Fast Max-Margin Matrix Factorization with Data Augmentation

Minjie Xu, Jun Zhu \& Bo Zhang

Tsinghua University

Matrix Factorization and $\mathrm{M}^{3} \mathrm{~F}$ (I)

- Setting: fit a partially observed matrix $Y \in \mathbb{R}^{N \times M}$ with X subject to certain constraints
- Examples
- Singular Value Decomposition (SVD): when Y is fully observed, approximate it with the K leading components (hence $\operatorname{rank}(X)=K$ and X minimizes ℓ_{2}-loss)
- Probabilistic Matrix Factorization (PMF): assume $X=U V^{\top}$ with Gaussian prior and likelihood (equivalent to ℓ_{2}-loss minimization with F -norm regularizer)
- Max-Margin Matrix Factorization ($\mathrm{M}^{3} \mathrm{~F}$):
hinge loss minimization with nuclear norm regularizer on X (or equivalently, F-norm regularizer on U and V)
(I) $\min _{X}\|X\|_{*}+C \sum_{i j \in \mathcal{I}} h\left(Y_{i j} X_{i j}\right) \quad$ (II) $\min _{U, V} \frac{1}{2}\left(\|U\|_{F}^{2}+\|V\|_{F}^{2}\right)+C \sum_{i j \in \mathcal{I}} h\left(Y_{i j} U_{i} V_{j}^{\top}\right)$
$\underline{\text { observed entries }}$

Matrix Factorization and M3F（II）

－Benefits of $\mathrm{M}^{3} \mathrm{~F}$
－max－margin approach，more applicable to binary，ordinal or categorical data（e．g．ratings）

13，358 Reviews
－the nuclear norm regularizer（I） allows flexible latent dimensionality

－Limitations
－scalability vs．flexibility：
SDP solvers for（I）scale poorly；while the more scalable（II） requires a pre－specified fixed finite K
－efficiency vs．approximation： gradient descent solvers for（II）require a smooth hinge； while bilinear SVM solvers can be time－consuming
－Motivations：to build a $\mathrm{M}^{3} \mathrm{~F}$ model that is both scalable， flexible and admits highly efficient solvers．

Roadmap

$$
Y \simeq U V^{\top}
$$

RRM as MAP, A New Look (I)

- Setting: fit training data $\mathcal{X}=\left\{\mathcal{X}_{n}\right\}_{n=1}^{N}$ with model \mathcal{M}
- Regularized Risk Minimization (RRM): $\mathcal{X}_{n}=\left({\underset{X}{7}}^{\prime}, \frac{y_{n}}{\uparrow}\right)$

$$
\min _{\substack{\mathcal{M} \\ \min _{\uparrow} \\ \text { regularizer }}} \quad \underline{\sum_{n=1}^{\uparrow} \mathcal{R}\left(\mathcal{M} ; \mathcal{X}_{n}\right)}
$$

- Maximum a Posteriori (MAP):

$$
\max _{\mathcal{M}} \frac{p(\mathcal{M} \mid \mathcal{X})}{\uparrow} \propto \frac{p_{0}(\mathcal{M})}{\uparrow} \prod_{n=1}^{N} \mathcal{L}\left(\mathcal{M} \mid \mathcal{X}_{n}\right)
$$

- For discriminative models

$$
\mathcal{R}\left(\mathcal{M} ; \mathcal{X}_{n}\right)=L(y_{n}, \underbrace{f\left(\mathcal{M} ; \mathbf{x}_{n}\right)}) \quad \mathcal{L}\left(\mathcal{M} \mid \mathcal{X}_{n}\right) \triangleq p\left(y_{n} \mid \mathcal{M}, \mathbf{x}_{n}\right)
$$

loss function discriminant function

RRM as MAP, A New Look (II)

- Bridge RRM and MAP via delegate prior (likelihood)
- jointly intact: $\left(p_{0}, \mathcal{L}\right)$ and $\left(\dot{p}_{0}, \dot{\mathcal{L}}\right)$ induce exactly the same joint distribution (and thus the same posterior)

$$
p_{0}(\mathcal{M}) \prod_{n=1}^{N} \mathcal{L}\left(\mathcal{M} \mid \mathcal{X}_{n}\right) \propto \dot{p}_{0}(\mathcal{M}) \prod_{n=1}^{N} \dot{\mathcal{L}}\left(\mathcal{M} \mid \mathcal{X}_{n}\right)
$$

