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Spatial Pooling of Heterogeneous Features
for Image Classification
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Abstract—1In image classification tasks, one of the most suc-
cessful algorithms is the bag-of-features (BoFs) model. Although
the BoF model has many advantages, such as simplicity, gen-
erality, and scalability, it still suffers from several drawbacks,
including the limited semantic description of local descriptors,
lack of robust structures upon single visual words, and missing
of efficient spatial weighting. To overcome these shortcomings,
various techniques have been proposed, such as extracting
multiple descriptors, spatial context modeling, and interest region
detection. Though they have been proven to improve the BoF
model to some extent, there still lacks a coherent scheme to
integrate each individual module together. To address the prob-
lems above, we propose a novel framework with spatial pooling
of complementary features. Our model expands the traditional
BoF model on three aspects. First, we propose a new scheme
for combining texture and edge-based local features together
at the descriptor extraction level. Next, we build geometric
visual phrases to model spatial context upon complementary
features for midlevel image representation. Finally, based on
a smoothed edgemap, a simple and effective spatial weighting
scheme is performed to capture the image saliency. We test
the proposed framework on several benchmark data sets for
image classification. The extensive results show the superior
performance of our algorithm over the state-of-the-art methods.

Index Terms— Image classification, BoF model, complementary
descriptors, geometric phrases pooling, spatial weighting.

I. INTRODUCTION

MAGE classification has been playing a crucial role in
the computer vision community. It is a basic task towards
image understanding, and implies a wide range of applications.
The Bag-of-Features (BoF) model is one of the most popular
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algorithms for image classification. An early version was
proposed in [1], and many improved versions are introduced
since then [2]-[4]. In essential, the BoF model is a statistics-
based model aiming at providing better representation for
images. For this purpose, local descriptors such as SIFT [5]
are extracted from images, and a codebook is built upon all
descriptors, depressing noises and forming a compact visual
vocabulary for the dataset. Finally, descriptors are quantized
onto the codebook, and visual words are pooled as a statistical
histogram for image representation. The output of the BoF
model could be applied for various tasks, such as image
classification [1] and image retrieval [6].

Despite the great success of the BoF model, there still exist
many drawbacks in it. These drawbacks come mainly from the
well-known semantic gap [7] between low-level local descrip-
tors and high-level image semantics. Many researchers have
noticed that SIFT descriptor suffers from both synonymy and
polysemy [8]. The poor description power of local descriptors
limits us from learning a discriminative classification model.
To overcome the following schemes are widely adopted.

« Multiple descriptions of local patches. For single type
of descriptors might fail to capture the rich information
within local patches, it is reasonable to extract multi-
ple descriptors for compensation. Diversified descriptors
represent local patches from different aspects, providing
more descriptive and discriminative information. By sim-
ply concatenating appearance and shape features, [9] out-
performs the models using single descriptors significantly.

o Mid-level structure connecting low-level features and
high-level concepts. In the BoF model, an image is
represented as a large set of visual words. However,
there is a big semantic gap between low-level features
and high-level concepts [7]. Therefore, many researchers
have proposed to use mid-level structures such as macro-
descriptors [10] or visual phrases [8], [11], for better
image understanding. All of them bridge the semantic
gap to some extent.

« Spatial weighting of images. Not all regions on a natural
image are really useful for classification. Background
clutters might bring in noises, which are harmful for train-
ing robust models. Therefore, detection of regions-of-
interest (ROI) is usually proposed. Successful examples
include [9] and [12], which benefit from ROI detection
especially on the less aligned image categories such as
some small object classes.

To benefit from the advantages from the ideas above, we
propose several novel algorithms from different aspects, and
also build an integrated flowchart for them to co-operate with
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each other. With the help of boundary operators, we obtain an
edgemap (boundary image) from each original image. Upon
this, we add three building blocks into the BoF model to
improve its description power. First, we simultaneously extract
SIFT and Edge-SIFT descriptors and combine them in the
generation of the BoF model. Earlier fusion of descriptors
makes it easier to discover complementary information from
both descriptors. Second, we extract geometric visual phrases
upon the low-level visual words as mid-level image representa-
tion, and propose a novel pooling algorithm named Geometric
Phrase Pooling (GPP) to capture the spatial contexts. Third, we
apply a naive Gaussian blur process on the edgemap, obtaining
a spatial heatmap for feature weighting on the image plane.
Integrating all the techniques produces a much more powerful
framework, which outperforms the state-of-the-art systems on
various image classification datasets.

The proposed algorithm is illustrated in Fig. 1. Compared
with the traditional BoF model, some differences should
be marked. First, we compute edgemaps (boundary images)
from original images using the Compass Operator [13], an
improved version of Canny Operator [14], laying an important
foundation of our algorithm. On original images as well as
edgemaps, we extract two kinds of descriptors, i.e., SIFT and
Edge-SIFT, and mix them as a large set of local features. After
codebook is trained and descriptors are quantized onto the
visual vocabulary, we build geometric visual phrases as the
mid-level representation of our model. Before the traditional
max-pooling step, we insert two new steps, i.e., phrase pooling
and spatial weighting, for better description of the geometric
visual phrases. Finally, we apply SPM [15] for spatial context
modeling, and obtain the concatenated supervectors of images.

The remainder of this paper is organized as follows.
In Section II, we introduce the traditional Bag-of-Features
(BoF) model for image classification. In Section III, IV and V,
we introduce the proposed algorithms, i.e., extracting and
fusing complementary descriptors, Geometric Phrase Pooling,
spatial weighting for interesting region detection, respectively.
After experimental results are shown in Section VI, we draw
the conclusions in Section VIIL.

A preliminary version of this paper appeared as [16].
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II. THE BAG-OF-FEATURES MODEL

The Bag-of-Features (BoF) model is one of the most popular
pipelines for image classification. In this section, we build
a mathematical notation system for this model.

