ICML Atlanta

International Conference on Machine Learning

Fast Max-Margin Matrix Factorization with Data Augmentation

Minjie Xu, Jun Zhu & Bo Zhang

Tsinghua University

Matrix Factorization and M³F (I)

- Setting: fit a partially observed matrix $Y \in \mathbb{R}^{N \times M}$ with X subject to certain constraints
- Examples
 - Singular Value Decomposition (SVD): when Y is fully observed, approximate it with the K leading components (hence $\operatorname{rank}(X) = K$ and X minimizes ℓ_2 -loss)
 - Probabilistic Matrix Factorization (PMF): assume X = UV[⊤] with Gaussian prior and likelihood (equivalent to ℓ₂-loss minimization with F-norm regularizer)
 - Max-Margin Matrix Factorization (M³F): hinge loss minimization with nuclear norm regularizer on X (or equivalently, F-norm regularizer on U and V)

(I)
$$\min_{X} \|X\|_{*} + C \sum_{ij \in \mathcal{I}} h(Y_{ij}X_{ij})$$
 (II) $\min_{U,V} \frac{1}{2} (\|U\|_{F}^{2} + \|V\|_{F}^{2}) + C \sum_{ij \in \mathcal{I}} h(Y_{ij}U_{i}V_{j}^{\top})$
observed entries

Matrix Factorization and M³F (II)

- Benefits of M³F
 - max-margin approach, more applicable to binary, ordinal or categorical data (e.g. ratings) **13,358 Reviews**
 - the nuclear norm regularizer (I) allows *flexible* latent dimensionality
- Limitations
 - scalability vs. flexibility: SDP solvers for (I) scale poorly; while the more scalable (II) requires a pre-specified fixed finite K
 - efficiency vs. approximation: gradient descent solvers for (II) require a smooth hinge; while bilinear SVM solvers can be time-consuming
- Motivations: to build a M³F model that is both scalable, flexible and admits highly efficient solvers.

$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X} \mathbf{S}$ star:	(7,931)
☆☆☆☆★ <u>4 star</u> :	(2,451)
☆☆☆★★ <u>3 star</u> :	(1,271)
☆☆★★★ <u>2 star</u> :	(719)
★★★★ <u>1 star</u> :	(986)

Roadmap

 $Y \simeq UV^{\top}$

RRM as MAP, A New Look (I)

• Setting: fit training data $\mathcal{X} = \{\mathcal{X}_n\}_{n=1}^N$ with model \mathcal{M}

<u>feature</u> <u>label</u>

• Regularized Risk Minimization (RRM): $\mathcal{X}_n = (\mathbf{x}_n, y_n)$

RRM as MAP, A New Look (II)

- Bridge RRM and MAP via *delegate* prior (likelihood)
 - jointly intact: (p_0, \mathcal{L}) and $(\dot{p}_0, \dot{\mathcal{L}})$ induce exactly the same joint distribution (and thus the same posterior)

$$p_0(\mathcal{M}) \prod_{n=1}^N \mathcal{L}(\mathcal{M}|\mathcal{X}_n) \propto \dot{p}_0(\mathcal{M}) \prod_{n=1}^N \dot{\mathcal{L}}(\mathcal{M}|\mathcal{X}_n)$$

• singly relaxed: free from the normalization constraints (and thus no longer probability densities)

$$\dot{p}_0(\mathcal{M}) \propto p_0(\mathcal{M}) / \prod_{n=1}^N \zeta_n(\mathcal{M}), \ \dot{\mathcal{L}}(\mathcal{M}|\mathcal{X}_n) \propto \zeta_n(\mathcal{M})\mathcal{L}(\mathcal{M}|\mathcal{X}_n)$$

• The transition:

$$\dot{p}_0(\mathcal{M}) = e^{-\Omega(\mathcal{M})}, \ \dot{\mathcal{L}}(\mathcal{M}|\mathcal{X}_n) = e^{-C\mathcal{R}(\mathcal{M};\mathcal{X}_n)}$$

Delegate prior & likelihood

- Consider a simplest case: $\mathcal{M} = \sigma, \mathcal{X} = \{x\}$
 - genuine pair: $(p_0, \mathcal{L}) = (\mathcal{U}(0, 1), \mathcal{N}(x|0, \sigma^2))$ $(\sigma)^{\sigma} \sim \mathcal{U}(0, 1)$

