Alps: 94.39%

£
-

Puffer: 97.99% Crab: 100.00%

m Adversarial attacks find such examples.




Adversarial Attacks

= S
m Goal: Given classifier C(x) and input-label pair (x, y),
find an adversarial example x29V such that

C(x3V) £y, s.t. [|x24V — pr <e.

24V can be generated by solving

x3 = argmax f(x',y)

x":|lx"—x|[,<€

H X

m [ is aloss function that we need to maximize in attacks.
In untargeted attacks, it can be:

Cross entropy loss of the original label y
C&W loss max Z(x); — Z(x)y, Z(x) is the logit
iy

m O-surface is the decision boundary




White-box Attacks

m Projected gradient ascent (PGD)

adv _

ad
Xer1 = Hp ey (X2 + 1 g¢)
[1is the projection operation
B,(x, €) is the £, ball centered at x with radius €

gt is the normalized gradient under the £, norm

fo(xadv 3’)
= 2:
mp gt = ||\7xf(xad"y)||

n p = o0 gy = sign(Vef(x2V, ¥))
m Key: We need to know fo(xadv, y)

In the following part, we omit the dependency w.r.t. y,
write the objective as f(x) and write the gradient as

Vf(x).
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Black-box Attacks
= S
m Transfer-based

Generate adversarial examples against white-box models,
and leverage transferability for attacks

Require no knowledge of the target model, no queries
Need white-box models (datasets), assumes similarity

m Query-based

Get some information from the target model directly,
through queries

m Score-based

m Decision-based

Goal: Improve success rate (e.g., success rate under
10000 queries) and save queries




Score-based Attacks

m Query loss function f(x) given x
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m We need to maximize f (x) until attack succeeds.

m Gradient-based method: Estimate Vf (x) by queries,
and apply first-order optimization methods.




Random Gradient-Free (RGF) Method

~_1va . _ fctou)—f(x)
" §=_Y;di where §; = . W

0O {ui}?zl are i.i.d. r.v. sampled from a distribution on RP.

m |In ordinary RGF method, u; is sampled uniformly from
the D-dimensional Euclidean hypersphere.

g ~ wu] Vf(x) W
Pros: Unbiased
Cons: High variance

How to improve: Incorporating informative priors

Evaluation metric / Loss function: Something like MSE?

1. Assume f is differentiable and o — 0.
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Gradient estimation framework

m Suppose we want to choose a best estimator in the set G
of all possible gradient estimators, so we want to design a
loss function for a gradient estimator.

m Our loss function for g:
L(g) = min EI7f(x) - b3ll3

® Minimized mean square error w.r.t. the scale coefficient b

Usually the normalized gradient is used, hence the norm
does not matter




Application to the RGF estimator

= S
m For example, when g is an RGF estimator with u; i.i.d.
sampled from any distribution on the hypersphere:

m Theorem 1. Suppose |[u;||, = 1 in the RGF method. If f
is differentiable at x, the loss of the RGF estimator g is

lim L(g) =
T 2
723 P— L7 ()
(1 - E) 7fG)TCRTF () + TF()TCTF ()

where C = E[u;u;'].




Prior-guided RGF (P-RGF) method

= S
m For the ordinary RGF estimator, C = %. Any better one?

m Suppose we know v, the normalized (||v||, = 1)
transfer gradient of a surrogated model. Then we can

design C as

1-2
C=Avv' + DT(I — ')
m which can be implemented by u; = Vi-v+V1-2-
(I —vvT)§;, where &; is sampled uniformly from the

unit hypersphere.
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Prior-guided RGF (P-RGF) method

Av

-(I—vvT)§;
= u; is uniformly sampled from
this red ring

o o
-

u; =VA-v+V1—21-(I—-vvT)§

(I —vvT)é; is uniformly

sampled from the navy ring - N — N
Note: (1 — vv™) is a Eluu; | = Avv' + D_1 I—-vv')
projection matrix that

remove the component of v

= % ~ 0 is ordinary RGF estimator: unbiased, high
variance

m A =1 corresponds to u; = v, i.e. directly using the
transfer gradient without queries: highly biased, no
variance

m We need to find the optimal A.
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Solving for the optimal A

m Lleta = v'Vf(x) where Vf(x) is the [, normalization
of the true gradient Vf (x).

a denotes the usefulness of the prior v

m By our gradient estimation framework, the optimal A is

( Iy
0 if a2 < !
o D+ 2q—2
l—a)(a"(D+29g—2)—1 1 . 2qg — 1
)\* — < ( | & )(O: ( + q ) ) if < Q_2 < q
202Dq — a*D(D +2qg—2) — 1 D+2q;2 , D+ 2q—2
1 it 02 > 94—
\ it a® > D+ 2q—2
A*

solved by minimizing L(g).

1
(1—a®)(a?(D+2q—-2)— 1)/

2a?Dq — a*D(D + 2q — 2) —
[ ]

0 a
1 2g—1

D+2q-2 D+2q-2 12




Estimating a
= A

.
m The ground truth value of «a = Vf(x) v is not

accessible, which needs an estimation!ll,

Vi) v
V1 (Ol
estimate by finite difference. Hence the key problem is

to estimate ||V f(x)|l,.

m Notethata = . The numerator is easy to

Finite difference: Vf(x)Tv = flcrav) =7 (x)

o
m Good thing: A scalar is much easier to estimate than a
vector!

