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Introduction

O It is important yet challenging to perform accurate and interpretable
time series forecasting. Traditional parametric model are easy-to-interpret, but
their predictive capabilities are limited. Deep architectures can boost the
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Experiments

(d Results on Forecasting

» The three datasets are representative (from difficult to easy) and dimension

: : . ‘13 : . . . Series Saliency : : —
forecasting accuracy, they sacrlﬁce interpretability. It 1s relatively unexplored combines the reference series - - Ay e ey
M 3 - . o . . ’ CNN 0.775 £0.003 0.701 £0.001 0.636 £0.001 0.919£0.022 0.909 +£0.019 0.841 +0.008 0.883 +0.004 0.871 £0.002 0.866 + 0.004
tO develop bOth accurate and lnterpretable methOdS for multlvarlate tlme lmages and Orlglnal one.: (Data augmentation) j GRU 0.804 £0.003 0.712 £0.002 0.639 £0.003 0.953 £0.003 0.936+0.013 0.904 +0.011 0.878 £0.001 0.877 +0.003 0.867 &+ 0.002
o ° e y LSTNet 0.777 £0.001 0.708 £ 0.004 0.624 £+ 0.004 0.949 +£0.004 0.934 +£0.003 0.876 £0.011 0.922 +0.004 0.913 +0.002 0.906 &+ 0.002
S€ries forecastlng. . (In:feld‘;Vg:?I()n) SA 0.813£0.002 0.722£0.003 0.643 +0.003 0.961 0.002 0.942 £ 0.005 0.905 = 0.009 0.919 =0.007 0.907 £ 0.001 _0.902 = 0.003
O rpr 1 CNN w/ SS 0.779 £ 0.005 0.723 £0.009 0.641 £0.007 0.941 £0.006 0.927 +£0.004 0.881 +0.001 0.898 +0.004 0.893 +0.002 0.892 + 0.007
X — M @ X + (E - M) @ X, T GRU w/ SS 0.809 £ 0.003 0.716 £0.012 0.649 £0.003 0.955+0.001 0.935+0.002 0.912+0.003 0.905+0.004 0.889 +0.008 0.878 &+ 0.003
° ° . LSTNetw/SS 0.794 £0.008 0.724 £ 0.002 0.641 £0.003 0.959 + 0.004 0.938 £ 0.001 0.901 +0.002 0.928 + 0.003 0.918 + 0.003 0.907 = 0.001
° SA w/ SS 0.819 £ 0.003 0.732 £ 0.009 0.658 = 0.001 0.965 £ 0.003 0.955+0.016 0.916 +0.004 0.923 +0.003 0.915 +0.001 0.911 + 0.002
H Existing work B Series saliency can generate
1. Interpretation methods for general neural networks [Ribeiro et al., 2016; Shrikumar et data that cover the unexplored > Ablation study cl): =] ] =5
. . . . . o e .91 : B Fixed augmentation
al., 2017; Lundberg & Lee 2017]: input space while maintaining the N L . =Nt — T
. . . . . . . s 4 T\ i "= | = Type2
Use gradient information to extract feature information for after the back- propagation 1m.p(.)rt£{nt c.har'flcterlstlcs of the Reference Series Image Series Image 07 _ v =
: . original s€rics 1mage. , , & 0.61 5
2. Transfer attention methods from the fields of language or vision [Bahadanau ef al., 5 8 Mixup mechanism " 05 o
2014, Shih et al., 2019]; Methodology
0.3
Attention values are calculated via the relative importance of the different time steps. : |
p p D Dual-p ath architecture Train 027NN GRU LSTNet Self-Attention  °2" cn GRU LSTNet Self-Attention

1 Key: Considering the time and feature dimensions in coherent manner +  Scale of input data often changes in 0 Results on Interpretation
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image can be treated as data augmentation in time domain for deep models. e BloT i for multivariate time series forecasting.
by identifying the representative mask o —

[ Series saliency module acts as an adaptive data augmentation method
for training deep models while can be optimized for interpretable
forecasting in both feature and time dimensions.

» If the perturbation is not set properly (e.g., too large), the blurring will .
introduce irregular roughness to cover the original series, making it difficult
for DNNSs to learn temporal patterns.

For AR part, the weights are easy-to-
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