A. Local Descriptor Extraction

We start with an original image I which is a W x H matrix:

1= (@) M

where a;; is the pixel on position (i, j).

Due to the limited semantic meaning of raw image pixels,
we extract local descriptors from small patches on the image
plane. There are many works on describing local patches.
Among those, SIFT [5] and HOG [17] are probably the most
widely used ones. They are both gradient-based histograms
extracted on interest points of images. Detecting interest
points is also a challenging problem. Since many detectors
such as DoG [5] or MSER [18] sometimes fail to find semantic
and discriminative patches, we use an alternative method
by performing dense sampling of local patches, leading to
the Dense-SIFT or Dense-HOG algorithm [19]. When the
color information is useful for image understanding, it is
also reasonable to calculate color SIFT descriptors, such as
RGB-SIFT (calculating SIFT on red, green and blue channels
individually), OpponentSIFT, HSV-SIFT, C-SIFT and so on.
Among them, the OpponentSIFT descriptor is verified to
outperform other ones in most cases [20].

After descriptor extraction, the image I could be represented
as a set of local descriptors, M:

M={di, 1), d2, ), ..., dwy,1n)} )

where d,, and 1, denote the D-dimensional description vector
and the geometric location of the m-th descriptor, respectively.
M is the total number of dense descriptors, which could be
hundreds or even thousands under dense sampling.

It is verified that SIFT and HOG descriptors are only
good at describing texture features. To capture other important
properties such as shape and color, it is reasonable to extract
other kinds of descriptors. Systems with multiple types of
descriptors [9] have been proposed, showing a much better
performance over those using single type of descriptors.

B. Quantization for Descriptors

After the descriptors have been extracted, they are often
quantized to be compact. For this purpose, we train a code-
book B using descriptors from the whole dataset. The code-
book is a B x D matrix, or B vectors with dimension D,
each of which, i.e., ¢, is called a codeword. Most often, the
codebook is constructed with K-Means clustering algorithm.
Recent years, there are also some works targeting at improv-
ing the efficiency and performance of K-Means [21], [22],
and building discriminative codebooks for large-scale image
applications [23].

Next, the local descriptors are projected onto the code-
book for a histogram representation. This process is named
coding, for we are actually encoding each descriptor into a
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sparse vector. Hard quantization strategy presents a descriptor
using single codeword, resulting in a large quantization error.
In recent years, soft quantization methods have been proposed
as alternatives to hard quantization. By projecting a descriptor
onto the subspace spanned by a small group of codewords, it
produces smaller quantization errors, which is verified more
effective in visual representation. Sparse Coding [24], [25] and
Locality-constrained Linear Coding [26] techniques are such
cases. Given a codebook with B codewords, the quantization
vector or feature vector for a descriptor d,, would be a
B-dimensional vector v,. We name v, the corresponding
visual word of descriptor d,,.

C. Feature Pooling

After all the local descriptors are quantized as visual words,
we shall aggregate them for global image representation.
We call this step feature pooling, for we are putting visual
words into a pool for statistics. For this purpose, two major
pooling strategies are often used. The max-pooling strategy
calculates the maximal response on each codeword:

max v, 3)
1<m<M

W =

where the notation max,, denotes the element-wise maximiza-
tion. Differently, the average-pooling strategy calculates the
average response:

1 M
W= W )

m=1
Here w, a K-dimensional vector, is named representation
vector or feature vector of the image.

Some researchers have discussed the choice of max-pooling
versus average-pooling [10], showing that max-pooling gives
more discriminative representation under soft quantization
strategies, while average-pooling fits hard quantization bet-
ter. Recently, various methods have been proposed to inte-
grate both pooling methods to improve their effectiveness.
For example, the Geometric £,-norm Pooling algorithm [12]
proposes a generalized £,-norm pooling strategy and uses
a complex optimization to find the best p for each image.

D. Spatial Context Modeling

Spatial context could greatly help us understand the seman-
tics of images [27]. Therefore, various models are proposed
for constructing spatial structures. Among those, one of the
most successful trials is Spatial Pyramid Matching (SPM) [15],
in which images are divided into hierarchical subregions for
individual pooling, and the pooled vectors are concatenated
as a super-vector. Similar method is also generalized onto
orientational spaces [28]. For datasets with relatively better
alignment such as Caltech101 [29], SPM improves classifica-
tion accuracy by an impressive margin of 10%. However, it
shows little improvement on the less aligned datasets.

Another line for spatial context modeling is to use visual
phrases [30], [31]. Compared with visual words, visual phrases
are more descriptive and robust [32], therefore produce more
semantic features for discriminating similar image samples.
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It is verified that visual phrases are good at capturing
co-occurring patches in image recognition tasks [11]. Spatial
coding of visual phrases are also widely used in large-scale
Web image search and retrieval systems [27].

E. Classification Models

Before sending the feature vectors into the SVM, feature
normalization is considered a crucial data pre-processing step.
One of the most popular feature normalization methods is
the £,-norm normalization, in which we divide each feature
vector with its length in the £, space so that all the vec-
tors become £ ,-unit-length. In [26], the authors claim that
¢1-norm produces much lower classification accuracy than
{>-norm, whereas it is verified in [33] that with a large enough
normalization coefficient, the {j-norm formula would give
comparable performance with the £>-norm. In [33], the authors
also discuss several advanced normalization methods for the
part-based classification models.

