
Fast Parallel SVMs using Data Augmentation

Hugh Perkins, Minjie Xu, Jun Zhu and Bo Zhang
Department of Computer Science

Tsinghua University
Beijing, 100084 China

ngls11@mails.tsinghua.edu.cn,xuj-10@mails.tsinghua.edu.cn,
dcszj@mail.tsinghua.edu.cn,dcszb@mail.tsinghua.edu.cn

ABSTRACT
As one of the most popular classifiers, linear SVMs still have
challenges in dealing with very large-scale problems, even
though linear or sub-linear algorithms have been developed
recently on single machines. Although parallel computing
methods have also been developed to this end, most of them
rely on solving local sub-optimization problems. In this pa-
per, we develop a novel parallel algorithm for learning large-
scale linear SVMs. Our approach is based on an equivalent
formulation which casts the primal problem of SVMs as a
Bayesian inference problem for whose solution we develop
very efficient parallel EM and MCMC sampling algorithms.
We provide empirical results for our algorithms, and pro-
vide extensions for SVR, nonlinear kernel SVMs, as well as
the Crammer and Singer multi-class SVMs. Our approach
is very promising in its own right and is also a very use-
ful technique to parallelize a broader family of more general
maximum-margin models.1

1. SVM AS BAYESIAN INFERENCE
In this section we present the fundamental theories our

extensions and distributed algorithms are built upon.

1.1 SVM: the Basics
We first focus on standard linear SVMs for binary classi-

fication. Let D = {(xd, yd)}Dd=1 be the training data, where
yd ∈ {1,−1}. The goal of SVMs is to learn a linear discrim-
inant function

f(x; w, ν) = w>x + ν.

For notation simplicity, we absorb the offset parameter ν
into w by introducing an additional feature dimension with
fixed unit value. To find the optimal w, the canonical learn-
ing problem of SVMs with a tolerance on training errors is

1This is an excerpt from the unpublished full ver-
sion. Here we provide the core technical section for
reference. MATLAB code is available here:
http://ml.cs.tsinghua.edu.cn/˜minjie/code.shtml

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

formulated as a constrained optimization problem

min
w,ξ

1

2
λ‖w‖22 + 2

∑
d

ξd

s.t. : ∀d,
{
ydw

>xd ≥ 1− ξd
ξd ≥ 0

,

Note that the constant factor 2 in the training error term
can be absorbed into λ, yet we leave it for the simplicity
of the deduction later. Equivalently, the problem can be
formulated as an unconstrained form

min
w

1

2
λ‖w‖22 + 2

∑
d

max(0, 1− ydw>xd). (1)

1.2 SVM: the MAP estimate
Problem (1) can also be viewed as a MAP estimate of a

probabilistic model, where the posterior distribution is

p(w|D) ∝ q0(w)q(y|w,X)

and q0(w) = N (0, λ−1I) and q(y|w,X) =
∏

d q(yd|w,xd)
with

q(yd|w,xd) = exp(−2 max(0, 1− ydw>xd)). (2)

Note that we factorize the posterior into q0 and q merely for
the simplicity of subsequent denotation and that normally
they can be intrinsically different from the genuine prior and
likelihood as can be induced from the probabilistic model
(even up to a constant factor). Hence we call q0 and q dele-
prior and dele-likelihood respectively (“dele” for “delegate”).

The benefit of the MAP formulation is that it allows us
to take advantage of many existing techniques developed
for inference in probabilistic models and thus grants more
flexibility for the solution. Specifically, Polson and Scott [1]
show that the dele-likelihood can be represented as a scale
mixture of Gaussians, namely

Lemma 1. Scale mixture for hinge loss

exp(−2 max(0, 1− ydw>xd))

=

∫ ∞
0

1√
2πγd

exp
(
− (1 + γd − ydw>xd)2

2γd

)
dγd (3)

This directly inspires an augmented representation with γ =

(γ1, . . . , γD) such that

p(w,γ|D) ∝ q0(w)
∏
d

q(yd, γd|w,xd)

q(yd|w,xd) =

∫ ∞
0

q(yd, γd|w,xd)dγd

q(yd, γd|w,xd) = φ(1− ydw>xd| − γd, γd)

where φ(·|µ, σ2) is the Gaussian density function.

1.3 MCMC Sampling for SVM
Based on this augmented representation, we are able to

design MCMC methods for p(w,γ|D), from which the opti-
mal SVM solution that maximizes p(w|D) is relatively more
probable to get sampled.

Specifically, we use Gibbs sampling and have the following
conditional distributions [1]

p(w|γ,D) =N (µ,Σ) (4)

p(γ−1
d |w, yd,xd) = IG(|1− ydw>xd|−1, 1), (5)

where

Σ =
(
λI+

∑
d

1

γd
xdx

>
d

)−1

, µ = Σ
(∑

d

yd(1+
1

γd
)xd

)
(6)

and IG is the inverse Gaussian distribution [1].