• delegate pair:
$$(\dot{p}_0, \dot{\mathcal{L}}) = \left(\frac{\mathbb{I}_{\sigma \in (0,1)}}{\sigma}, e^{-\frac{x^2}{2\sigma^2}}\right)$$
 $x \sim \mathcal{N}(x|0, \sigma^2)$

• $(\dot{p}_0, \dot{\mathcal{L}})$ can be completely different from (p_0, \mathcal{L}) when viewed as functions of the model \mathcal{M}

M³F as MAP: the full model

- We consider M³F for ordinal ratings $Y_{ij} \in \{1, 2, ..., L\}$
- Risk: introduce thresholds $\theta_{i1} \leq \cdots \leq \theta_{i(L-1)}$ and sum over the L 1 binary M³F losses for each θ_{ir}

$$\mathbf{s} = f(U, V, \boldsymbol{\theta}; (i, j)) = \boldsymbol{\theta}_i - (U_i V_j^{\top}) \mathbf{1}_{L-1}, \ L(Y_{ij}, \mathbf{s}) = \sum_{r=1} h_\ell(T_{ij}^r s_r)$$

where
$$T_{ij}^r \triangleq \begin{cases} +1 & \text{for } r \ge Y_{ij} \\ -1 & \text{for } r < Y_{ij} \end{cases}$$
, $h_\ell(x) \triangleq \max(0, \ell - x)$

• Regularizer: $\hat{\Omega}(U, V) + \Omega(\theta)$, where

$$\Omega(\boldsymbol{\theta}) = \frac{1}{2\varsigma^2} \sum_{i=1}^N \|\boldsymbol{\theta}_i - \boldsymbol{\rho}\|_2^2 \qquad (\rho_1 < \cdots < \rho_{L-1})$$

• MAP: $\mathcal{M} = (U, V, \boldsymbol{\theta})$ with hyper-parameters $\{\sigma, \boldsymbol{\rho}, \varsigma, C, \ell, ?\}$ $\dot{p}_0(U, V, \boldsymbol{\theta}) = \prod_{i=1}^N \mathcal{N}(U_i | \boldsymbol{0}, \sigma^2 I) \mathcal{N}(\boldsymbol{\theta}_i | \boldsymbol{\rho}, \varsigma^2 I) \cdot \prod_{j=1}^M \mathcal{N}(V_j | \boldsymbol{0}, \sigma^2 I)$ $\dot{\mathcal{L}}(U, V, \boldsymbol{\theta} | (i, j), Y_{ij}) = \prod_{r=1}^L e^{-2\max(\Delta_{ij}^r, 0)}, \text{ where } \Delta_{ij}^r \triangleq \frac{C}{2} (\ell - T_{ij}^r(\boldsymbol{\theta}_{ir} - U_i V_j^{\top}))$

Data Augmentation for M³F (I)

- Data augmentation in general
 - introduce auxiliary variables to facilitate Bayesian inference on the original variables of interest
 - inject *independence*:
 e.g. EM algorithm (joint);
 stick-breaking construction (conditional)
 - exchange for a much *simpler* conditional representation: e.g. slice-sampling; data augmentation strategy for logistic models and that for SVMs
- Lemma (location-scale mixture of Gaussians):

$$e^{-2\max(u,0)} = \int_0^\infty \frac{1}{\sqrt{2\pi\lambda}} e^{-\frac{(u+\lambda)^2}{2\lambda}} d\lambda = \int_0^\infty \frac{\phi(u|-\lambda,\lambda)}{\sqrt{2\pi\lambda}} d\lambda$$

Gaussian density function

Data Augmentation for M³F (II)

- Benefit of the augmented representation $\phi(u| \lambda, \lambda)$
 - $u|\lambda$: Gaussian $\mathcal{N}(u|-\lambda,\lambda)$, "conjugate" to Gaussian "prior"
 - $\lambda | u$: Generalized inverse Gaussian $\mathcal{GIG}(\lambda | 1/2, 1, u^2)$

$$\mathcal{GIG}(\lambda|p,a,b) \propto \lambda^{p-1} e^{-\frac{1}{2}\left(a\lambda + \frac{b}{\lambda}\right)}$$

• $\lambda^{-1}|u$: inverse Gaussian $\mathcal{IG}(\lambda^{-1}||u|^{-1},1)$

Data Augmentation for M³F (III)

