
Fast Max–Margin Matrix Factorization 
with Data Augmentation

Minjie Xu, Jun Zhu & Bo Zhang

Tsinghua University



Matrix Factorization and M3F (I)
• Setting: fit a partially observed matrix                 with

subject to certain constraints

• Examples

• Singular Value Decomposition (SVD): 
when    is fully observed, approximate it with the     leading 
components (hence                       and     minimizes    -loss)

• Probabilistic Matrix Factorization (PMF):
assume                 with Gaussian prior and likelihood 
(equivalent to    -loss minimization with F-norm regularizer)

• Max-Margin Matrix Factorization (M3F):
hinge loss minimization with nuclear norm regularizer on 
(or equivalently, F-norm regularizer on    and    )

observed entries

(I) (II)



Matrix Factorization and M3F (II)
• Benefits of M3F

• max-margin approach, more applicable to binary, ordinal or 
categorical data (e.g. ratings)

• the nuclear norm regularizer (I) 
allows flexible latent dimensionality

• Limitations
• scalability vs. flexibility:

SDP solvers for (I) scale poorly; while the more scalable (II) 
requires a pre-specified fixed finite 

• efficiency vs. approximation:
gradient descent solvers for (II) require a smooth hinge; 
while bilinear SVM solvers can be time-consuming

• Motivations: to build a M3F model that is both scalable, 
flexible and admits highly efficient solvers.
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• Setting: fit training data                   with model 

• Regularized Risk Minimization (RRM):

• Maximum a Posteriori (MAP):

• For discriminative models

loss function discriminant function

posterior prior likelihood

RRM as MAP, A New Look (I)

labelfeature

regularizer empirical risk



RRM as MAP, A New Look (II)
• Bridge RRM and MAP via delegate prior (likelihood)

• jointly intact:            and            induce exactly the same 
joint distribution (and thus the same posterior)

• singly relaxed: free from the normalization constraints (and 
thus no longer probability densities)

• The transition: 



Delegate prior & likelihood
• Consider a simplest case:

• genuine pair:

• delegate pair:

• can be completely different from           when viewed 
as functions of the model

Both      and     are scaled (up to a constant) for better visualization.



M3F as MAP: the full model
• We consider M3F for ordinal ratings 

• Risk: introduce thresholds                          and sum 
over the         binary M3F losses for each 

• Regularizer:                      , where

• MAP:                     with hyper-parameters ?



• Data augmentation in general

• introduce auxiliary variables to facilitate Bayesian inference 
on the original variables of interest

• inject independence:
e.g. EM algorithm (joint);

stick-breaking construction (conditional)

• exchange for a much simpler conditional representation:
e.g. slice-sampling; data augmentation strategy for logistic 
models and that for SVMs

• Lemma (location-scale mixture of Gaussians):

Gaussian density function

Data Augmentation for M3F (I)



• Benefit of the augmented representation

• : Gaussian                     , “conjugate” to Gaussian “prior”

• : Generalized inverse Gaussian

• : inverse Gaussian 

Data Augmentation for M3F (II)



Data Augmentation for M3F (III)
• M3F before augmentation:

where 

and 

• M3F after augmentation (auxiliary variables              ):

where



Data Augmentation for M3F (IV)
• Posterior inference via Gibbs sampling

• Draw        from                        for  

• Draw        from                 for

• Draw        likewise for 

• Draw        from                   for 

• For details, please refer to our paper



Nonparametric M3F (I)
• We want to automatically infer from data the latent 

dimensionality 

• The Indian buffet process

• induces a distribution on binary matrices with an unbounded 
number of columns

• follows a culinary metaphor

• e.g. 

cross validation

in an elegant way

behavioral pattern of the ith customer:

• for kth sampled dish: sample 

according to popularity

• then sample a                      

number of new dishes



Nonparametric M3F (II)
• IBP enjoys several nice properties

• favors sparse matrices

• finite columns for finite customers (with probability one)

• exchangeability  Gibbs sampling would be easy

• We replace     with    and change the delegate prior

• with hyper-parameters 



Nonparametric M3F (III)
• Inference via Gibbs sampling

• Draw        from  

• Draw        from

• Draw                from
where

• Draw        from

• Draw      and 



Experiments and Discussions
• Datasets: MovieLens 1M & EachMovie

• Test error (NMAE):

• Training time:



Experiments and Discussions
• Convergence:

• single samples vs. averaged samples

• RRM objective

• Validation error (NMAE)



Experiments and Discussions
• Latent dimensionality:



Thanks!