1.4 EM algorithm for SVM
The EM algorithm is useful when directly maximizing the

posterior p(w|D) is intractable but it is easy to alternate
between the following two steps which converges to a local
maximum of the posterior.

E-step: Q(m)(w) =

∫
log p(w,γ|D)p(γ|D,w(m))dγ (7)

M-step: w(m+1) = argmax
w

Q(m)(w) (8)

One can prove that the algorithm above monotonically in-
creases the genuine posterior distribution of interest p(w|D)
after each iteration, just as traditional EM does likelihood.

Deduction details omitted to save space, we summarize
the results as follows

E-step (update γ): γ
(m)
d = |1− ydw(m)>xd| (9)

M-step (update w): w(m+1) = µ(m+1)(γ(m)) (10)

where µ is calculated just as in Eq. (6).
Although normally EM is not guaranteed to obtain the

global optimum, for our specific p(w|D) which is concave
w.r.t w, global optimum is actually expected. Furthermore,
EM is a deterministic algorithm and enjoys a straightforward
stopping criterion when compared with MCMC sampling.

2. EXTENSIONS
In this section we extend the idea above to SVR, nonlin-

ear kernel SVMs, and the Crammer and Singer multi-class
SVMs.

2.1 Learning Nonlinear Kernel SVMs
According to the representer theorem, the solution to prob-

lem (1) has the form

w =
∑
d

αdydxd, (11)

which is a linear combination of X. We can naturally extend
it to the nonlinear case by using a feature mapping function
h and learn the nonlinear SVM by solving

min
w

1

2
λ‖w‖22 + 2

∑
d

max(0, 1− ydw>h(xd)), (12)

the solution to which can be represented accordingly as

w =
∑
d

αdydh(xd) = Hdiag(y)α, (13)

where H = [h(x1) h(x2) · · · h(xD)].
Substituting Eq. (13) into (12), we get the dual problem

min
α

1

2
λα>diag(y)Kdiag(y)α +

2
∑
d

max(0, 1− ydα>diag(y)K>d), (14)

where K is the Gram matrix and Kd is the dth row. If the
feature map function h is a reproducing kernel, i.e., h(x) =
k(·,x), problem (14) becomes a kernel SVM and each entry
of K is a dot product, that is

Kij = k(xi,xj) = h(xi)
>h(xj).

The Gram matrix K is positive definite for any reproducing
kernel, e.g. the most commonly used Gaussian kernel

k(xi,xj) = exp
(
− ‖xi − xj‖22

2σ2

)
Let ω = diag(y)α, then w =

∑
d ωdh(xd) and the prob-

lem becomes

min
ω

1

2
λω>Kω + 2

∑
d

max(0, 1− ydω>K>d), (15)

Observing the similarity between problem (15) and (1),
we reformulate it as MAP just as we did (1), with q0(ω) =
N (0, (λK)−1) and q(y|ω,X) =

∏
d q(yd|ω,xd), where

q(yd|ω,xd) = exp(−2 max(0, 1− ydω>K>d)). (16)

Lemma 2. Scale mixture for kernel hinge loss

exp(−2 max(0, 1− ydω>K>d))

=

∫ ∞
0

1√
2πγd

exp
(
− (1 + γd − ydω>K>d)2

2γd

)
dγd (17)

Consequently for kernel SVMs, we have

q(ω|γ,D) =N (µ,Σ) (18)

p(γ−1
d |w, yd,X) = IG(|`− ydω>K>d |−1, 1), (19)

where

Σ =
(
λK +

∑
d

1

γd
K>d Kd

)−1

, µ = Σ
(∑

d

yd(1 +
1

γd
)K>d

)
.

2.2 Support Vector Regression
For regression, where the response variable y are real-

valued, the support vector regression (SVR) problem is de-
fined as minimizing a regularized ε-insensitive loss [2]

min
w

1

2
λ‖w‖22 + 2

∑
d

max(0, |yd −w>xd| − ε), (20)

where ε is the precision parameter2.
Naturally, we obtain the same q0 as SVMs and

q(yd|w,xd) = exp(−2 max(0, |yd −w>xd| − ε)), (21)

and the augmentation is carried out by the following lemma

Lemma 3. Double scale mixture for ε-insensitive loss

exp(−2 max(0, |yd −w>xd| − ε))

=

∫ ∞
0

1√
2πγd

exp
(
− (γd + yd −w>xd − ε)2

2γd

)
dγd

×
∫ ∞
0

1√
2πωd

exp
(
− (ωd − yd + w>xd − ε)2

2ωd

)
dωd (22)

Proof. As ε ≥ 0, the following equality holds

max(0, |yd −w>xd| − ε)

= max(0, yd −w>xd − ε) + max(0,−yd + w>xd − ε). (23)

Therefore, for each term, we can do similar derivation as in
Lemma 1 to get the double scale mixture formulation.