Image classification tasks are usually configured with very
long feature vectors and relatively smaller number of images.
Therefore, the Support Vector Machine (SVM) is often taken
as the default choice of classifier. It is verified that different
choices of kernels would severely impact the classification
accuracy, and the non-linear kernels such as y? often gives
higher performance than the linear inner-product kernel. How-
ever the latter one is proved more efficient and scalable [34],
therefore is widely adopted in the classification tasks with
large number of categories. In some cases, we can also use the
Hellinger’s kernel, or Bhattacharya’s kernel, to produce feature
vectors with less values falling in the close neighborhood
of 0 [35]. Although it is non-linear, we can still fit it in the
linear model with a simple square-root transformation.

FE. The Algorithms for Comparison

We mainly compare our model with LLC [26], a recent
implementation of the BoF model with single type of descrip-
tors. It serves as an efficient baseline which is easily to
be tested on various image collections. The other one is a
more complicated system [9], in which various techniques are
adopted, including multiple descriptors, detection of regions-
of-interest, and so on. We show that our algorithm pro-
duces higher classification accuracy using a better designed
flowchart.

III. COMPLEMENTARY DESCRIPTORS

In this section, we propose a novel idea using complemen-
tary descriptors for image classification. First, we introduce a
new kind of image descriptors named Edge-SIFT, which are
extracted on the edgemap (boundary image) of the original
image. Though SIFT and Edge-SIFT descriptors are calculated
on different images, they share the same physical meaning,
i.e., histogram of gradients, in their corresponding dimension,
therefore we could simply mix them on the image space to
train the BoF model. We test our model and provide detailed
analysis on the effect of using multiple types of descriptors,
and also make a short comment on the early fusion strategy
to reveal its advantages. Finally, we discuss on the limitations
of the proposed descriptor fusion strategy.
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A. SIFT and Edge-SIFT Descriptors

For a W x H image I, we extract dense SIFT [5] descriptors
from the image. Denote the set of SIFT descriptors as Ms:

Ms = {(ds1,1s1), (ds2,1s2) , - .., (dsmss, Isms) ] (5)

where the subscript S stands for SIFT, and Mg is the number
of SIFT patches on the image plane.

As we know, SIFT descriptors are effective on describing
texture features, but less effective to capture the shape infor-
mation. To overcome, we can introduce shape descriptors to
help understanding the semantics. Following [9], we apply
a boundary detector on image I, producing another W x H
grayscale image Ig:

16 = () ©

where ¢;;, a floating value in [0, 1], is the significance quantity
of pixel (i, j) located on an edge. We call Ig the corresponding
edgemap (boundary image) for the original image I.

We use Compass Operator [13] for boundary detection.
Some detected edgemaps are shown in Figs. 2, 4, 5, and 6,
respectively. On the edgemaps, texture details of the objects
are filtered and the shape features become more clear. There-
fore, it is reasonable to extract another set of SIFT descrip-
tors on the edgemap for shape description. We call them
Edge-SIFT descriptors to differ from the original SIFT
descriptors. Denote the set of Edge-SIFT descriptors as ME:

Mg = {(dg1, k1), @2, IE2) , - - -, (dEMes lEme) ) (7)

Similarly, the subscript E stands for Edge-SIFT, and ME is the
number of descriptors, which could be different from Mg due
to the different spatial strides and window sizes used in dense
sampling.

It is worth noting that both SIFT and Edge-SIFT descriptors
are histograms of gradients, therefore they share the same
physical meaning on the corresponding dimensions (histogram
bins). We could naturally combine them together to capture
both texture and shape features on the images.

B. Fusing Descriptors

Following the basic idea, we simply unite the set of SIFT
and Edge-SIFT descriptors on the image plane:

M= MsUMg (8)
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Here, M is the union descriptor set for image representation.
The number of descriptors in M is denoted as M, which
satisfies M = Ms + Mg.

We illustrate the fusion operation on two sets of descriptors
in Fig. 2. Here we shall emphasize that the fusion process
preserves both the description vector and location of original
descriptors. It is shown later that this strategy gives us natural
benefits by extracting geometric visual phrases consisting of
both texture and shape visual words. Of course, except for
the original image and boundary image (edgemap), one can
extract more kinds of SIFT descriptors on other images such
as saliency map or contour map. To fuse them, we only
need to guarantee that all the descriptors share the same
physical meaning on the corresponding dimensions, for we
are comparing and combining the descriptors dimension-wise
at the clustering and quantization steps. Throughout this paper,
we only consider two set of SIFT descriptors extracted on the
original and boundary images.

Finally, we shall make a short comment to compare our
work with [9]. In [9], descriptors are also extracted from
original and boundary images respectively. However, two types
of descriptors are individually processed through the BoF
model, until fusion operation is performed on the pooled
representation of both images to form a concatenated super-
vector. As we could see in Section IV-E, late fusion limits the
flexibility of the model, and makes it difficult to construct mid-
level structures consisting of both kinds of descriptors. On the
contrary, we finish the fusion step much earlier, leaving plenty
of room for mid-level structures. We illustrate the difference
between the models in Fig. 3, and will further discuss the
advantages of our model in Section IV-E, after the visual
phrases are introduced and adopted to improve the feature
representation in Section IV.

