
Generalized Regular Spatial Pooling

for Image Classification

Lingxi Xie, Qi Tian and Bo Zhang

May 21, 2014

Abstract

This paper discusses spatial pooling, a basic and crucial problem in
the Bag-of-Features (BoF) model. Conventional algorithms such as Spa-
tial Pyramid Matching (SPM) [1] hierarchically divide the image into ex-
clusive and regular regions for feature summarization, but we propose an
extremely simple algorithm named Generalized Regular Spatial Pooling
(GRSP), which allows the pooling bins in the same layer have relatively
denser or sparser distributions. With the proposed algorithm, it is possi-
ble to enhance the “representation power” on each of the pooling layers.
State-of-the-art classification accuracy is achieved on several challenging
image classification datasets.

1 Introduction

Image classification has been a basic task in the computer vision community.
It is an intrinsic challenge towards image understanding and implies a wide
range of real-world applications. Today, one of the most popular methods is
to represent images with long vectors, and use a generalized classifier such as
SVM [2] for training and testing.

The Bag-of-Features (BoF) model [3] [4] is widely used for image represen-
tation. It is a statistics-based model which summarizes local features into an
image-level feature. As the final stage of the BoF model, pooling is widely
adopted to capture the spatial invariance of the image. Beyond the primary
sum-pooling and max-pooling methods, efforts are made towards better image
representation. Among the numerous spatial pooling methods, the most suc-
cessful methods are probably Pyramid Matching (PM) [5] and Spatial Pyramid
Matching (SPM) [1]. By dividing an image into several hierarchical regions for
feature summarization, it is possible to capture richer semantic information in
the individual parts of the image. Many efforts are also made [6] [7] to improve
the spatial pooling methods. However, conventional algorithms often define the
pooling bins as exclusive and regular grids on the image plane, which limits the
flexibility of the model and makes it difficult to fit on larger-scale image collec-
tions. To overcome this shortcoming, we propose Generalized Regular Spatial

1



Pooling (GRSP), an extremely simple pooling method which allows the bins in
the same layer have denser or sparser distributions, so that the “representation
power” of spatial pooling could be adjusted and enhanced. Despite the simplic-
ity, the proposed method is verified to achieve better image representation than
the spatial pyramids, and produces the state-of-the-art classification accuracy
on some challenging image classification datasets.

The remainder of this paper is organized as follows. First, we provide a brief
overview of the BoF model in Section 2. Then Section 3 presents the Generalized
Regular Spatial Pooling (GRSP) algorithm. After extensive experiments and
discussions are given in Section 4, we draw our conclusions in Section 5.

2 The Bag-of-Features Model

The Bag-of-Features model starts from a raw image I = (aij)W×H , where aij
is the pixel at position (i, j). For better local representation, a set of SIFT [8]
descriptors is extracted: D = {(d1, l1) , (d2, l2) , . . . , (dM , lM )}, where dm and
lm denote the description vector and the spatial location of the m-th de-
scriptor, respectively. M is the number of descriptors.

For encoding the descriptors, a codebook C is trained using clustering
methods. C is a B × D matrix consisting of B vectors with dimension D,
each of which is called a codeword. Descriptors are then projected onto the
space spanned by the codewords. Typical encoding methods include Locality-
constrained Linear Coding (LLC) [9] and Improved Fisher Vector (IFV) [10].
The encoded vector wm is named the corresponding visual word of descriptor
dm. Let W be the set of visual words: W = {(w1, l1) , (w2, l2) , . . . , (wM , lM )},
and the visual words inW are then aggregated into a single representation vector
f using max-pooling (for LLC encoding) or sum-pooling (for IFV encoding).

The global pooling algorithm ignores rich spatial information which could
be very useful for image understanding. The state-of-the-art image classifica-
tion systems [1] [11] often divide images into smaller regions for spatial context
modeling. Explicitly, let J = {1, 2, . . . ,M} be the index set of the descrip-
tors in D. The spatial pooling algorithm defines S subsets of J , denoted as
{J1,J2, . . . ,JS}, and summarize the feature vectors in each subset individu-
ally, obtaining S individual pooled vectors {f1, f2, . . . , fS}. Finally, the pooled
vectors are concatenated as a long vector F which is the output of the BoF
model.

