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CONTRIBUTIONS SAMPLING VIA MOMENT SHARING (SMS)

We proposed a distributed MCMC inference algorithm for large scale

Bayesian posterior simulation that

• scales to “big data” and compute nodes,

• converges fast and is exempt from a final combination stage,

• supports flexible distributed schemes: synchronous, asynchronous,

decentralized, etc.,

• incurs low communication costs,

• and achieves high approximation accuracy.

We empirically studied the performance of our algorithm and compared

it with the state-of-the-art, on Bayesian logistic regression and sparse

linear regression with a spike-and-slab prior.
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Key idea: to encourage mutual awareness and agreement among the local samplers so as to

improve inference quality, by enforcing sharing across them a small number of moment

statistics of the local posteriors.

Local posterior: .

1. each local sampler independently draws samples from it;

2. moments of interest:                        for some sufficient statistics function        ;

3. the effective local prior               is assumed a member of the exponential family with 

sufficient statistics         and natural parameter      ;

4. moment sharing: find        so that                                for some shared    .

And that’s where expectation propagation comes into play.

Expectation propagation (Minka’01): variational approximation via moment matching

1. approximate each              with             (use              for         )

2. posterior is thus approximated with           , where

3. iteratively solve for each     as 

which equates matching the moments of the two arguments in             . 

Combining the above two ideas, we come up with our SMS algorithm.

Multivariate Gaussian family: motivated by the Bernstein-von Mises Theorem for big 

1. sufficient statistics: 

2. moment parameter:                           ,

3. natural parameter:                          where 

is an unbiased estimate of the precision matrix.

Bayesian logistic regression (synthetic dataset:                              )

• base sampler: NUTS (Hoffman’14), burnin = 400, thinning = 2.

• ground truth: 100,000 samples from 
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Distributed Bayesian Posterior Sampling via Moment Sharing

• MCMC sampling: use                       . 

Bayesian inference with “Big Data”                       

• Variational inference: use                .

(evidence lower bound)

(acceptance rate)

In both cases, the cost of one iteration (sample) is          .

To scale up, people generally resort to two types of approaches, namely

stochastic approximation (Welling’11, Hoffman’13, etc.) and distributed

algorithms (Scott’13, Neiswanger’14, etc.)

. . .

. . .
. . .

stochastic approximation distributed algorithms

Existing distributed MCMC algorithms 

(assuming                     )

• partition the prior into               , one for each node;

• let each node draw     samples from its local posterior: 

• and finally combines              into the full posterior 

samples.

Pros: “embarrassingly parallel”  simple and “efficient”

Cons: completely independent and local  not very accurate

. . .

. . .

On master node: update

The following shows one iteration in the SMS algorithm. Upon convergence,               

and SMS outputs the collection of samples           from the last iteration as well as the 

EP estimated posterior         .

Bayesian sparse linear regression with a spike-and-slab prior

Algorithm costs

Algorithm

matching the moments!