Consequently for SVR, we have

p(w|γ,ω,D) =N (µ,Σ) (24)

p(γ−1
d |w,ω, yd,xd) = IG(|yd −w>xd − ε|−1, 1) (25)

p(ω−1
d |w,γ, yd,xd) = IG(|yd −w>xd + ε|−1, 1), (26)

where the covariance and mean are now

Σ =
(
λI +

∑
d

(
1

γd
+

1

ωd
)xdx

>
d

)−1

, (27)

µ = Σ
(∑

d

(
yd − ε
λd

+
yd + ε

ωd
)xd

)
. (28)

2.3 Learning Multi-class SVMs
For multi-class classification, we have yd ∈ {1, · · · ,M}.

There are various strategies to perform multi-class classifi-
cation with SVMs. Here we consider the approach proposed
by Crammer and Singer (2001), where the generalized dis-
criminant function is defined to be

f(y,x; w) = w>y x (29)

where wy is the sub-vector corresponding to class label y.
And the regularized risk minimization problem becomes

min
w

1

2
λ‖w‖22 + 2

∑
d

max
y

(∆d(y)−∆fd(y; w)), (30)

where ∆d(y) is the cost of predicting y for the true label yd
and ∆fd(y; w) = f(yd,xd; w) − f(y,xd; w) is the margin.
Both ∆d(y) and ∆fd(y; w) equal zero when y = yd.

Then, the pseudo-prior and pseudo-likelihood is changed
accordingly to

q0(w) =
∏
y

q0(wy) =
∏
y

N (wy |0, λ−1I) (31)

q(yd|w,xd) = exp(−2 max
y

(∆d(y) + w>y xd −w>ydxd)) (32)

In order for Lemma 1 to be applicable, we resort to an it-
erative procedure, which alternately infer weights wy given
the other weights w−y, for each class label y.

2ε is a small positive number, e.g., 1e−3 in our experiments

The local conditional distribution is

p(wy|D,w−y) ∝ q0(wy)
∏
d

ψ(wy; w−y, yd,xd), (33)

where ψ(wy; w−y, yd,xd) ∝ q(yd|w,xd)

= exp(−2(max(w>y xd + ∆d(y), ζd(y))−w>ydxd))

∝
{

exp(−2 max(w>y xd − ρyd, 0)) (y 6= yd)
exp(−2 max(0, ρyd −w>y xd)) (y = yd)

(34)

= exp(−2 max(0, βy
d (ρyd −wT

y xd))) (35)

where ζd(y) = maxy′ 6=y(w>y′xd + ∆d(y′)) is independent of

wy, ρyd = ζd(y)−∆d(y) and βy
d =

{
+1 for y = yd

−1 for y 6= yd
.

Hence we take

ψ(wy; w−y, yd,xd) = exp(−2 max(0, βy
d (ρyd −wT

y xd)))

and through a similar augmentation, we obtain the Gibbs
sampling step for each augmented local conditional distri-
bution p(wy,γy|D,w−y)

p(γ−1
yd |w, yd,xd) = IG(|ρyd −w>y xd|−1, 1), (36)

p(wy|γy,w−y,D) = N (µy,Σy) (37)

where

Σy =
(
λI +

∑
d

1

γyd
xdx

>
d

)−1

, (38)

µy = Σy

(∑
d

(
ρyd
γyd

+ βy
d)xd

)
. (39)

Note that this is actually a hierarchical Gibbs sampling

1. to sample p(w|D), we carry out Gibbs sampling over
p(wy|D,w−y) alternately for y = 1, . . . ,M ;

2. to sample each p(wy|D,w−y), we use data augmenta-
tion to sample over p(wy,γy|D,w−y).

Accordingly, the EM algorithm for Crammer and Singer
multi-class SVMs inherits this 2-layer structure:

1. to maximize p(w|D), we carry out blockwise coordi-
nate descent to maximize p(wy|D,w−y) alternately;

2. to maximize each p(wy|D,w−y), we adopt the EM al-
gorithm where

Q(m)(wy) =

∫
log p(wy ,γy |D,w−y)p(γy |D,w

(m)
y ,w−y)dγy

3. PARALLEL SVM
Below we show how to employ distributed computing into

the sampling algorithms above. We focus on the classical
linear binary SVMs for the ease of explanation. And exactly
the same techniques apply as well to all the extensions we
present in section 2, and also their EM algorithms.