C. Experiments and Discussion

Now, we test our model on the Caltech101 dataset [29].
Besides the clutter category, the dataset contains 101 different
classes of objects, covering a wide range of animals, plants
and man-made tools. We inherit the baseline system [26], and
use different sets of descriptors, i.e., SIFT descriptors, Edge-
SIFT descriptors, and fused set of descriptors as local features.
We report the classification accuracy (30 training images per
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TABLE 1
CALTECH101 RESULTS ON THE FUSED SET OF DESCRIPTORS AND
ON THE SINGLE SET (SIFT OR EDGE-SIFT) OF DESCRIPTORS.
THE NUMBERS IN PARENTHESES ARE THE SPATIAL STRIDES
AND WINDOW SIZES FOR DENSE SAMPLING, RESPECTIVELY

[ Desc #1 Desc #2 [ Only #1  Only #2 [ Fused |
SIFT(7,7) SIFT(6,12) | 74.41%  72.69% 75.14%
SIFT(7,7) Edge(6,12) | 74.41%  73.08% 78.75%
SIFT(7,7)  SIFT(7,12) | 74.41% 73.77% 75.75%
SIFT(7,7) Edge(7,12) | 74.41%  72.89% | 78.94%
SIFT(7,7) SIFT(8,12) | 74.41%  73.60% 75.32%
SIFT(7,7) Edge(8,12) | 74.41%  72.93% 78.92%

TABLE 11

COMPARISON OF TWO KINDS OF DESCRIPTORS ON THE CALTECH101
DATASET. THE UPPER AND LOWER PARTS LIST THE
CATEGORIES BEST CLASSIFIED WITH SIFT AND
EDGE-SIFT DESCRIPTORS, RESPECTIVELY

[ Category Name [ SIFT Edge Difference |
wild cat 57.50%  30.00% 27.50%
water lily 65.71%  38.57% 27.14%
crocodile 33.00%  13.00% 20.00%
ferry 89.46%  70.81% 18.65%
hedgehog 82.50%  65.83% 16.67%
anchor 44.17%  73.33% 29.17%
butterfly 50.16%  72.62% 22.46%
wrench 57.718%  T77.78% 20.00%
pyramid 71.48% 87.04%  15.56%
saxophone 75.00%  90.00% 15.00%

category, averaged on 10 individual runs) to compare the
performance of different sets of descriptors.

Table I shows our results on different sets of descriptors.
The best classification accuracy is achieved when we fuse
different kinds of descriptors, i.e., SIFT and Edge-SIFT, while
we observe significantly lower accuracy when the same kind
of descriptors, i.e., both SIFT, are merged. Therefore, the
compensation between two kinds of descriptors is clear.

To give a better intuition to this finding, we return to systems
using single set of descriptors. We choose parameters from
the best post-fusion performance in Table I, i.e., the spatial
strides of SIFT and Edge-SIFT are both 7 pixels, while the
window sizes of local patches are chosen to be 7 and 12
pixels, respectively. To compare different sets of descriptors,
we evaluate the category-wise classification accuracies in both
models, and list the top-5 categories with the largest accuracy
variations in Table II, and the top-3 with sample images in
Fig. 4.

It is clear that different types of objects are better described
using different types of descriptors. For objects with less
deformation such as manmade tools, the better strategy is
to ignore their texture details and pay more attention on
the boundary image. Therefore, Edge-SIFT descriptors give
a better description on these objects. However, there are
also a number of objects in which texture features are more
discriminative than shape features, such as animals and plants,
in which it is better to preserve texture details in the original
images and use SIFT descriptors.

Since the SIFT and Edge-SIFT descriptors are complemen-
tary for local feature description, it is reasonable to preserve

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 5, MAY 2014
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both of them for a more robust image representation. Fig. 5
shows an example of four categories.

For example, both panda and football images contain black-
and-white patches, but the edges detected on panda images
are more likely to be curves while straight line segments
on football images. Therefore, Edge-SIFT would be more
discriminative when classifying these two categories. Similar
situations are also observed between other pairs shown in the
image. To summarize, it is difficult to distinguish the four
concepts using any single kind of descriptors, only when we
extract both kinds of descriptors makes it easier to capture the
discriminative features for categorization.

D. Limitation

Although the proposed fusion algorithm gives superior
performances on the Caltech101 dataset, it does not mean that
we could simply transplant the method onto any other cases.
To illustrate this, we test our model on another dataset contain-
ing 17 categories of flowers [36], and summarize the classifi-
cation results with different sets of descriptors in Table III. We
observe that best classification results are produced using SIFT
descriptors alone, both using Edge-SIFT descriptors alone
and fusing complementary descriptors cause the classification
accuracy to drop dramatically.

To explain, we return to the classification algorithms with
single type of descriptors, and list the category-wise accuracies
in Table IV. We can easily find that SIFT descriptors work



XIE et al.: SPATIAL POOLING OF HETEROGENEOUS FEATURES

TABLE III
OXFORD FLOWER-17 RESULTS ON THE FUSED SET OF DESCRIPTORS
AND ON THE SINGLE SET (SIFT OR EDGE-SIFT) OF DESCRIPTORS.
THE NUMBERS IN PARENTHESES ARE THE SPATIAL STRIDES
AND WINDOW SIZES FOR DENSE SAMPLING, RESPECTIVELY

[ Desc #1 Desc #2 [ Only #1  Only #2 | Fused |
SIFT(8,16) Edge(10,16) | 69.51% 27.23% | 65.48%
SIFT(8,16) Edge(12,16) | 69.51%  28.66% | 64.90%
SIFT(8,16) Edge(16,16) | 69.51%  27.43% | 66.72%
SIFT(12,16)  Edge(10,16) | 69.52%  27.23% | 63.34%
SIFT(12,16) Edge(12,16) | 69.52%  28.66% | 63.55%
SIFT(12,16)  Edge(16,16) | 69.52%  27.43% | 65.56%

TABLE IV

COMPARISON OF TWO KINDS OF DESCRIPTORS ON THE OXFORD
FLOWER-17 DATASET. SIFT DESCRIPTORS WORK
BETTER ON ALL THE CATEGORIES

[ Category [ SIFT Edge [ Category | SIFT Edge |
001 66.27% 16.13% | 002 59.07% 22.53%
003 58.80% 22.40% | 004 68.80% 10.93%
005 43.73% 18.53% | 006 68.40% 48.13%
007 81.07%  23.20% | 008 26.53% 7.47%
009 80.40%  44.40% | 010 95.33%  50.53%
011 93.73%  22.27% | 012 44.53%  22.53%
013 83.60% 52.80% | 014 61.07% 15.73%
015 87.33% 22.53% | 016 84.53%  43.60%
017 78.67%  43.47%

better on all the 17 flower categories, which means that Edge-
SIFT descriptors do not provide very useful compensation for
flower description. This is different with what we observe in
Caltech101 (see Table II), where some categories are better
described using SIFT and some others better using Edge-
SIFT. We further show some examples of flower categories
in Fig. 6. Since color information is much more important
than shape in distinguishing the flowers, it is not instructive
to fuse both kinds of descriptors so that low-quality features
water down the high-quality ones, decreasing the robustness
of image representation and producing worse classification
results.