3 Generalized Regular Spatial Pooling

Different spatial pooling algorithms define different index subsets {J1,J2, . . . ,JS}.
In this section, we illustrate the definition of index subsets in Spatial Pyramid
Matching (SPM) [1] and the proposed Generalized Regular Spatial Pooling (GR-
SP) algorithm.
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Figure 1: An example of original (left) and denser (right) spatial pooling in the
1st layer (pooling bin size is W

2 ×
H
2 ). We set s1 = 3, so that each pooling bin

shares half of its pixels with its neighboring bins.

3.1 Spatial Pyramid Matching

The Spatial Pyramid Matching (SPM) [1] algorithm, also known as Regular
Spatial Pooling, defines the number of layers L for spatial matching, and divides
the image region recursively into subregions for feature pooling.

Mathematically, let P be the set of pixels in image I. We also define the
(only one) pooling bin in the zeroth layer as P0,0 = P. For l > 0 and 0 6 t < 4l,
we divide the t-th pooling bin in the l-th layer as 4 bins in the l + 1-th layer,
i.e., Pl+1,4t = PUL

l,t ,Pl+1,4t+1 = PUR
l,t , Pl+1,4t+2 = PLL

l,t and Pl+1,4t+3 = PLR
l,t ,

where PUL
l,t , PUR

l,t , PLL
l,t and PLR

l,t denote the upper-left, upper-right, lower-left
and lower-right corners of Pl,t, respectively, after Pl,t is divided into 2×2 equal-
sized subregions. One can easily see that there are 2l×2l pooling bins with size
W
2l
× H

2l
in the l-th layer. We define the index sets straightforwardly using the

pooling bins: Jl,t = {m | 1 6 m 6 M ∧ lm ∈ Pl,t}. The number of index sets is

equal to the number of pooling bins,
∑L−1

l=0

(
2l
)2

, in the L-layer SPM model.

3.2 Generalized Regular Spatial Pooling

The Generalized Regular Spatial Pooling (GRSP) algorithm follows the basic
rules of Spatial Pyramid Matching, but allows the bins within the same pooling
layer have either denser or sparser distributions.

First let us still assume the bins in the l-th layer have size
(
W/2l

)
×
(
H/2l

)
,

i.e., this is the same setting as in the regular spatial pooling algorithm. Then
we define a sequence (s0 = 1, s1, s2, . . . , sL−1), which means that there are sl ×
sl equal-sized pooling bins in the l-th layer. We put a pooling bin with size(
W/2l

)
×
(
H/2l

)
at the upper-left corner of the image, move the bin along

the axis of both sides of the image, from upper-left to lower-right corner, and
make sure that the spatial stride in each move is the same. When sl = 2l, l =
1, 2, . . . , L− 1, the proposed method degenerates to Spatial Pyramid Matching,
otherwise the pooling bins would become either denser (sl > 2l) or sparser
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Figure 2: An example of original (left) and sparser (right) spatial pooling in the
2nd layer (pooling bin size is W

4 ×
H
4 ). We set s2 = 3, so that some regions on

the image plane are not occupied by any one of the pooling bins.

(sl < 2l) on the image plane. Figure 1 illustrates the denser spatial pooling on
the 1st-layer (s1 = 3), and Figure 2 illustrates the sparser spatial pooling on
the 2nd-layer (s2 = 3).

With the pooling bins, we can obtain the index set in the same way as in
regular pooling. The number of index sets in GRSP is

∑L−1
l=0 s2l . When denser

pooling is performed on some layer, some local features could be summarized in
more than one bins, while sparser pooling might ignore a fraction of the local
features (not included in any bins).

3.3 Comparison to Previous Works

There are many works aimed at providing a better way of spatial pooling be-
yond Spatial Pyramid Matching [1]. In [6], the authors propose to compute
smaller codebooks for feature encoding in the lower levels, while [12] suggests to
combine Sparse Coding algorithms with Spatial Pyramids towards better image
representation. Maybe the most relevant work to our idea is [7], in which a
number of possible bins are extracted on the image plane, and it remains to
select a small number of them which best capture the spatial saliency of the
images. In [13], it is also suggested to group the local features with orienta-
tional pooling bins. In comparison with previous works, Generalized Regular
Spatial Pooling (GRSP) is extremely simple: one need only few lines of codes
to implement the GRSP algorithm, which only differs from SPM in the way of
filtering local features according to their coordinates.