• M³F before augmentation:

$$p(\mathcal{M}|\mathcal{X}) \propto \dot{p}_{0}(\mathcal{M}) \prod_{ij \in \mathcal{I}} \dot{\mathcal{L}}(\mathcal{M}|\mathcal{X}_{ij})$$

where $\dot{\mathcal{L}}(\mathcal{M}|\mathcal{X}_{ij}) = \prod_{r=1}^{L} e^{-2\max(\Delta_{ij}^{r},0)} = \int_{\mathbb{R}^{L-1}_{+}} \phi(\boldsymbol{\Delta}_{ij}|-\boldsymbol{\lambda}_{ij}, \operatorname{diag}(\boldsymbol{\lambda}_{ij})) d\boldsymbol{\lambda}_{ij}$
and $\boldsymbol{\Delta}_{ij} = (\Delta_{ij}^{1}, \dots, \Delta_{ij}^{L-1})^{\top}, \, \boldsymbol{\lambda}_{ij} = (\lambda_{ij1}, \dots, \lambda_{ij(L-1)})^{\top}$

• M³F after augmentation (auxiliary variables $\lambda = \lambda_{ij \in \mathcal{I}}$): $p(\mathcal{M}, \lambda | \mathcal{X}) \propto \dot{p}_0(\mathcal{M}) \prod_{ij \in \mathcal{I}} \dot{\mathcal{L}}(\mathcal{M} | \mathcal{X}_{ij}, \lambda_{ij})$ where $\dot{\mathcal{L}}(\mathcal{M} | \mathcal{X}_{ij}, \lambda_{ij}) \triangleq \phi(\Delta_{ij} | - \lambda_{ij}, \operatorname{diag}(\lambda_{ij}))$

Data Augmentation for M³F (IV)

- Posterior inference via Gibbs sampling
 - Draw λ_{ijr}^{-1} from $\mathcal{IG}(|\Delta_{ij}^r|^{-1}, 1)$ for $ij \in \mathcal{I}, r = 1, \dots, L$
 - Draw V_j from $\mathcal{N}(b_j, B_j)$ for $j = 1, \ldots, M$
 - Draw U_i likewise for i = 1, ..., N
 - Draw θ_{ir} from $\mathcal{N}(a_{ir}, A_{ir})$ for $i = 1, \ldots, N, r = 1, \ldots, L$
 - For details, please refer to our paper

Step	Asymptotic complexity
Sample $\boldsymbol{\lambda}$	$O(\mathcal{I} LK)$
Sample V (and U likewise)	$O(\mathcal{I} (L+K^2)) + O(MK^3)$
Calculate $\{B_j^{-1}\}_{j=1}^M$	$O(\mathcal{I} (L+K^2))$
Cholesky Decomposition	$O(MK^3)$
Calculate $\{b_j\}_{j=1}^M$	$O(\mathcal{I} (L+K)) + O(MK^2)$
Draw $\{V_j\}_{j=1}^M$ from \mathcal{N}	$O(MK^2)$
Sample $\boldsymbol{\theta}$	$O(\mathcal{I} (L+K)) + O(NL)$

Nonparametric M³F (I)

- We want to automatically infer from data the latent dimensionality *K* in an elegant way
- The Indian buffet process
 - induces a distribution on binary matrices with an unbounded number of columns
 - follows a culinary metaphor

behavioral pattern of the *i*th customer:

- for *k*th *sampled* dish: sample according to popularity m_k/i
- then sample a $K_1^{(i)} = \text{Poisson}(\alpha/i)$ number of *new* dishes

Nonparametric M³F (II)

- IBP enjoys several nice properties
 - favors sparse matrices
 - finite columns for finite customers (with probability one)
 - exchangeability \rightarrow Gibbs sampling would be easy
- We replace U with Z and change the delegate prior

$$\dot{p}_0(Z, V, \boldsymbol{\theta}) = \text{IBP}(Z|\alpha) \cdot \prod_{j=1}^M \mathcal{N}(V_j|\mathbf{0}, \sigma^2 I) \cdot \prod_{i=1}^N \mathcal{N}(\boldsymbol{\theta}_i|\boldsymbol{\rho}, \varsigma^2 I)$$

• $\mathcal{M} = (Z, V, \theta)$ with hyper-parameters $\{\sigma, \rho, \varsigma, C, \ell, \alpha\}$

Nonparametric M³F (III)

