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Abstract. Deep neural networks have been widely adopted for automat-
ic organ segmentation from abdominal CT scans. However, the segmen-
tation accuracy of some small organs (e.g., the pancreas) is sometimes
below satisfaction, arguably because deep networks are easily disrupted
by the complex and variable background regions which occupies a large
fraction of the input volume. In this paper, we formulate this problem
into a fixed-point model which uses a predicted segmentation mask to
shrink the input region. This is motivated by the fact that a smaller
input region often leads to more accurate segmentation. In the training
process, we use the ground-truth annotation to generate accurate input
regions and optimize network weights. On the testing stage, we fix the
network parameters and update the segmentation results in an iterative
manner. We evaluate our approach on the NIH pancreas segmentation
dataset, and outperform the state-of-the-art by more than 4%, measured
by the average Dice-Sgrensen Coefficient (DSC). In addition, we report
62.43% DSC in the worst case, which guarantees the reliability of our
approach in clinical applications.

1 Introduction

In recent years, due to the fast development of deep neural networks [4][10], we
have witnessed rapid progress in both medical image analysis and computer-
aided diagnosis (CAD). This paper focuses on an important prerequisite of
CAD [3][13], namely, automatic segmentation of small organs (e.g., the pancreas)
from CT-scanned images. The difficulty mainly comes from the high anatomical
variability and/or the small volume of the target organs. Indeed researchers
sometimes design a specific segmentation approach for each organ [1][9].
Among different abdominal organs, pancreas segmentation is especially dif-
ficult, as the target often suffers from high variability in shape, size and loca-
tion [9], while occupying only a very small fraction (e.g., < 0.5%) of the entire CT
volume. In such cases, deep neural networks can be disrupted by the background
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region, which occupies a large fraction of the input volume and includes complex
and variable contents. Consequently, the segmentation result becomes inaccurate
especially around the boundary areas.

To alleviate this, we apply a fixed-point model [5] using the predicted seg-
mentation mask to shrink the input region. With a relatively smaller input region
(e.g., a bounding box defined by the mask), it is straightforward to achieve more
accurate segmentation. At the training stage, we fix the input regions generated
from the ground-truth annotation, and train two deep segmentation networks,
i.e., a coarse-scaled one and a fine-scaled one, to deal with the entire input
region and the region cropped according to the bounding box, respectively. At
the testing stage, the network parameters remain unchanged, and an iterative
process is used to optimize the fixed-point model. On a modern GPU, our
approach needs around 3 minutes to process a CT volume during the testing
stage. This is comparable to recent work [8], but we report much higher accuracy.

We evaluate our approach on the NIH pancreas segmentation dataset [9].
Compared to recently published work [9][8], our average segmentation accuracy,
measured by the Dice-Sgrensen Coefficient (DSC), increases from 78.01% to
82.37%. Meanwhile, we report 62.43% DSC on the worst case, which guarantees
reasonable performance on the particularly challenging test samples. In compari-
son, [8] reports 34.11% DSC on the worst case and [9] reports 23.99%. Meanwhile,
our approach can be applied to segmenting other organs or tissues, especially
when the target is very small, e.g., the pancreatic cyst [13].

2 Approach

2.1 Deep Segmentation Networks

Let a CT-scanned image be a 3D volume X of size W x H x L and annotated
with a ground-truth segmentation Y where y; = 1 indicates a foreground voxel.
Consider a segmentation model M : Z = f(X; @), where © denotes the model
parameters, and the loss function is written as £(Z,Y). In the context of a deep
segmentation network, we optimize £ with respect to the network weights @
by gradient back-propagation. As the foreground region is often very small, we
follow [7] to design a DSC-loss layer to prevent the model from being heavily
biased towards the background class. We slightly modify the DSC of two voxel

sets A and B, DSC(A, B) = 2\2&?5" into a loss function between the ground-

truth mask Y and the predicted mask Z, i.e., L(Z,Y) =1 — % Note
that this is a “soft” definition of DSC, and it is equivalent to the (L)rigingﬂ form if
all z;’s are either 0 or 1. The gradient computation is straightforward: M(@LZ;Y) =
Zizi"!‘ziyi)_ziziyi