4 Experiments

In this section, we focus on the selection of parameters to improve the classifi-
cation accuracy. Detailed discussions are also provided to explain the impact of
different models and parameters. In the final part, we compare our classification
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Table 1: Classification results of different parameters on four widely used image
collections.

Case Enco- sl Feature Sport-8 Scene-15 Indoor-67 Caltech101
No. ding 0th 1st 2nd Dims Acc. (%) Acc. (%) Acc. (%) Acc. (%)

1 LLC 1× 1 2× 2 3× 3 28K 87.28 81.34 43.21 73.24
2 LLC 1× 1 2× 2 4× 4 42K 87.03 81.66 43.55 74.47
3 LLC 1× 1 2× 2 6× 6 82K 86.73 81.76 44.63 75.96
4 LLC 1× 1 2× 2 8× 8 138K 86.46 81.27 44.40 76.18
5 LLC 1× 1 3× 3 3× 3 38K 87.60 81.89 43.22 75.43
6 LLC 1× 1 3× 3 4× 4 52K 87.44 81.83 43.17 75.66
7 LLC 1× 1 3× 3 6× 6 92K 87.09 81.90 45.15 76.70
8 LLC 1× 1 3× 3 8× 8 148K 86.78 81.49 44.86 76.68
9 LLC 1× 1 4× 4 3× 3 52K 87.58 81.48 44.04 75.61

10 LLC 1× 1 4× 4 4× 4 66K 87.56 81.57 44.22 75.96
11 LLC 1× 1 4× 4 6× 6 106K 87.18 81.67 45.07 76.55
12 LLC 1× 1 4× 4 8× 8 162K 86.98 81.43 44.99 76.77

13 IFV 1× 1 2× 2 − 200K 90.82 87.54 61.22 80.73
14 IFV 1× 1 3× 3 − 400K 91.38 87.79 62.55 81.86
15 IFV 1× 1 4× 4 − 680K 91.16 87.75 62.57 82.04

accuracy on several widely used image collections with recently reported results.

4.1 Datasets and Basic Settings

We report the classification accuracy on four widely used image collections.

• The UIUC Sport-8 dataset [14] contains 8 sporting scenes and 1579
images. Images are divided into easy and medium difficulties according to
their qualities.

• The Scene-15 dataset [1] contains 15 scenes and 4485 images. All the
instances are grayscale images collected from outdoor environments. It is
one of the most widely used dataset for scene understanding tasks.

• The MIT Indoor-67 dataset [15] contains 67 indoor scenes and 15620
images. It is a large and challenging dataset for indoor scene recognition.

• The Caltech101 dataset [16] contains 9144 images of 102 classes. There
exists significant deformation among different objects from the same cat-
egory.

The basic setting follows the recent proposed BoF models [9] [10]. Images
are scaled, with the aspect ratios preserved, so that the larger axis is 600 pixels.
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Table 2: Comparison of our classification results with previous works.

Algorithm UIUC Sport-8 Scene-15 MIT Indoor-67 Caltech101

Yang et.al. [12] − 80.4 − 73.2
Boureau et.al. [17] − 84.3 − 75.7
Jia et.al. [7] − − − 75.3
Xie et.al. [18] 88.17± 0.78 83.77± 0.69 46.38± 0.75 78.14± 0.80
Kobayashi et.al. [19] 90.42 85.63 58.91 −
Wang et.al. (LLC) [9] 87.10± 0.82 81.66± 0.36 43.55± 0.63 74.47± 0.91
Ours (LLC + GRSP) 87.60± 0.73 81.89± 0.50 45.15± 0.46 76.70± 0.79
Perronin et.al. (IFV) [10] 90.82± 0.92 87.54± 0.58 61.22± 0.65 80.73± 0.82
Ours (IFV + GRSP) 91.38± 0.86 87.79± 0.59 62.55± 0.45 81.86± 0.94

We use the VLFeat [20] library to extract dense RootSIFT [21] descriptors.
The spatial stride and window size of dense sampling are 10 and 16 for all the
datasets. The dimension of descriptors are reduced to 80 using PCA in the
case of IFV encoding. We then cluster the descriptors with K-Means clustering
(K = 2048) and Gaussian Mixture Model (GMM, K = 256), respectively,
for the LLC [9] and IFV [10] encoding methods. The number of descriptors
for clustering does not exceed 2 million. We use LLC and IFV algorithms to
encode local descriptors, and the encoded vectors are normalized individually
within each spatial pooling bin [22]. The number of layers for spatial pooling is
3 for LLC encoding, and 2 for IFV encoding. We will discuss the parameters of
the Generalized Regular Spatial Pooling algorithm in the next section. We use
LibLINEAR [23], a scalable SVM for evaluating the image representation. For
each dataset, we select a fixed number of images per category for training the
model, and test it on the remaining images to calculate the average classification
accuracy over all the categories. The numbers of training images per category
for the four dataset are 70, 100, 80 and 30, respectively. We repeat the random
selection 10 times and report the averaged results.