- singly relaxed: free from the normalization constraints (and thus no longer probability densities)

$$
\dot{p}_{0}(\mathcal{M}) \propto p_{0}(\mathcal{M}) / \prod_{n=1}^{N} \zeta_{n}(\mathcal{M}), \dot{\mathcal{L}}\left(\mathcal{M} \mid \mathcal{X}_{n}\right) \propto \zeta_{n}(\mathcal{M}) \mathcal{L}\left(\mathcal{M} \mid \mathcal{X}_{n}\right)
$$

- The transition:

$$
\dot{p}_{0}(\mathcal{M})=e^{-\Omega(\mathcal{M})}, \dot{\mathcal{L}}\left(\mathcal{M} \mid \mathcal{X}_{n}\right)=e^{-C \mathcal{R}\left(\mathcal{M} ; \mathcal{X}_{n}\right)}
$$

Delegate prior \& likelihood

- Consider a simplest case: $\mathcal{M}=\sigma, \mathcal{X}=\{x\}$
- genuine pair: $\left(p_{0}, \mathcal{L}\right)=\left(\mathcal{U}(0,1), \mathcal{N}\left(x \mid 0, \sigma^{2}\right)\right)$
- delegate pair: $\left(\dot{p}_{0}, \dot{\mathcal{L}}\right)=\left(\frac{\mathbb{I}_{\sigma \in(0,1)}}{\sigma}, e^{-\frac{x^{2}}{2 \sigma^{2}}}\right)$

- ($\left.\dot{p}_{0}, \dot{\mathcal{L}}\right)$ can be completely different from $\left(p_{0}, \mathcal{L}\right)$ when viewed as functions of the model \mathcal{M}

Both \dot{p}_{0} and $\dot{\mathcal{L}}$ are scaled (up to a constant) for better visualization.

$M^{3} \mathrm{~F}$ as MAP: the full model

- We consider $\mathrm{M}^{3} \mathrm{~F}$ for ordinal ratings $Y_{i j} \in\{1,2, \ldots, L\}$
- Risk: introduce thresholds $\theta_{i 1} \leq \cdots \leq \theta_{i(L-1)}$ and sum over the $L-1$ binary $\mathrm{M}^{3} \mathrm{~F}$ losses for each θ_{t-1}

$$
\mathbf{s}=f(U, V, \boldsymbol{\theta} ;(i, j))=\boldsymbol{\theta}_{i}-\left(U_{i} V_{j}^{\top}\right) \mathbf{1}_{L-1}, L\left(Y_{i j}, \mathbf{s}\right)=\sum_{r=1}^{L-1} h_{\ell}\left(T_{i j}^{r} s_{r}\right)
$$

$$
\text { where } T_{i j}^{r} \triangleq\left\{\begin{array}{cc}
+1 & \text { for } r \geq Y_{i j} \\
-1 & \text { for } r<Y_{i j}
\end{array}, h_{\ell}(x) \triangleq \max (0, \ell-x)\right.
$$

- Regularizer: $\Omega(U, V)+\Omega(\boldsymbol{\theta})$, where

$$
\Omega(\boldsymbol{\theta})=\frac{1}{2 \varsigma^{2}} \sum_{i=1}^{N}\left\|\boldsymbol{\theta}_{i}-\boldsymbol{\rho}\right\|_{2}^{2} \quad\left(\rho_{1}<\cdots<\rho_{L-1}\right)
$$