Two key properties of the sampling process that are in
favor of parallel computation are summarized as follows.

1. The scale variables γ are mutually independent from
each other, and therefore its sampling step can be easi-
ly parallelized to multiple cores and multiple machines.

2. The training data (xd, yd) contribute to the global vari-
ables µ and Σ through a simple summation operator
(Eq. (6)). Thus a typical map-reduce architecture is
directly applicable, as shown in Figure 1.

Figure 1: Map-reduce architecture for parallel sam-
pling SVM

3.1 The Basic Procedure
Let P be the total number of processes and let Dp =

{(xp
d, y

p
d)}Dp

d=1 be the data assigned to process p. Then each
process performs the following computations

1. draw scale parameters: each p draws γ−1
dp (∀1 ≤ d ≤

Dp) according to the distribution in Eq. (5).

2. compute local statistics: each p computes the following
local statistics

µp =

Dp∑
d=1

(1 +
1

γdp
)ypdxp

d,

Σp =

Dp∑
d=1

1

γdp
xp
dx

p>
d . (40)

Since Σp is symmetric, it suffices to compute only the upper
or lower triangle and then submit to the master.

After process p has finished its local computation, it passes
the local statistics µp and Σp to the master process, which
collects the results and performs the following aggregation
operations

1. compute Σ−1 = λI +
∑

p Σp.

2. after Σ−1 is updated, compute µ = Σ(
∑

p µ
p).

It is worth noting that all the slave processes perform
exactly the same set of operations. Assume that we equally
partition the large data set and all computing nodes are of
the same capacity, then it can be expected that all the nodes
have a high probability to finish their local job at roughly
the same time. Therefore the latency due to synchronization
is typically small. While in contrast, the existing parallel
methods for SVMs by solving multiple smaller QP problems
can suffer from large synchronization latency since the sub-
QP problems varies a lot.

3.2 Notation
We will denote the parallel sampling SVM as PEMSVM.

PEMSVM has the following options:

• linear (“LIN”) vs kernelized (“KRN”)

• EM (“EM”) vs MCMC (“MC”)

Step Asymptotic time
Draw γ O(NK/P)
Calculate µp O(NK/P)
Calculate Σp O(NK2/P)
Reduce O(K2 log(P))
Draw µ O(K2 log(K))
Broadcast µ O(K2 log(P))

Table 1: Asymptotic times for LIN-EM-CLS.

Step Asymptotic time

Draw γ O(N2/P)
Calculate µp O(N2/P)
Calculate Σp O(N3/P)
Reduce O(N2 log(P))
Draw µ O(N2 log(N))
Broadcast µ O(N2 log(P))

Table 2: Asymptotic times for KRN-EM-CLS.

• binary classification (“CLS”) vs multiclass classifica-
tion (“MLT”) vs support vector regression (“SVR”)

These three sets of options are orthogonal, so we can write
a set of options for example as ’LIN-EM-CLS’.
N is the number of training instances, K is the number of

features, M is the number of classes, and P is the number
of processes.

3.3 Iteration time

3.3.1 EM

LIN.
LIN-EM-CLS comprises the steps shown in Table 1. Over-

all:

O(K2[N/P + log(P) + log(K)])

Typically, the N/P term dominates, giving O(NK2/P),
and parallelization is effective.

Where K or P are high, then the log(P) and log(K) terms
can dominate. When this is the case, (further) paralleliza-
tion is no longer effective.

KRN.
KRN-EM-CLS comprises the steps in 2. Overall:

O(N2[N/P + log(P) + log(N)])

Typically, the N/P term dominates, giving O(N3/P),
which shows effective parallelization.

When P or N are high, then the log(P) and log(N) terms
can dominate, and (further) parallelization is no longer ef-
fective.

SVR.
The iteration time of SVR is asymptotically identical to

CLS.

MLT.
The iteration time of MLT is multiplied by a factor of M ,

when compared to CLS.

3.3.2 MC
In MC, there is an additional stochastic sampling step for

both γ and Σ.
For LIN, the sampling step for γ is an inverse gamma on

an N by 1 vector, which is O(N). The sampling step for Σ
involves a matrix inverse, on a K by K matrix. Even us-
ing Cholesky decomposition, this is asymptotically O(K3).
Therefore, for MC, the asymptotic time becomes:

O(K2[N/P + log(P) +K])

Therefore, for LIN-MC, when K or log(P) become large
relative to N/P , then (further) parallelization will no longer
be effective.

4. REFERENCES
[1] N. G. Polson and S. L. Scott. Data augmentation for

support vector machines. Bayesian Analysis, 6(1):1–24,
2011.

[2] A. J. Smola and B. Schölkopf. A tutorial on support
vector regression. Statistics and Computing, 2003.