(Ciztsiw)”

We use the 2D fully-convolutional network (FCN) [6] as our baseline. The
main reason for not using 3D models is the limited amount of training data.
To fit a 3D volume X into a 2D network M, we cut it into a set of 2D slices.
This is obtained along three axes, i.e., the coronal, sagittal and axial views.
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Fig. 1. Segmentation results with different input regions (best viewed in color), either
using the entire image or the bounding box (the red frame). Red, green and yellow
indicate the prediction, ground-truth and overlapped pixels, respectively.

We denote these 2D slices as xc. (w = 1,2,..., W), xg5 (h = 1,2,..., H)
and xa; (I =1,2,...,L), where the subscripts C, S and A stand for “coronal”,
“sagittal” and “axial”, respectively. We train three 2D-FCN models Mg, Mg
and My to perform segmentation through three views individually (images from
three views are quite different). In testing, the segmentation results from three
views are fused via majority voting.

2.2 Fixed-Point Optimization

The pancreas often occupies a very small part (e.g., < 0.5%) of a CT volume. It
was observed [9] that deep segmentation networks such as FCN [6] produce less
satisfying results when detecting small organs, arguably because the network is
easily disrupted by the varying contents in the background regions. Much more
accurate segmentation can be obtained by using a smaller input region around
the region-of-interest. A typical example is shown in Figure 1.

This inspires us to make use of the predicted segmentation mask to shrink the
input region. We introduce a transformation function r(X,Z*) which generates
the input region given the current segmentation Z*. We rewrite the model as
Z = {(r(X,Z*);0), and the loss function is L(f(r(X,Z*);©),Y). Note that
the segmentation mask (Z or Z*) appears in both the input and output of
Z = {(r(X,Z*);0). This is a fixed-point model, and we apply the approach
described in [5] for optimization, i.e., finding a steady-state solution for Z.

In training, the ground-truth annotation Y is used as the input mask
Z*. We train two sets of models (each set contains three models for different
views) to deal with different input sizes. The coarse-scaled models are trained on
those slices on which the pancreas occupies at least 100 pixels (approximately
25mm? in a 2D slice, our approach is not sensitive to this parameter) so as to
prevent the model from being heavily impacted by the background. For the fine-
scaled models, we crop each slice according to the minimal 2D box covering
the pancreas, add a frame around it, and fill it up with the original image
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Fig. 2. Tllustration of the testing process (best viewed in color). Only one iteration is
shown here. In practice, there are at most 10 iterations.

Axial Result

data. The top, bottom, left and right margins of the frame are random integers
sampled from {0,1,...,60}. This strategy, known as data augmentation, helps
to regularize the network and prevent over-fitting.

We initialize both networks using the FCN-8s model [6] pre-trained on the
PascalVOC image segmentation task. The coarse-scaled model is fine-tuned with
a learning rate of 10~° for 80,000 iterations, and the fine-scaled model undergoes
60,000 iterations with a learning rate of 10~*. Each mini-batch contains one
training sample (a 2D image sliced from a 3D volume).

In testing, we use an iterative process to find a steady-state solution for
Z =f(r(X,Z*);O). At the beginning, Z* is initialized as the entire 3D volume,
and we compute the coarse segmentation Z(®) using the coarse-scaled models.
In each of the following 7T iterations, we slice the predicted mask Z(~1), find
the smallest 2D box to cover all predicted foreground pixels in each slice, add a
30-pixel-wide frame around it (this is the mean value of the random distribution
used in training), and use the fine-scaled models to compute Z®). The iteration
terminates when a fixed number of iterations T is reached, or the the similarity
between successive segmentation results (Z(tfl) and Z(t)) is larger than a given
threshold R. The similarity is defined as the inter-iteration DSC, namely d*) =
DSC(Z(FU, Z(t)) = % The testing stage is illustrated in Figure 2
and described in Algorftfim I
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Algorithm 1 Fixed-Point Model for Segmentation
1: Input: the testing volume X, coarse-scaled models Mc, Mg and Ma, fine-scaled

models ME, ME and MY, threshold R, maximal rounds in iteration 7.
Initialization: using Mc, Mg and Ma to generate Z© from X;
fort=1,2,...,7 do