4.2 Models and Parameters

In this section, we observe the impact of different parameters in the Generalized
Regular Spatial Pooling algorithm. The results are summarized in Table 1.

First, we compare different settings used with LLC encoding [9]. One can
see that, when we increase the number of bins from 2 × 2 to 3 × 3 on the 1st
layer, the classification accuracy is usually improved (see case pairs (1, 5), (2, 6),
(3, 7), and (4, 8)). However, when the number is further increased from 3 × 3
to 4 × 4, we only observe limited accuracy gain or even accuracy drop (see
case pairs (5, 9), (6, 10), (7, 11), and (8, 12)). This suggests that denser spatial
pooling bins do provide complementary information into image representation,
but using too many bins could also introduce considerable redundance which
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actually harms the classification accuracy. Similar discipline is also observed on
different numbers of pooling bins on the 2nd layer (see case groups (1, 2, 3, 4),
(5, 6, 7, 8), and (9, 10, 11, 12)). We benefit from the complementary information
by increasing the number of pooling bins from 4× 4 to 6× 6, meanwhile suffer
from the redundance introduced by too many (8× 8) bins.

Similar discipline is also summarized from the results using IFV encod-
ing [10]. To prevent the image-level features have too high dimensionality,
we only use two layers of bins for spatial pooling. When the originally used
2 × 2 grid is replaced by a 3 × 3 grid, the classification accuracy is improved
significantly, whereas the even denser 4× 4 grid does not help much to provide
complementary information in image representation.

It is also interesting to observe the relationship between the number of pool-
ing bins and the number of categories in the dataset. In the UIUC Sport-8
dataset, there are only few categories, therefore too high-dimensional feature
vectors might cause over-fitting. As the number of categories increases, the
benefit of using more pooling bins becomes more and more significant. Taking
the results using LLC encoding as the example. On the UIUC Sport-8 dataset,
3×3 grid on the 2nd layer produces the best classification accuracy, whereas on
the Caltech101, recognition is more accurate when the pooling bins are denser
(e.g., 8×8 on the 2nd layer). This suggests that in the large-scale datasets such
as Caltech256 [24], SUN-397 [25] or ImageNet [26], it is instructive to use more
pooling bins or even more pooling layers for better image representation.

In conclusion, we use 1×1, 3×3 and 6×6 grids in the 3-layer pooling model
with LLC encoding, except for the UIUC Sport-8 dataset in which 3 × 3 grid
is used in the lowest (2nd) layer. It produces 92K-dimensional feature vectors
(except for the UIUC Sport-8 dataset in which it is 38K), which is about twice
as long as original SPM vectors (1× 1, 2× 2 and 4× 4 grids, 42K dimensions).
With IFV encoding, we use 1× 1 and 3× 3 grids in the 2-layer model on all the
datasets, producing 400K-dimensional feature vectors which is of exactly twice
length of original SPM vectors (1× 1 and 2× 2 grids, 200K dimensions).

4.3 Comparison with the State-of-the-Art

Here, we report the classification accuracy with some competitors on all the four
datasets. To make the comparison fair, we only compare our algorithm to those
only using grayscale SIFT descriptors. As the proposed algorithm is focused
on spatial pooling, we do not compare the results with those complex encoding
algorithms. The results are listed in Table 2. One can see that our algorith-
m achieves very competitive classification performance, which outperforms the
recent published work [19] on all three scene recognition datasets.

5 Conclusions

In this paper, we aim at providing a better way of spatial context modeling
towards image understanding. We propose Generalized Regular Spatial Pooling
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(GRSP), which generalizes the Spatial Pyramid Matching (SPM) algorithm by
allowing the pooling bins have either denser or sparser distributions on the
image plane. Despite the simplicity of our model, it is verified very efficient at
several challenging image classification tasks. In the future, we shall investigate
the use of our model on the larger-scale datasets.
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