- MAP: $\mathcal{M}=(U, V, \boldsymbol{\theta})$ with hyper-parameters $\{\sigma, \boldsymbol{\rho}, \varsigma, C, \ell, ?\}$

$$
\begin{aligned}
\dot{p}_{0}(U, V, \boldsymbol{\theta}) & =\prod_{i=1}^{N} \mathcal{N}\left(U_{i} \mid \mathbf{0}, \sigma^{2} I\right) \mathcal{N}\left(\boldsymbol{\theta}_{i} \mid \boldsymbol{\rho}, \varsigma^{2} I\right) \cdot \prod_{j=1}^{M} \mathcal{N}\left(V_{j} \mid \mathbf{0}, \sigma^{2} I\right) \\
\dot{\mathcal{L}}\left(U, V, \boldsymbol{\theta} \mid(i, j), Y_{i j}\right) & =\prod_{r=1}^{L} e^{-2 \max \left(\Delta_{i j}^{r}, 0\right)}, \text { where } \Delta_{i j}^{r} \triangleq \frac{C}{2}\left(\ell-T_{i j}^{r}\left(\theta_{i r}-U_{i} V_{j}^{\top}\right)\right)
\end{aligned}
$$

Data Augmentation for M3F (I)

- Data augmentation in general
- introduce auxiliary variables to facilitate Bayesian inference on the original variables of interest
- inject independence:
e.g. EM algorithm (joint);
stick-breaking construction (conditional)
- exchange for a much simpler conditional representation: e.g. slice-sampling; data augmentation strategy for logistic models and that for SVMs
- Lemma (location-scale mixture of Gaussians):

$$
e^{-2 \max (u, 0)}=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi \lambda}} e^{-\frac{(u+\lambda)^{2}}{2 \lambda}} d \lambda=\int_{0}^{\infty} \frac{\phi(u \mid-\lambda, \lambda)}{\lambda} d \lambda
$$

Gaussian density function

Data Augmentation for M3F (II)

- Benefit of the augmented representation $\phi(u \mid-\lambda, \lambda)$
- $u \mid \lambda$: Gaussian $\mathcal{N}(u \mid-\lambda, \lambda)$, "conjugate" to Gaussian "prior"
- $\lambda \mid u$: Generalized inverse Gaussian $\mathcal{G I G}\left(\lambda \mid 1 / 2,1, u^{2}\right)$

$$
\mathcal{G I G}(\lambda \mid p, a, b) \propto \lambda^{p-1} e^{-\frac{1}{2}\left(a \lambda+\frac{b}{\lambda}\right)}
$$

- $\lambda^{-1} \mid u$: inverse Gaussian $\mathcal{I G}\left(\left.\lambda^{-1}| | u\right|^{-1}, 1\right)$

Data Augmentation for $\mathrm{M}^{3} \mathrm{~F}$ (III)

- $\mathrm{M}^{3} \mathrm{~F}$ before augmentation:

$$
p(\mathcal{M} \mid \mathcal{X}) \propto \dot{p}_{0}(\mathcal{M}) \prod_{i j \in \mathcal{I}} \dot{\mathcal{L}}\left(\mathcal{M} \mid \mathcal{X}_{i j}\right)
$$

where $\dot{\mathcal{L}}\left(\mathcal{M} \mid \mathcal{X}_{i j}\right)=\prod_{r=1}^{L} e^{-2 \max \left(\Delta_{i j}^{r}, 0\right)}=\int_{\mathbb{R}_{+}^{L-1}} \phi\left(\boldsymbol{\Delta}_{i j} \mid-\boldsymbol{\lambda}_{i j}, \operatorname{diag}\left(\boldsymbol{\lambda}_{i j}\right)\right) d \boldsymbol{\lambda}_{i j}$ and $\boldsymbol{\Delta}_{i j}=\left(\Delta_{i j}^{1}, \ldots, \Delta_{i j}^{L-1}\right)^{\top}, \boldsymbol{\lambda}_{i j}=\left(\lambda_{i j 1}, \ldots, \lambda_{i j(L-1)}\right)^{\top}$

- $\mathrm{M}^{3} \mathrm{~F}$ after augmentation (auxiliary variables $\boldsymbol{\lambda}=\boldsymbol{\lambda}_{i j \in \mathcal{I}}$):

$$
p(\mathcal{M}, \lambda \mid \mathcal{X}) \propto \dot{p}_{0}(\mathcal{M}) \prod_{i j \in \mathcal{I}} \dot{\mathcal{L}}\left(\mathcal{M} \mid \mathcal{X}_{i j}, \lambda_{i j}\right)
$$

where $\dot{\mathcal{L}}\left(\mathcal{M} \mid \mathcal{X}_{i j}, \boldsymbol{\lambda}_{i j}\right) \triangleq \phi\left(\boldsymbol{\Delta}_{i j} \mid-\boldsymbol{\lambda}_{i j}, \operatorname{diag}\left(\boldsymbol{\lambda}_{i j}\right)\right)$