Of course we shall admit that adding new kinds of features
should help for image understanding, given the added fea-
tures provide better classification results than random guess.
However it is worth noting that in the image classification
problem the number of training samples is often limited,
therefore we need to extract compact feature vectors so as
to prevent the over-fitting on low-quality feature dimensions.
In general, before we fuse two kinds of descriptors for image
classification, we can first conduct experiments with single
type of descriptors and category-wisely compare the classi-
fication accuracies. If one type of descriptors significantly
outperform the other set on almost all the categories, it
should imply that fusing both descriptors might be harmful
for providing discriminative features.

As an example, we turn to fine-grained image classification
tasks which are very popular in recent years. Such datasets,
such as the Caltech-UCSD Birds-200-2011 dataset [43], often
contain a large number of objects with very similar semantics,
say, 200 species of birds. The large inter-class similarity makes
it difficult for both (texture and shape) descriptors to work
efficiently. Since many previous works [38]-[40] have shown
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Fig. 6. In the Oxford Flower-17 dataset, images are discriminative with
SIFT descriptors, but confusing with Edge-SIFT ones, in which the important
texture details are filtered out. Top and Bottom rows show two groups of
sample images.

that objects such as birds and flowers are more discriminative
with texture and color features than shape ones, it is reasonable
to preserve only one set of color-SIFT descriptors on such
image collections.

To summarize, the motivation of fusing multiple descriptors
come from their compensation in describing different objects.
If the precondition does not hold, the fusion operation might
introduce noises into the model and produce poor results.
To judge this, it is helpful to test individual descriptors for
classification and compare their category-wise accuracies.

IV. GEOMETRIC PHRASE POOLING

In the previous section, we present a simple idea
using complementary local features for image classification.
However, it is worth noting that different kinds of descriptors
are individually encoded in the BoF model, which limits us
from constructing efficient mid-level structures to capture the
feature contexts in local groups. In this section, we shall
introduce a simple local structure named geometric visual
phrase, and propose a novel encoding algorithm, Geomet-
ric Phrase Pooling (GPP), with intuitive explanations. GPP
could be considered as a mid-level image representation
model connecting low-level features and high-level concepts.
We illustrate our algorithm in the middle column of Fig. 1.

A. The GPP Algorithm
We start with Equation (8), and rewrite it as the same form
of Equation (2):
M ={(d;,h),d2,),...,(dwy,1am)} )

To begin with, we give a new definition of geometric visual
phrases. Following [8], we consider a visual phrase as a set of
visual words which are close to each other. As local patches
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Fig. 7.  Illustration of the Geometric Phrase Pooling (GPP) algorithm.
‘We group the central word and each side word as a pair and sum their feature
vectors together. At last, maximization is performed on the whole phrase.

on images are not organized so well as textual words, we
ignore their order and regard a phrase as a disordered set of
visual words. Following this basic idea, we propose a simple
algorithm. Define a positive integer K, K < M, we search
for the K nearest neighbors (by £, distance) on the image
plane and construct a word group for each descriptor (d,;, 1,,),
m=1,2,...,M

Gn = {(dm,O, lm,()) >

i) (dm,KJm,K)} (10)

Here, G, is the m-th geometric visual phrase. The central
word of G,, is defined as the zeroth descriptor (dm,o, lm,o),
which is simply (d,,, 1,,) itself. The location of phrase G, is
defined by 1, 0. Other K descriptors are called side words.
K is the order of G,,, which contains K + 1 words.

Suppose that we have trained a codebook B with B code-
words. For a phrase G,,, we compute LLC [26] encoding for
each of its words. LLC is a sparse coding scheme. Given B
and number of bases r (most often » < B), it produces feature
vectors with at most r nonzero elements among totally B
dimensions. For G,,, there will be K 4 1 sparse feature vectors,
one for each visual word. Denote v, as the feature vector
of k-th word in G,,.

Now, the Geometric Phrase Pooling (GPP) algorithm is
very easy to implement. We calculate a B-dimensioanl feature

vector w,, for each visual phrase G,,, m = 1,2,..., M:
Wi = max {Vim,0 + Vimk } (11)
(12)

= Vj,0 + max vy
1<k<K

where the notation max; denotes element-wise maximization
on K vectors with B dimensions. Equation (11) is the core
equation of GPP, while (12) is an equivalent version for easier
implementation. We illustrate the simple working mechanism
of (11) in Fig. 7.

It is worth emphasizing that GPP is an extra module
between the coding and pooling steps of the BoF model. After
GPP, we still need to perform max-pooling over all the visual
phrases, instead of visual words, to obtain a feature vector w
to represent the whole image:

(13)

W= max Wy

1<m<M
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B. Deep Insights for GPP

The formulation of GPP (11) is very easy to implement.
However, the intuition behind the simple algorithm is not that
straightforward. Here, we clarify the advantages we obtain to
give a better understanding of GPP.

