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ABSTRACT

Latent feature models (LFMs) have been widely used to mod-
el ordinal rating data and relational network data in various
tasks such as collaborative filtering and link prediction, typ-
ically in a generative way. Alternatively, one might incor-
porate max-margin learning into the model via the principle
of Maximum Entropy Discrimination (MED) to learn a more
discriminative latent feature space that favors the supervised
learning task. Another dimension to extend LFMs is to em-
ploy Bayesian nonparametric methods to make LFMs self-
adaptive to the number of latent features, which is crucial for
model complexity control. In this paper we review several re-
cent progresses that have been made in the above two exten-
sions for the task of collaborative filtering and link prediction.

Index Terms— max-margin, latent feature, Bayesian
nonparametrics

1. INTRODUCTION

Latent feature models posit each entity is characterized by a
latent feature vector which can be either correlated with some
observed features or, especially when no observed features
are available at all, totally inferred from data. Such data nor-
mally comprise relations between entities, e.g. whether a per-
son follows or is friend of another in a social network as in
link prediction where entities are people in the network, or in
the case of collaborative filtering where entities are users and
items, how many stars a user rates an item (e.g. book, movie,
hotel, etc.) on a review and rating website.

By introducing latent features into the model, we gain
more flexibility than sticking with the original ones since it
becomes easier for us to inject certain prior knowledge (e.g.
structure, sparsity, etc.) so that the learned latent representa-
tion would be more favorable to the task in hand.

Actually the concept of “latent features” is fairly broad
and borrowed in many cases and problems. To narrow down
our discussion, we in this paper only focus on a specific kind
of latent feature model, where latent features only take binary
values 0 or 1, and for each entity i or entity pair (i, j), its
corresponding latent feature vector(s) fi and fj only appear

in the model as a linear or bilinear form, namely α>fi or
f>i W fj , where α is a real-valued coefficient vector and W is
a real weight matrix. We can represent such latent features
by a binary matrix Z, where the ith row corresponds to the
latent feature vector of entity i, namely f>i , and each column
corresponds to one specific latent feature. Then collectively,
we have the following matrix notation

Zα or ZV or ZWZ>, (1)

where V is an entity-specific real coefficient matrix.
Simple as they are, latent features models of such kind

turn out to be useful in a large family of relational data prob-
lems [1, 2, 3]. Take link prediction as an example. Suppose
entity i and j are two people in a social network, and we want
to predict whether i is a friend of j based on many other al-
ready observed friendship connections in the network. Then
f naturally arises as a vector recording the presence of such
binary features as “is male”, “graduates from Tsinghua Uni-
versity”, “is beatlemania”, “likes cycling” and so on. α or V
or W then represents the weights that will individually con-
tribute to the prediction when their corresponding binary fea-
tures are on.

Although typically formalized as generative models,
LFMs can also be built as discriminative ones to better deal
with supervised learning tasks. Besides, through borrowing
Bayesian nonparametrics into the model, we are provided
with a far more flexible and efficient way of deciding the
number of latent features that is normally set a priori via
computationally expensive model selection procedures such
as cross-validation. Such two extensions bring about the dis-
criminant infinite latent feature models (DILFMs) that we are
going to introduce in this paper. As an example, we focus
on the infinite probabilistic max-margin matrix factoriza-
tion (iPM3F) [4] for collaborative filtering and briefly covers
another max-margin infinite latent feature relational model
(MedLFRM) [5] for link prediction.

The rest of the paper is structured as follows. In Section 2,
we briefly review two fundamental techniques that serve the
basis of our extensions; In Section 3, we introduce two DIL-
FM examples and discuss their learning algorithms; In Sec-



tion 4, we give empirical results that verify the advantages of
the models; And finally, we conclude in Section 5.

2. BACKGROUNDS

We introduce MED [6] and the Indian buffet process (IBP) [7],
which are two key elements underlying DIFLMs.