Data Augmentation for M3F (IV)

- Posterior inference via Gibbs sampling
- Draw $\lambda_{i j r}^{-1}$ from $\mathcal{I} \mathcal{G}\left(\left|\Delta_{i j}^{r}\right|^{-1}, 1\right)$ for $i j \in \mathcal{I}, r=1, \ldots, L$
- Draw V_{j} from $\mathcal{N}\left(b_{j}, B_{j}\right)$ for $j=1, \ldots, M$
- Draw U_{i} likewise for $i=1, \ldots, N$
- Draw $\theta_{i r}$ from $\mathcal{N}\left(a_{i r}, A_{i r}\right)$ for $i=1, \ldots, N, r=1, \ldots, L$
- For details, please refer to our paper

Step	Asymptotic complexity
Sample $\boldsymbol{\lambda}$	$O(\|\mathcal{I}\| L K)$
Sample V (and U likewise)	$O\left(\|\mathcal{I}\|\left(L+K^{2}\right)\right)+O\left(M K^{3}\right)$
Calculate $\left\{B_{j}^{-1}\right\}_{j=1}^{M}$	$O\left(\|\mathcal{I}\|\left(L+K^{2}\right)\right)$
Cholesky Decomposition	$O\left(M K^{3}\right)$
Calculate $\left\{b_{j}\right\}_{j=1}^{M}$	$O(\|\mathcal{I}\|(L+K))+O\left(M K^{2}\right)$
Draw $\left\{V_{j}\right\}_{j=1}^{M}$ from \mathcal{N}	$O\left(M K^{2}\right)$
Sample $\boldsymbol{\theta}$	$O(\|\mathcal{I}\|(L+K))+O(N L)$

Nonparametric M3F (I)

- We want to automatically infer from data the latent dimensionality K in an elegant way
- The Indian buffet process
- induces a distribution on binary matrices with an unbounded number of columns
- follows a culinary metaphor
- e.g. $\alpha=3$

$K_{1}^{(i)}$
5
2
1
0
1
behavioral pattern of the i th customer:
- for k th sampled dish: sample according to popularity m_{k} / i
- then sample a $K_{1}^{(i)}=\operatorname{Poisson}(\alpha / i)$ number of new dishes

Nonparametric M3F (II)

- IBP enjoys several nice properties
- favors sparse matrices
- finite columns for finite customers (with probability one)
- exchangeability \rightarrow Gibbs sampling would be easy
- We replace U with Z and change the delegate prior

$$
\dot{p}_{0}(Z, V, \boldsymbol{\theta})=\operatorname{IBP}(Z \mid \alpha) \cdot \prod_{j=1}^{M} \mathcal{N}\left(V_{j} \mid \mathbf{0}, \sigma^{2} I\right) \cdot \prod_{i=1}^{N} \mathcal{N}\left(\boldsymbol{\theta}_{i} \mid \boldsymbol{\rho}, \varsigma^{2} I\right)
$$

- $\mathcal{M}=(Z, V, \boldsymbol{\theta})$ with hyper-parameters $\{\sigma, \boldsymbol{\rho}, \varsigma, C, \ell, \alpha\}$

Nonparametric M3F (III)

- Inference via Gibbs sampling
- Draw $\lambda_{i j r}^{-1}$ from $\mathcal{I} \mathcal{G}\left(\left|\Delta_{i j}^{r}\right|^{-1}, 1\right)$
- Draw $Z_{i k}$ from

Bernoulli $\left(Z_{i k} \mid \sum_{j \neq i} Z_{j k} / N\right) \prod_{j \mid i j \in \mathcal{I}} \dot{\mathcal{L}}\left(\mathcal{M} \mid \mathcal{X}_{i j}, \boldsymbol{\lambda}_{i j}\right)$