First of all, let’s go back to Equations (11) and (13). Simple
derivation gives:

W = max Wy (14)
1<m<M
= max [ max {Vm 0+ Vi k} (15)
l<m<M | 1<k<K
= max {le +Vm2} (16)

1<my,my<M,miom;

where m| ¢ my means that v,, and v,,, are adjacent words,
i.e., when one of them is taken as central word, the other is
one of the side words. Hence, w is the maximization over
summations of all adjacent visual word pairs, i.e., disordered
pair (m1,my2) satisfying mj ¢ my. Define v,,, + v, as the
contribution to GPP from the word pair (m, my).

Now, recall the formulation of max-pooling and rewrite it
into an equivalent though redundant version:

W = max Vv, (17
I<m<M

= lérrlnanM[ 1r<na<x {max{vm 0, Vin k}}] (18)

= max {max{vm1 s sz}} (19)

1<my,my<M,miomy

Naturally, max{vml, sz} is defined as the contribution to
max-pooling from word pair (m1, m>). Obviously, the contri-
bution term is the only difference between (16) and (19).

For an adjacent word pair (mp,m2), consider its con-
tributions to GPP and max-pooling. For simplicity, we
denote feature vectors for them as v; and v, respectively.
If v; and v, have no nonzero dimensions in common, we
have max {v{, v} = v| 4+ v2. which means that the word pair
contributes equally to max-pooling and GPP. However, if there
are common nonzero dimensions in v; and v, things will
be different: this word pair would contribute more to GPP
by assigning a larger value on the overlapping dimensions.
Our intuition is illustrated in Fig. 8. In the following part
of this paper, we say the word pairs with common nonzero
dimensions really contribute to GPP.

From the analysis above, we have learned that only word
pairs with common nonzero dimensions would really con-
tribute to GPP. In our framework, we perform descriptor quan-
tization using LLC [26], a locality-sensitive coding scheme.
Two descriptors are encoded by intersected sets of code-
words only if they are close in the feature space. Therefore,
GPP latently selects those word pairs both similar and adja-
cent, and enhance their common nonzero responses.

There is an acknowledged observation that on natural
images, local patches with the same semantics are more likely
to be correlated, i.e., visually similar. Therefore for a geometric
visual phrase consisting of one central word and K side words,
the correlation between central word and side words will be
high (visually similar) if this geometric visual phrase is located
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Fig. 8. Intuition of GPP (best viewed in color PDF). Cases of non-overlapping
word pair and partial overlapping word pair are presented respectively.
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words on the image plane. Numbers in parentheses are accuracy gains on
those categories, from LLC to GPP.
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on a semantic patch. This high correlation turns to be the
common nonzero dimensions of the visual words. Therefore,
GPP enhances the responses of such highly correlated patches,
or visual word groups, in a latent way.

We conduct an interesting experiment to verify our state-
ments. For each visual phrase, we count the percentage of
side words with common nonzero dimensions with the central
word. This could be considered as one kind of statistics to
estimate the enhancement of visual phrases. Smoothing it
gives us a heatmap illustrating the visual correlations on the
corresponding patches. Fig. 9 shows some examples from
the Caltech101 dataset. We could find that the significantly
enhanced visual responses are mainly located on the semantic
regions. By assigning larger feature values on these regions,
GPP produces more discriminative representations than LLC
encoding.

In summary, we can conclude that GPP is indeed a superior
mid-level encoding algorithm with a clear intuition, convincing
improvements, and a very easy implementation.

C. Enhancing GPP

In this section, we boost the performance of GPP by propos-
ing three simple ideas which are very easy to implement. The
improvements are summarized in Fig. 10.

1) Extracting Longer Phrases: In Section IV-B, we observe
that word pairs with similar appearance and geometric location
would really contribute to GPP. To search for more such
pairs, it is reasonable to increase K, the order of geometric
visual phrases. However, a longer visual phrase could also
contain more irrelevant visual word pairs, which is harmful
for the robustness. In practise, we don’t set K automatically,
but choose the best parameter after testing a wide range from
5 to 30. Testing results are plotted in Fig. 11(b). Throughout
the rest part of this paper, we use K = 20 for experiments.

2001

— — K=12 K =20
. . K=4 K=§ > 600,
nereasmg - @ /000, /000  0000Q
Neighbors for { ©@® |2} 0@ 0 )j>:ooooo{j>;ooooo;
Long Phrases L@ The0e/ "\ 000 "9000W
e - S 0.0.0"
rl=4,12=4_ rl=4,12=8"
Increasing Central | I
Word
Number of L l SN L
Bases of LLC Side ” "
wordi_y | Lol |
, =__ 6 =0.01 (55.%3
Soft Welghtmg ® } [ 5 OO @
for Smooth XY X ©Oe0E VOO
Phrases 9000¢ "9000¢ "9000¢
"0.0.@ "0.0.0° 0.0
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Fig. 11.  (a) Impact of the order of visual phrases, K. The baseline

performance of LLC, 73.44%, is plotted in a dashed line. (b) The numbers
of bases of LLC will also impact on the accuracies. Differences in K and r;
are presented with different polylines.

2) Larger Number of Bases for Encoding: As LLC [26]
is a sparse encoding algorithm, the number of bases r is
much smaller than the visual codebook size B. In this case,
histogram representations of adjacent visual words could
hardly overlap, therefore the percentage of word pairs that
really contribute to GPP is small. Increasing r produces more
useful word pairs, but also damages the locality of LLC. The
selection of r is a tradeoff between description and robustness.

The central word is the most significant component in a
visual phrase, therefore its robustness is more important than
side words. For this, we use a larger r for the side words
and yet a smaller r for the central one. To clarify, we denote
r1 and rp as the numbers of bases for encoding central words
and side words, respectively, and test several combinations of
r1 and rp as shown in Fig. 11(a). Following the plotted results,
we use r| = 5 and rp = 30 in the later experiments.