2.1. Maximum entropy discrimination

We consider binary classification since it suffices for our dis-
cussion. Given a set of training dataD = {(xd, yd)}Dd=1 (yd ∈
{±1}) and a discriminant function F (x;η) parameterized by
η, maximum entropy discrimination (MED) [6] seeks to learn
a distribution q(η) rather than a point estimate as is the case
with standard SVMs that typically lack a probabilistic inter-
pretation. Accordingly, MED takes expectation over F (x;η)
with respect to q(η) and has the following prediction rule

ŷ = sign (Eq[F (x;η)]) . (2)

To find the target q(η), MED solves a regularized risk mini-
mization problem

min
q(η)

KL (q(η)‖p0(η)) + C
∑
d

h` (ydEq[F (xd;η)]) , (3)

where p0(η) is the pre-specified prior distribution of η;
KL(q‖p0) is the Kullback-Leibler divergence, or relative
entropy, between two distributions; C is the regularization
constant and h`(x) = max(0, ` − x) (` > 0) is the general-
ized hinge loss with margin parameter `.

By defining the discriminant function F as the log-
likelihood ratio of a Bayesian generative model, MED pro-
vides an elegant way to integrate discriminative max-margin
learning and Bayesian generative modeling. Alternatively, F
can be directly specified as any normal discriminant function
without reference to probabilistic models [6], which makes
MED far more applicable and flexible and in fact, MED natu-
rally bestows support vector machines (SVMs) a probabilistic
interpretation when F (x;η) = η>x and p0(η) = N (η|0, I).

There are several interesting observations to the above
MED formulation (3). In a broader sense, it is closely related
in spirit to the Bayes’ theorem

p(η|D) ∝ p0(η)p(D|η) (4)

that says the posterior distribution p is guided by the prior p0
and then updated by the likelihood p(D|η) after data are ob-
served; While in MED, the KL-divergence term ensures that
the target distribution q(η) stays not too far away from the pri-
or and the empirical risk term, on the other hand, drives q(η)
towards one that more accurately captures the intrinsic rule
explaining, not necessarily generating, the data. If we consid-
er the Bayes’ theorem as the golden rule underlying genera-
tive models, MED might be the counterpart for discriminative

models since it directly solves for the posterior1. Meanwhile,
the explicit representation of the empirical loss makes MED
even more suitable for supervised discriminative learning, e-
specially for binary or discrete ordinal data for which hinge
loss is an appropriate choice.

Owing to these nice properties, MED has been widely
used to build discriminative probabilistic models. It has al-
so been extended to incorporate latent variables [8, 9] and
perform structured output prediction [10].

2.2. Indian buffet process

One key element influencing the performance of latent feature
models is the number of latent features to use, or equivalently
in our case, the number of columns in Z. Typically a larg-
er number indicates more parameters and hence more time
to explore the solution space during learning while a smaller
number puts model complexity at risk and normally gives un-
satisfactory results. A typical solution relies on some general
model selection procedure, e.g., cross-validation, which enu-
merates and compares many candidate models with different
number of features and thus can be computationally expen-
sive. The Indian buffet process (IBP) [7] is proposed in con-
sequence to allow for probabilistic inference in LFMs with
an unbounded number of latent features, the exact number of
which is to be determined only a posteriori.

Specifically, IBP defines a stochastic process that gen-
erates sparse binary matrices of an unbounded number of
columns. Think of binary matrix Z as recoding row-wisely
customers’ behavior of sampling dishes from an infinite long
buffet, each dish corresponding to one column. Then IBP
works as follows,

1. The first customer samples the first Poisson(α) number
of dishes;

2. The ith customer first samples dishes that have already
been taken by previous customers, according to the
dishes’ popularity mk/i where mk is the number of
previous customers who have sampled that dish; Then
he tries a Poisson(α/i) number of new dishes.

The process above induces a distribution for lof -equivalent
class of binary matrices [7]. Matrices are considered equiva-
lent if they are identical under some permutation of columns,
which is desirable since we are not interested in distinguish-
ing between different latent features. Together with Eq. (1),
we find that all the all-zero columns in Z are hence ignor-
able and we may concentrate on a more compact Z with on-
ly a finite number of active features K+, which follows a
Poisson(αHN ) where N is the number of entities (customer-
s) and HN is the N th harmonic number.

IBP has another equivalent augmented stick-breaking
construction [11]. Specifically, let πk ∈ (0, 1) be a parameter

1Hence we use q(η) rather than p(η|D) in the formulation to distinguish
it from the posterior as induced by the Bayes’ rule.



associated with each column ofZ. Then IBP can be described
as given by the following generative process

Zik ∼ Bernoulli(πk), i.i.d. for i = 1, . . . , N (∀k),

π1 = ν1, πk = νkπk−1 =

k∏
l=1

νl,where

νl ∼ Beta(α, 1), i.i.d. for l = 1, . . . ,+∞.

