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THE PROPOSED APPROACH

The FELIX Project

The pancreatic cancer is a major killer to
humans. As the symptom is very difficult
to detect at an early stage, the cancer has
often spread to other organs at the time of
diagnosis, causing a very high death rate
(5-year survival rate is merely 7.7%).

The FELIX project is aimed at applying
modern approaches in computer vision to
assist doctors in diagnosing the pancreatic
cancer at an early stage. We start from the

CT scanned images. This is a challenging
A BST RACT task, as the pancreas is a small organ with

Deep Learning Basics

Deep learning is the state-of-the-art solution for a wide
range of image-based applications. It is based on the idea
that a deep network can capture very complicated distribu-
tion in image space. The basic unit of a deep network is a
neuron, i.e., a mathematical function for a specified pur-
pose. Neurons with the same function form a layer, and a
deep network is a hierarchical structure with many layers.
Training a deep network involves propagating neural res-
ponses back and forth and updating network weights.

Data and Evaluation

Data: the NIH pancreas segmentation dataset [9]

82 CT samples collected from healthy people
* Moderate resolution along the axial view

* Evaluation: the DSC score
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Deep neural networks have been widely used this work, we present an approach for C= 19+200 — 51.28%
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minal CT scans. However, the segmentation P 5 axial view (Z axis) Note: evaluation in 3D volumes! i

accuracy of some small organs (e.g., the panc- - o

reas) is sometimes below satisfaction, arguably MOtlvatlon & ApproaCh Input Volume X Coronal Data Coronal Result Coarse
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because deep networks are easily disrupted by Deep networks for segmentation (e.g., FCN [6]) are often less
the complex and variable background regions

which occupies a large fraction of the input vol-
ume. In this paper, we formulate this problem

accurate on small targets such as the pancreas, arguably because
the background region contains random noise which distracts the

into a fixed-point model which uses a predicted network. However, if we focus on a smaller region around the
segmentation mask to shrink the input region. target, the segmentation becomes much more accurate.

This is motivated by the fact that a smaller in- Inbut Image Segmentation Using Segmentation Using

put region often leads to more accurate seg- pu & the Entire Image the Bounding Box

mentation. In the training process, we use the
ground-truth annotation to generate accurate
input regions and optimize network weights. On
the testing stage, we fix the network parame-
ters and update the segmentation results in an

iterative manner. We evaluate our approach on . !

the NIH pancreas segmentation dataset, and NIH Case #09 DSC = 42.65% DSC = 78.449,
outperform the state-of-the-art by more than
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In the training stage, we train two sets of networks for coarse and
fine segmentation, respectively. In the testing stage, we perform

CO NTRI B UTI O N iteration (see the right figure) until convergence.

We propose a novel framework for organ seg-

mentation in CT and other data formats. Note

that medical imaging data are often 3D volumes, E X P E R I IVI E N TA L R E U LT
which are different from those 2D images. Our
technical contributions can be summarized as:

1

. Our idea is to shrink the input region according to the rough seg-
4%, measured by the average Dice-Sgrensen _ ) Sagittal Data Sacittal Result
Coefficient (DSC). In addition, we get 62.43% mentation results. Thus, this problem can be formulated as an op- i —
DSC in the most challenging case, which gua- timization problem in which the segmentation mask appears in
rantees the reliability of our approach in clinical both input and output. This is a fixed-point model and can be sol-
applications. ved via a coarse-to-fine iteration.
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Quantitative Results Visualization

1. We suggest to use 2D segmentation models
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