- Draw $Z_{i}^{\nu}=\mathbf{1}_{k_{i}}^{\top}$ from $\operatorname{Poisson}\left(k_{i} \mid \alpha / N\right) \prod_{j i j \in \mathcal{I}} \frac{\left|\Sigma_{i j k_{i}}\right|^{1 / 2}}{\sigma^{k_{i}}} e^{\frac{1}{2} \omega_{i j k_{i}}^{\top} \Sigma_{i j k_{i}}^{-1} \omega_{i j k_{i}}}$
where

$$
\begin{aligned}
& \Sigma_{i j k_{i}}^{-1}=\frac{1}{\sigma^{2}} I_{k_{i} \times k_{i}}+\sum_{r=1}^{L-1} \frac{C^{2}}{4 \lambda_{i j r}} \cdot \mathbf{1}_{k_{i} \times k_{i}} \\
& \boldsymbol{\omega}_{i j k_{i}}=-\frac{C}{2} \sum_{r=1}^{L-1} T_{i j}^{r}\left(1+\frac{\Delta_{i j}^{r}}{\lambda_{i j r}}\right) \cdot \Sigma_{i j k_{i}} \mathbf{1}_{k_{i}}
\end{aligned}
$$

- Draw $V^{i \nu}$ from $\mathcal{N}\left(\omega_{i j k_{i}}, \Sigma_{i j k_{i}}\right)$ Sampler for
- Draw V_{j} and $\theta_{i r}$

Sampler for	Asymptotic complexity
$\boldsymbol{\lambda}, V, \boldsymbol{\theta}$	same as Gibbs $\mathrm{M}^{3} \mathrm{~F}$
$\left\{Z_{i k}\right\}_{i=1, k=1}^{N, K}$	$O(\|\mathcal{I}\|(L+K))+O(N K)$
$\left\{Z_{i}^{\nu}\right\}_{i=1}^{N}:\left\{k_{i}\right\}_{i=1}^{N}$	$O(\|\mathcal{I}\| \kappa)+O(N \kappa)$
$\left\{V^{i \nu}\right\}_{i=1}^{N}$	tight: $O\left(\sum_{i j \in \mathcal{I}} k_{i}^{3}\right)+O\left(M \sum_{i} k_{i}\right)$

Experiments and Discussions

- Datasets: MovieLens 1M \& EachMovie
- Test error (NMAE):

	MovieLens		EachMovie	
Algorithm	weak	strong	weak	strong
$\mathrm{M}^{3} \mathrm{~F}$	$.4156 \pm .0037$	$.4203 \pm .0138$	$.4397 \pm .0006$	$.4341 \pm .0025$
bcd M $^{3} \mathrm{~F}$	$.4176 \pm .0016$	$.4227 \pm .0072$	$.4348 \pm .0023$	$.4301 \pm .0034$
Gibbs M $^{3} \mathrm{~F}$	$.4037 \pm .0005$	$.4040 \pm .0055$	$.4134 \pm .0017$	$.4142 \pm .0059$
iPM $^{3} \mathrm{~F}$	$.4031 \pm .0030$	$.4135 \pm .0109$	$.4211 \pm .0019$	$.4224 \pm .0051$
Gibbs iPM $^{3} \mathrm{~F}$	$.4080 \pm .0013$	$.4201 \pm .0053$	$.4220 \pm .0003$	$.4331 \pm .0057$

- Training time:

Algorithm	MovieLens	EachMovie	Iters
$\mathrm{M}^{3} \mathrm{~F}$	5 h	15 h	100
bcd $\mathrm{M}^{3} \mathrm{~F}$	4 h	10 h	50
Gibbs $\mathrm{M}^{3} \mathrm{~F}$	0.11 h	0.35 h	50
iPM $^{3} \mathrm{~F}$	4.6 h	5.5 h	50
Gibbs iPM ${ }^{3} \mathrm{~F}$	0.68 h	0.70 h	50

Experiments and Discussions

- Convergence:
- single samples vs. averaged samples
- RRM objective
- Validation error (NMAE)

Experiments and Discussions

- Latent dimensionality:

Thanks!