Using M5, M and MY to generate Z*) from Z(*~1;

if DSC (z(t*”, z(f>) > R then break;

end if
end for
Output: the final segmentation Z* = Z®.

3 Experiments

3.1 Dataset and Evaluation

We evaluate our approach on the NIH pancreas segmentation dataset [9], which
contains 82 contrast-enhanced abdominal CT volumes. The resolution of each
CT scan is 512 x 512 x L, where L € [181,466] is the number of sampling
slices along the long axis of the body. The slice thickness varies from 0.5mm-—
1.0mm. Following the standard cross-validation strategy, we split the dataset
into 4 fixed folds, each of which contains approximately the same number of
samples. We apply cross validation, i.e., training the model on 3 out of 4 subsets
and testing it on the remaining one. We measure the segmentation accuracy
by computing the Dice-Sgrensen Coefficient (DSC) for each sample. This is a
similarity metric between the prediction voxel set Z and the ground-truth set
Y, with the mathematical form of DSC(Z,)) = % We report the average
DSC score together with the standard deviation over 82 testing cases.

3.2 Results

We first evaluate the baseline (coarse-scaled) approach. Using the coarse-scaled
models trained from three different views (i.e., Mc, Mg and My,), we obtain
66.88%+11.08%, 71.41%+11.12% and 73.08%=+9.60% average DSC, respectively.
Fusing these three models via majority voting yields 75.74%+10.47%, suggesting
that complementary information is captured by different views. This is used as
the starting point Z(® for the later iterations.

To apply the fixed-point model for segmentation, we first compute d® to
observe the convergence of the iterations. After 10 iterations, the average d®*)
value over all samples is 0.9767, the median is 0.9794, and the minimum is 0.9362.
These numbers indicate that the iteration process is generally stable.

Now, we investigate the fixed-point model using the threshold R = 0.95 and
the maximal number of iterations T' = 10. The average DSC is boosted by 6.63%,
which is impressive given the relatively high baseline (75.74%). This verifies our
hypothesis, i.e., a fine-scaled model depicts a small organ more accurately.
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[Method [ Mean DSC[ # Iterations] Max DSC[ Min DSC]
Roth et.al, MICCAT'2015 [9]|| 71.42 £10.11 — 86.29 23.99
Roth et.al, MICCAI’'2016 [8]|| 78.01 £8.20 — 88.65 34.11
Coarse Segmentation 75.74 £10.47 - 88.12 39.99
After 1 Iteration 82.16 £ 6.29 1 90.85 54.39
After 2 Tterations 82.13 £ 6.30 2 90.77 57.05
After 3 Iterations 82.09 £6.17 3 90.78 58.39
After 5 Tterations 82.11 +£6.09 5 90.75 62.40
After 10 Iterations 82.25 £5.73 10 90.76 61.73
After d: > 0.90 82.13 +6.35| 1.83 £0.47 90.85 54.39
After d; > 0.95 82.37+5.68) 2.89+1.75 90.85 62.43
After d¢: > 0.99 82.28 +5.72| 9.87 £0.73 90.77 61.94
Best among All Iterations 82.65 £5.47| 3.49 £2.92 90.85 63.02
Oracle Bounding Box 83.18 +4.81 - 91.03 65.10

Table 1. Segmentation accuracy (measured by DSC, %) reported by different ap-
proaches. We start from initial (coarse) segmentation Z<0), and explore different
terminating conditions, including a fixed number of iterations and a fixed threshold
of inter-iteration DSC. The last two lines show two upper-bounds of our approach, i.e.,
“Best of All Iterations” means that we choose the highest DSC value over 10 iterations,
and “Oracle Bounding Box” corresponds to using the ground-truth segmentation to
generate the bounding box in testing. We also compare our results with the state-of-
the-art [9][8], demonstrating our advantage over all statistics.