3) Soft Weighting for Smooth Phrases: By intuition, if
the distance between visual words is large, the relationship
between them is loose. Therefore, we apply an exponential
decay on the side words by assigning lower weights onto the
distant ones. In precise, for a side word (dy x, L) with the
center word (dm,o,lm,o), we penalize it with a soft weight
si defined as:

sk = exp{—oy, x [lo — Ill2} (20)

where o, is the smoothing parameter on side words, and |- ||,
is the Euclidean distance. Now, the original GPP formulation
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spatial weighting, and produces the same curve as the best one in Fig. 12(a).

(12) becomes smoother:

Wi = V0 + Max S X Vg k 21
1<k<K

To choose a proper smoothing parameter, we test different

choices of g,, in Fig. 12(a). The best parameter in practise,

oy = 0.01, is selected for later experiments.

In conclusion, we generalize the GPP algorithm by introduc-
ing several adjustable parameters, i.e., the order of phrases K,
numbers of encoding bases r; and rp, and smoothing
parameter o,,. We can summarize from Fig. 11(a)-12(a) that
GPP is not very sensitive to each individual parameter, since
the maximal accuracy difference between the best and worst
parameters is relatively small, but we do obtain a better
classification model when we use a relatively better set of
parameters. With the parameter set we find, i.e., K = 20, r| =
5,2 = 30 and g, = 0.01, the classification accuracy, 77.39%,
is much higher than the baseline performance 73.44%, which
verifies that GPP is helpful to provide more discriminative
image representation. Although the parameters are tuned on
the Caltech101 dataset, we will show in Section VI that these
parameters also produce good performance on a variety of
image collections.

D. Time Complexity and Sparsity

Here, we test the time complexity and the feature sparsity
of GPP to show its simplicity and efficiency. To make compar-
ison, we implement LLC and GPP with different parameters.
We construct different sizes of codebooks, and record the
average time used in coding and pooling for each image, as
well as the average percentage of nonzero dimensions in the
feature super-vector w.

Results are plotted in Figs. 13(a) and (b). Owe to the
simplicity, the proposed algorithm is very efficient to carry out.
In average, the GPP module requires no more than 0.4 extra
seconds (about twice of original time cost) on a single image,
which is much better than those complicated algorithms such
as GLP [12] which requires much longer. On the other hand,
Fig. 13(b) reveals that GPP generates much denser feature
vectors for image representation, especially in the scenarios
with longer phrases and larger number of encoding bases on
side words. A comment needs to be made here. In recent
years, people have been debating that sparse feature vectors are
more efficient in image classification than dense features [25].
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TABLE V
CALTECH101 CLASSIFICATION RESULTS ON THE MODELS WITH
DIFFERENT FUSION AND POOLING STRATEGIES

[ | Late Fusion [9]

LLC [26] 79.12%
GPP (Ours) 79.48%

Early Fusion (Ours) |

78.94%
81.36%

However, our experiments give a neutral argument on this
topic: denser features do not mean to provide worse results,
but we need a proper structure to organize the feature space.
GPP actually provides a natural solution to encoding more
information into the feature vectors of the same length.

E. Early Fusion vs. Late Fusion

Finally, we continue the discussion in Section III-C on
early fusion versus late fusion. On the Caltech101 dataset,
we implement the basic BoF model (LLC) as well as the
GPP algorithm (GPP) in the context of early fusion and late
fusion strategies, and list the classification results in Table V.
From the table, we could observe the advantage of early
fusion over late fusion. When the geometric visual phrases are
not introduced, early fusion strategy does not provide higher
accuracy than late fusion. However, when we extract geometric
visual phrases on the early-fused descriptors, it captures spatial
contexts containing both texture and shape features as shown
in Fig. 14. This results in a notable improvement on the early
fusion system.

V. SPATIAL WEIGHTING

Traditional BoF model uses all the extracted local descrip-
tors for image representation, however some of them might
not fall on the objects we really want to recognize. Since
such descriptors often introduce noises into the model, it is
reasonable to filter them for better image understanding. This
is equivalent to learning a spatial weighting, a saliency map,
or simply a heatmap on the image plane. In this paper, we
follow the observation that higher contrast regions provide
stronger stimuli to vision [41], and propose a simple spatial
weighting strategy through a Gaussian blur process on the
boundary images.

First of all, we calculate an edgemap (boundary image) for
the original image I of size W x H. Following (6), the edgemap
Ig is another W x H matrix in which the elements represent the
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Fig. 14.  Applying GPP on the fused descriptors helps to generate more
discriminative visual phrases.

intensity of edge responses. We thereafter calculate a W x H
weighting matrix W:

W= (i) (22)

Here, w;; is the spatial weight at position (i, j), which is
accumulated from the decayed edge responses:

wij = > ey x exp{—a. ||, ) — (. 7)],} @3

Y
r,J

Here, coordinate (i " ) are enumerated on the whole image,
o, is the smoothing parameter on edge responses, and ||-||, is
the Euclidean distance. As o, goes up, there shall be smaller
weights accumulated on the faraway pixels.

With spatial weights, the max-pooling formulation (13)
becomes:

max {wm, X Wy} (24)

1<m<M

W =

where w,, is the weight at 1,,, the central pixel of G,,.

To evaluate the proposed spatial weighting scheme as well
as the smoothing parameter o,, we again test the classification
accuracy on the Caltech101 dataset using the best parameters
learned from the previous section. We set the smoothing
parameter o, as 0, 0.01, 0.02, 0.03, 0.05 and 0.10, respectively,
and plot the classification results with different settings in
Fig. 12(b). The parameter which gives the best performance,
i.e., g, = 0.05, will be used in later experiments.

