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» Defined on a hidden layer XV of the CNN. For simplicity, denote XV as X.
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RESULTS

Results on some small datasets
We use BigNet [49] and Wide ResNet [50] as

ABSTRACT

Deep Convolutional Neural Networks (CNNs)
are playing important roles in state-of-the-art
visual recognition. This paper focuses on

lllustration of Geometric Neural Phrase
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layer, which punishes the isolated neuron
responses after convolution, and can be
inserted into a CNN model with little extra
computational overhead. Experimental results
show that GNPP produces significant and
consistent accuracy gain in image classification.

Geometric Neural Phrase Pooling: Smoothing Effect
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* For each neural word, there deflnes a neural phrase. Results on ImageNet

e We use AlexNet [2] as our baseline. GNPP is
inserted before the last pooling layer.

Geometric Neural Phrase Pooling
A D-dimensional vector for each geometric neural phrase individually
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CONTRIBUTION = 3 X+ SR X X
i GNPP penalizes isolated neural responses, and preserves

GNPP builds latent neural connections. With GNPP, the
equivalent # of connections between conv-4 and conv-5
increases from 149.5M to 348.9M. An alternative way is
to increase the # of convolutional kernels, e.g., using
512 kernels at conv-5 increases the number to 299.0M.

v max{ }: dimension-wise maximization -
k>0 ( ) the clustered responses. In neural networks, especially in

v S( ) =o0ors, hlgh -level layers, the isolated responses often relate to
| random noise, therefore GNPP works well in these layers.

In this paper, we present Geometric Neural
Phrase Pooling (GNPP), an efficient yet
effective algorithm to help CNN training.
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