(5)

Note that when ν is integrated out, the marginal distribution
of Z, with respect to the equivalent class, is identical to that
induced from the above stochastic process.

Since its introduction, IBP has been widely used as the
prior in lots of infinite LFMs [7, 1, 2, 3], most of which are
generative and solved via MCMC sampling. Below, we re-
view two representative discriminative infinite LFMs for re-
lational data and their variational inference solution.

3. DISCRIMINATIVE INFINITE LFMS

3.1. iPM3F for collaborative filtering

Collaborative filtering is a task of predicting users’ potential
preferences on currently unrated items (e.g., movies) based
on their observed preferences and their relations with others’.
One typical setting formalizes it as a matrix completion prob-
lem, i.e., to fill in missing entries into a partially observed
user-by-item preference matrix Y ∈ RN×M , where N and
M are respectively the number of users and items. We denote
the observed entry indices by I.

Among other popular approaches, matrix factorization
models a user’s rating of an item as the linear combination
of their latent factors (or features), hence the factorization
Y ' UV > with latent feature matrices U ∈ RN×K for users
and V ∈ RM×K for items with K latent features. Various
methods have been successfully developed to implement such
an idea, including probabilistic matrix factorization (PM-
F) [12, 13] and deterministic reconstruction error minimiza-
tion, e.g., max-margin matrix factorization (M3F) [14, 15].
Note that in this paper, we don’t consider side information
(observed features) and hence data are only comprised of
entity index pairs (i, j). For models where side information
are incorporated, please refer to [16, 17].

PMF builds a probabilistic generative model for U and
V with priors being zero-mean spherical Gaussian and likeli-
hood induced from Gaussian observation noise. The resulting
MAP estimation of PMF is thus equivalent to a regularized
risk minimization problem with Frobenious norm regulariz-
er and squared loss. M3F solves an alternative minimization
problem with the same regularizer but hinge loss2

min
U,V

1

2

(
‖U‖2F + ‖V ‖2F

)
+ C

∑
ij∈I

h
(
YijUiV

>
j

)
, (6)

2Due to space limit, we only discuss the binary case where Yij ∈ {±1}.
Please find more details in [15, 4].

where h(x) = max(0, 1 − x) is the hinge loss function and
we use Ui to denote the ith row of U , and Vj likewise.

A major problem in (6), which is also common to many
other matrix factorization methods and LFMs is how to de-
termine an appropriate value of K. For PMF models, [1]
proposed to use the IBP prior on U and developed an non-
parametric Bayesian matrix factorization model where K is
inferred from data. For the deterministic M3F however, we
first need to extend it to a probabilistic model, since only af-
ter that can IBP be introduced likewise.

MED happens to fit in for such an extension. More specif-
ically, we take η = (U, V ) and accordingly for the discrimi-
nant function,

F ((i, j);U, V ) = UiV
>
j (7)

Substituting Eq. (7) into (3), we have the following discrimi-
native probabilistic M3F problem

min
q(U,V )

KL(q(U, V )‖p0(U, V )) + C
∑
ij∈I

h`
(
YijEq[UiV

>
j ]
)

.

(8)
Under a proper choice of the prior p0 and a rather mild mean-
field assumption p(U, V ) = p(U)p(V ), one can prove that
problem (8) naturally reduces to M3F (6).

Then the nonparametric extension is only steps away s-
ince one can again adopt the IBP prior for U and any appro-
priate prior for V , e.g. p0(V ) =

∏M
j=1N (Vj |0, σ2I). Note

that although U and V are assumed to have an infinite number
of columns, they only have a finite K+ number of columns
(features) that are actually active.

3.2. MedLFRM for link prediction

Link prediction is a fundamental problem in analyzing social
network or relational data, and its goal is to predict unseen
links between entities given the observed links. It is similarly
formulated as predicting missing entries in anN×N partially
observed relational link matrix Y , where N is the number of
entities and Yij = ±1 indicates the presence or absence of
a link between entity i and j. Sometimes we have observed
attributes Xij ∈ RD that affect the link between i and j.