We also summarize the results generated by different terminating conditions
in Table 1. We find that performing merely 1 iteration is enough to significantly
boost the segmentation accuracy (+6.42%). However, more iterations help to
improve the accuracy of the worst case, as for some challenging cases (e.g.,
Case #09, see Figure 3), the missing parts in coarse segmentation are recovered
gradually. The best average accuracy comes from setting R = 0.95. Using a
larger threshold (e.g., 0.99) does not produce accuracy gain, but requires more
iterations and, consequently, more computation at the testing stage. In average,
it takes less than 3 iterations to reach the threshold 0.95. On a modern GPU,
we need about 3 minutes on each testing sample, comparable to recent work [8],
but we report much higher segmentation accuracy (82.37% vs. 78.01%).

As a diagnostic experiment, we use the ground-truth (oracle) bounding box
of each testing case to generate the input volume. This results in a 83.18%
average accuracy (no iteration is needed in this case). By comparison, we report
a comparable 82.37% average accuracy, indicating that our approach has almost
reached the upper-bound of the current deep segmentation network.

We also compare our segmentation results with the state-of-the-art approach-
es. Using DSC as the evaluation metric, our approach outperforms the recent
published work [8] significantly. The average accuracy over 82 samples increas-
es remarkably from 78.01% to 82.37%, and the standard deviation decreases
from 8.20% to 5.68%, implying that our approach are more stable. We also
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Input Image Initial Segmentation After 15t Iteration After 2" [teration Final (3 Iterations)

DSC = 81.39% DSC = 81.45% DSC = 82.19%
After 15t Iteration After 2" [teration Final (10 Iterations)

NIH Case #09 DSC = 42.65% DSC = 54.39% DSC = 57.05% DSC = 76.82%

Fig. 3. Examples of segmentation results throughout the iteration process (best viewed
in color). We only show a small region covering the pancreas in the axial view. The
terminating condition is d®¥ > 0.95. Red, green and yellow indicate the prediction,
ground-truth and overlapped regions, respectively.

implement a recently published coarse-to-fine approach [12], and get a 77.89%
average accuracy. In particular, [8] reported 34.11% for the worst case (some
previous work [2][11] reported even lower numbers), and this number is boosted
considerably to 62.43% by our approach. We point out that these improvements
are mainly due to the fine-tuning iterations. Without it, the average accuracy is
75.74%, and the accuracy on the worst case is merely 39.99%. Figure 3 shows
examples on how the segmentation quality is improved in two challenging cases.

4 Conclusions

We present an efficient approach for accurate pancreas segmentation in abdom-
inal CT scans. Motivated by the significant improvement brought by small and
relatively accurate input region, we formulate a fixed-point model taking the
segmentation mask as both input and output. At the training stage, we use
the ground-truth annotation to generate a smaller input region, and train both
coarse-scaled and fine-scaled models to deal with different input sizes. At the
testing stage, an iterative process is performed for optimization. In practice, our
approach often comes to an end after 2—3 iterations.

We evaluate our approach on the NIH pancreas segmentation dataset with
82 samples, and outperform the state-of-the-art by more than 4%, measured by
the Dice-Sgrensen Coefficient (DSC). Most of the benefit comes from the first
iteration, and the remaining iterations only improve the segmentation accuracy
by a little (about 0.3% in average). We believe that our algorithm can achieve an
even higher accuracy if a more powerful network structure is used. Meanwhile,
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our approach can be applied to other small organs, e.g., spleen, duodenum or a
lesion area in pancreas [13]. In the future, we will try to incorporate the fixed-
point model into an end-to-end learning framework.
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