1. x denotes the £, normalization of x in this work.
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Norm estimation: The framework

m Suppose by S queries, we can get Vf (x)Twy, ..., Vf(x) T wq
by finite difference, and ||w;]|| = 1.

m If we have a S-variable function g such that
glaxy,axy, ...,ax,) = a’ g(xq,xy, ..., Xp)
m Then
gw{ Vf(x), ..., wg Vf(x))
= I7f GOl - g (WIVF ), .., W VF ()

B Hence

Each wy Vf(x) can be T T
estimated by finite difference! g (Wl Vf(X), e WS Vf(X)
The expectation can be

E[g (wWI7F G, .., wivF Q) || crmcs e

is uniformly distributed

. . . on the sphere!
is an unbiased estimator of ||V f (x)]%.
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Norm estimation

m Here, we choose
S

1 2
g(Zl,Zz, "'JZS) — Ez Zs

s=1
whenr = 2.

m Then the estimator of ||V f(x)]|, is

S
D
I7fCOllz ~ | ) wIVF@)?
s=1

\

where {w,};_1 is i.i.d. uniformly sampled from the unit
hypersphere.
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Summary of the P-RGF method

Algorithm 1 Prior-guided random gradient-free (P-RGF) method

Input: The black-box model f; input = and label y; the normalized transfer gradient v; sampling variance o;
number of queries ¢: input dimension D.
Output: Estimate of the gradient V f(z).

1: Estimate the cosine similarity o« = v TVf( ) (detailed in Sec.|3.3);
2: Calculate \* according to Eq. (12) given «, ¢, and D;

3: if A\ =1 then

4: return v,

5: end if

6: g+ 0:

7: for: = 1togdo

8: Sample &; from the uniform distribution on the ID-dimensional unit hypersphere;
0: w; = VA v+ T = A\*F - (I —wvoT)&;;
10: e gt tutouwy) =iy
11: end for 7

12: return V f(z) < ig}
q
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Incorporating data-dependent prior
= S
m Restrict the adversarial perturbations to lie in a d-
dimensional linear subspace spanned by {v{, v,, ..., v4}

m For example,for4 X 4 X 1images, D = 16,d = 4, we
choose the subspace to be “in lower resolution”:
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Incorporating data-dependent prior

= S
m To perform the RGF method incorporating data-
dependent prior, we need to set

L&
C = Ez Vv
i=1

m To further incorporate the transfer-based prior, we can

set
d

1—4
C=Avv' +TE v;v]

i=1
m Similarly we can obtain the optimal A.
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Performance of gradient estimation

= S
m Average cosine similarity between the gradient
estimate and the true gradient:

<
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m which shows the effectiveness of the derived optimal 4
(i.e., A7) for gradient estimation compared with any
fixed A € [0,1]
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Performance of gradient estimation
= S
m Cosine similarity (averaged over all images) between
the gradient estimate and the true gradient w.r.t. attack

Iterations: 0.005)

= Transfer gradient

= Estimated gradient
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m The transfer gradient is more useful at the beginning
and less useful later
Showing the advantage of using adaptive A*

[=F
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Gradient averaging
= S
m Alternative method of biased sampling

Also integrate the transfer-based prior into the query-
based algorithm

§=0-pwv+pg’
AU I

gY is the normalized ordinary RGF estimator with C = p

The optimal coefficient 4™ can be derived by the gradient
estimation framework too.
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Results of black-box attacks on normal models
= A

Methods Inception-v3 VGG-16 ResNet-50
‘ ASR  AVG.Q ASR AVG.Q | ASR AVG.Q

NES 95.5% 1718 98.7% 1081 98.4% 969
Banditst 92.4% 1560 94.0% 584 96.2% 1076
Banditstp 97.2% 874 94.9% 278 96.8% 512
AutoZoom 85.4% 2443 96.2% 1589 94.8% 2065
RGF 97.7% 1309 99.8% 935 99.5% 809
P-RGF (A = 0.5) 96.5% 1119 97.3% 1075 98.3% 990
P-RGF (\*) 98.1% 745 99.8 % 521 99.6 % 452
Averaging (;1 = 0.5) 96.9% 1140 94.6% 2143 96.3% 2257
Averaging (11*) 97.9% 735 99.8 % 516 99.5% 446
RGFp 99.1% 910 100.0% 464 99.8% 521
P-RGFp (A = 0.5) 98.2% 1047 99.3% 917 99.3% 893
P-RGFp (\*) 99.1% 649 99.7% 370 99.6% 352
Averagingp (¢ = 0.5) | 99.2% 768 99.9% 900 99.2% 1177
Averagingp (14*) 99.2% 644 99.8% 366 99.5% 355

m ASR: Attack Success Rate (#queries is under 10,000);
AVG. Q: Average #queries over successful attacks.

m Methods with the subscript “D” refers to the data-
dependent version of the P-RGF method.
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Results on defensive models

Methods JPEG Compression | Randomization Guided Denoiser
‘ ASR AVG. Q ASR  AVG.Q | ASR AVG.Q
NES 47.3% 3114 23.2% 3632 48.0% 3633
SPSA 40.0% 2744 9.6% 3256 46.0% 3526
RGF 41.5% 3126 19.5% 3259 50.3% 3569
P-RGF 61.4% 2419 60.4% 2153 51.4% 2858
Averaging | 69.4% 2134 72.8% 1739 66.6 % 2441
RGFp 70.4% 2828 54.9% 2819 83.7% 2230
P-RGFp 81.1% 2120 82.3% 1816 89.6 % 1784
Averagingp | 80.6% 2087 77.4% 1700 87.2% 1777

m ASR: Attack Success Rate (#queries is under 10,000);
AVG. Q: Average #queries over successful attacks.

m Methods with the subscript “D” refers to the data-
dependent version of the P-RGF method.
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