- Inference via Gibbs sampling
 - Draw λ_{ijr}^{-1} from $\mathcal{IG}(|\Delta_{ij}^r|^{-1}, 1)$
 - Draw Z_{ik} from

Bernoulli
$$(Z_{ik}|\sum_{j\neq i}Z_{jk}/N)\prod_{j|ij\in\mathcal{I}}\dot{\mathcal{L}}(\mathcal{M}|\mathcal{X}_{ij},\boldsymbol{\lambda}_{ij})$$

• Draw $Z_i^{\nu} = \mathbf{1}_{k_i}^{\top}$ from Poisson $(k_i | \alpha / N) \prod_{j | ij \in \mathcal{I}} \frac{|\Sigma_{ijk_i}|^{1/2}}{\sigma^{k_i}} e^{\frac{1}{2} \omega_{ijk_i}^{\top} \Sigma_{ijk_i}^{-1} \omega_{ijk_i}}$ where

$$\Sigma_{ijk_i}^{-1} = \frac{1}{\sigma^2} I_{k_i \times k_i} + \sum_{r=1}^{L-1} \frac{C^2}{4\lambda_{ijr}} \cdot \mathbf{1}_{k_i \times k_i}$$
$$\boldsymbol{\omega}_{ijk_i} = -\frac{C}{2} \sum_{i=1}^{L-1} T_{ij}^r \left(1 + \frac{\Delta_{ij}^r}{\lambda_{ijr}}\right) \cdot \Sigma_{ijk_i} \mathbf{1}_{k_i}$$

$$oldsymbol{\omega}_{ijk_i} = -rac{1}{2} \sum_{r=1}^{r} T^r_{ij} (1 + rac{1}{\lambda_{ijr}}) \cdot \Sigma_{ijk}$$

Draw $V^{i
u}$ from $\mathcal{N}(\omega_{ijk}, \Sigma_{ijk})$

- Draw $V^{i\nu}$ from $\mathcal{N}(\boldsymbol{\omega}_{ijk_i}, \boldsymbol{\Sigma}_{ijk_i})$
- Draw V_j and θ_{ir}

Sampler for	Asymptotic complexity
$\boldsymbol{\lambda}, V, \boldsymbol{\theta}$	same as Gibbs M ³ F
$\{Z_{ik}\}_{i=1,k=1}^{N,K}$	$O(\mathcal{I} (L+K)) + O(NK)$
$\{Z_i^{\nu}\}_{i=1}^N: \{k_i\}_{i=1}^N$	$O(\mathcal{I} \kappa) + O(N\kappa)$
$\int V^{i\nu} \downarrow N$	tight: $O(\sum_{ij \in \mathcal{I}} k_i^3) + O(M \sum_i k_i)$
$\int V \int i=1$	loose: $O(\mathcal{I} \kappa^3) + O(MN\kappa)$

Experiments and Discussions

• Datasets: MovieLens 1M & EachMovie

• Test error (NMAE):

	MovieLens		EachMovie	
Algorithm	weak	strong	weak	strong
$M^{3}F$	$.4156 \pm .0037$	$.4203 \pm .0138$	$.4397 \pm .0006$	$.4341 \pm .0025$
$bcd M^3F$	$.4176 \pm .0016$	$.4227 \pm .0072$	$.4348 \pm .0023$	$.4301 \pm .0034$
Gibbs M^3F	$.4037 \pm .0005$	$.4040 \pm .0055$	$.4134 \pm .0017$	$.4142 \pm .0059$
iPM ³ F	$.4031 \pm .0030$	$.4135 \pm .0109$	$.4211 \pm .0019$	$.4224 \pm .0051$
Gibbs $iPM^{3}F$	$.4080 \pm .0013$	$.4201 \pm .0053$	$.4220 \pm .0003$	$.4331 \pm .0057$

• Training time:

$\operatorname{Algorithm}$	MovieLens	EachMovie	Iters
$M^{3}F$	5h	15h	100
bcd M^3F	$4\mathrm{h}$	10h	50
Gibbs M^3F	$0.11\mathrm{h}$	0.35h	50
iPM ³ F	4.6h	$5.5\mathrm{h}$	50
Gibbs iPM^3F	0.68h	$0.70\mathrm{h}$	50

Experiments and Discussions

• Convergence:

0.65

- single samples vs. averaged samples
- RRM objective
- Validation error (NMAE)

50

Experiments and Discussions

• Latent dimensionality:

Thanks!