Various approaches based on probabilistic models have
been developed, one class of which utilizes a latent feature
matrix and a link function (e.g., the commonly used sigmoid
function) [3] to define the link formation probability distri-
bution. In contrary to these generative models that require
a normalized link likelihood, MedLFRM [5] proposed to di-
rectly minimize the hinge loss that measures the quality of
link prediction. The model, which also stems from MED,
takes η = (Z,W,α) and defines the discriminant function as

F ((i, j), Xij ;Z,W,α) = ZiWZ>j +α>Xij (9)

where Z is the binary latent feature matrix, and W and α are
the latent weights. As for the priors p0(Z,W,α), a natural



Table 1. NMAE comparison of matrix factorization methods.

Algorithm MovieLens EachMovie
M3F [15] .4156± .0037 .4397± .0006
PMF [12] .4332± .0033 .4466± .0016
BPMF [13] .4235± .0023 .4352± .0014
iPM3F .4031± .0030 .4211± .0019

Table 2. AUC comparison of LFRM models.
Algorithm NIPS coauthorship
LFRM [3] .9509± ./
MedLFRM .9642± .0026

way to incorporate Bayesian nonparametrics is to assume in-
dependent priors and use the IBP prior for Z and standard
normal priors for W and α.

3.3. Learning and inference

Due to space limit, we only briefly address several common
problems when performing learning and inference in the
above two DILFMs. For details please refer to the corre-
sponding papers [5, 4].

Firstly, exact solution is intractable because the latent
variables, e.g. U and V in iPM3F and Z and W in MedL-
FRM, appear coupled in the discriminant function. Therefore
we have to resort to some approximate learning algorithms.
Specifically, we find the truncated mean-field variational al-
gorithm to be both applicable and efficient once we employed
the augmented stick-breaking construction of IBP as shown
in Eq. (5). As a result, we alternatively solve for q(η,ν).

As for the truncated mean-field assumptions, we assume
that the posterior factorizes into component-wise independent
ones and we set a finite truncation level K so that Z with
more than K non-zero columns are directly rejected. Hence
the truncation level limits the computational costs to a finite
amount with acceptable approximation.

The variational algorithm then goes as usual for paramet-
ric models as we alternate between the components, solving
a conditional subproblem each time. Thanks to the linear or
bilinear forms in the discriminant function (7) & (9) and the
linear expectation operator in the loss term (3), the subprob-
lems are all relatively easy to solve.

4. EXPERIMENTS AND DISCUSSIONS

We now demonstrate the benefits of DILFMs over normal
LFMs through empirical studies. iPM3F is tested against PM-
F models and the deterministic parametric M3F on two pop-
ular movie rating data sets, MovieLens 1M and EachMovie.
While MedLFRM is tested against the generative infinite L-
FRM on the NIPS coauthorship data.
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Table 1 and 2 show that both models achieve higher pre-
diction accuracy as compared to their generative counterparts
thanks to discriminative max-margin learning.

Fig. 1 demonstrates the models’ feature adaptation capa-
bility inherited from Bayesian nonparametrics. Note that the
expected number of features per user a priori is totally con-
trolled by the α parameter in the IBP prior and was set to 3
in this case. While after learning, the expected number a pos-
teriori automatically shifted to around 40 that better qualifies
the model for explaining the observed preference data.

Fig. 2 shows that the models adapt very well to a fairly
board range of truncation level Ks, obtaining similar accu-
racy even though the number of features inferred from data
changes with K.

Apart from MED, the more general regularized Bayesian
inference framework [18] also provides basis for building
such or even more complex DILFM models, e.g. the iLSVM
model [19] for general classification and multi-task learning
tasks. It remains an active research area to bridge discrim-
inative learning and Bayesian nonparametrics and develop
sophisticated models to learn predictive latent feature rep-
resentations for applications where input features are noisy,
hard to obtain, or at a low level (e.g., image pixels) far away
from ideal for concepts to be learned upon.

Furthermore, developing highly efficient and accurate in-
ference algorithms (e.g., Markov chain Monte Carlo methods)
is yet another key step to make these models successful and
deserves attentions from the research community. Note that
recently, an alternative iPM3F model has been proposed [20]
which, through adopting a loss term induced from Gibbs clas-
sifiers, naturally admits Bayesian inference and enjoys an ef-
ficient truncation-free solution via Gibbs sampling.

5. CONCLUSIONS

We introduced two meaningful extensions to latent feature
models, one for discriminative max-margin learning via MED
and the other for automatical model complexity control via
IBP from Bayesian nonparametrics. The resulting discrimi-
native infinite LFMs can be efficiently learned through vari-
ational algorithms and can automatically adapt to number of
features, showing advantages in modeling big relational data.
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