To give a better visualization on the effect of smoothing
parameter o,, we plot the corresponding weighting matrices
W as heatmaps in Fig. 15 for comparison. From the gradually
changing heatmaps, the impact of o, becomes very clear.
When o, is small, the heatmap of spatial weighting is similar
to a uniform distribution on the image plane. As the smoothing
parameter goes up, the spatial weights become more con-
centrated around the boundary responses. If the parameter
becomes too large, e.g., o, = 0.20, the obtained heatmap is
very similar to the edgemap. This forces the model discard
texture details, which is harmful for recognizing some cases
such as animals and plants.

The heatmaps generated by GPP (Fig. 9) and edgemap
(Fig. 15) look similar. The difference lies in that, GPP
enhances those local regions with co-occurrence of similar
features, whereas edgemap gives higher weight onto the
regions with strong edge response. Both of them provide useful
information for image classification.
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It is worth noting that detecting the saliency regions on the
image is itself an open problem in computer vision. Certainly,
our algorithm could not completely solve the problem, but
we provide a simple and efficient algorithm which provides
useful information for image classification. To illustrate this,
we calculate the classification accuracies by category, and list
the most increased and decreased ones in Fig. 16. We can
see that our algorithm works well on the situations with
relatively simple background clutters, but could also harm the
classification accuracy in the categories with poor saliency
detection results. Since the proposed algorithm produces larger
accuracy gains than drops, the averaged classification accuracy
is boosted.

Finally let us consider the time complexity of the proposed
spatial weighting algorithm. It is easy to note that (23) requires
a complete enumeration on every pairs of pixels, therefore is
very computational expensive, i.e., takes more than 30 seconds
on a single-core CPU for a 300 x 300 image. To accelerate, we
adopt an approximation by skipping the accumulation of the
pairs with Euclidean distances larger than 50 pixels. Under
the best smoothing parameter, i.e., g, = 0.05, the maximal
ignored coefficient could be exp{—0.05 x 50} &~ 0.08, which
is relatively small. With the reasonable approximation, our
algorithm only requires less than 0.5 second on a single image,
which is very efficient in practise considering the spatial
weighting is computed only once.
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VI. EXPERIMENTAL RESULTS

In this section, we show the experimental results on several
publicly available image classification datasets. To compare
our method with other works, we inherit the same settings
from the state-of-the-art algorithms, and adopt descriptor
fusion, GPP, and spatial weighting with the best settings
learned from the previous sections.

« Boundary detection. We use the Compass Operator [13]
for boundary detection. The radius parameter ¢ is fixed
as 4 as proposed in the same literature.

« Image descriptors. We use the VLFeat [42] library to
extract dense SIFT descriptors. The spatial stride and
window size are discussed individually for each dataset.

« Codebook construction. We use K-Means for clustering.
The codebook size is 4096 for Caltech256, 8192 for
Pascal VOC 2007, and 2048 for others. The number of
descriptors for clustering does not exceed 2 million.

o Coding and phrase pooling. We use LLC [26] for local
feature coding and apply GPP with the best parameters:
K =20, 0, =0.01, r{ =5 and rn, = 30.

« Spatial weighting. We take o, = 0.05 for the edge-based
spatial weighting scheme.

« Spatial Pyramid and normalization. We apply a 3-layer
(1 x14+2x2+4+4x4) SPM for enhancing the global
spatial context. After that, an £>-norm normalization is
performed to produce comparable feature vectors.

e SVM for classification. We use LibLINEAR [34],
a recent scalable SVM implementation for training and
testing. For the Pascal VOC retrieval task, we rank the
testing images according to their confident scores.

o Accuracy evaluation. For the Pascal VOC 2007 Chal-
lenge, we use the standard benchmark [?]. On other
datasets, we select fixed numbers of images for training
the classification model, and test it on the remaining
images to calculate the average classification accuracy
over all the categories. We repeat the random selection
10 times and report the averaged results.

A. The Caltechl01 Dataset

The Caltech101 dataset [29] contains 9144 images of
102 classes, including a background category. There exists
significant deformation among different objects from the same
category. Sample images are listed in Fig. 17.

The spatial stride and window size for SIFT descriptors are
7 and 7, while for Edge-SIFT are 7 and 12. We use 5, 10,
15, 20, 30 images per category for training, and others for
testing. Results are concluded in Table VI. In all cases, GPP
outperforms LLC by more than 9%, and even more than 10%
in the scenarios of fewer training samples.

B. The Caltech256 Dataset

The Caltech256 dataset [44] contains 30607 images of
257 classes, including a clutter category. It is a expansion
of Caltechl01, and also much more challenging, for there
are severe intra-class variations and inter-class similarity, and
objects are less aligned. Sample images are shown in Fig. 18.
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TABLE VI
CLASSIFICATION RESULTS ON THE CALTECH101 DATASET
# training 5 10 15 20 30
Lazebnik [15] — — 56.4 — 64.6
Yang [25] — — 67.0 — 73.2
Wang [26] 51.15  59.77 65.43 67.74 73.44
Boureau [10] — — — — 75.7
Bosch [9] - — — - 81.3
Ours 6190 71.75 76.03 7853 8245
+0.54 4+0.60 4+0.63 £0.39 +£0.59
accordion car side trilobite leopard motorbike
anchor butterfly pyramid cougar body pigeon
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Fig. 17.  Sample images from the Caltechl101 dataset. Upper: categories on

which our algorithm reports 100% accuracies (30 trains). Middle: categories
on which our algorithm most outperforms LLC [26]. Bottom: categories on
which our algorithm produces poor results. Images on the first and second
rows are correctly classified, while others are not.

lawn mower saturn tower pisa guitar pick

Fig. 18.  Sample images from the Caltech256 dataset. Upper: categories
on which accuracies are 90% or higher (30 trains). Middle: images with
small objects. Bottom: images with many objects. Images on the first row
are correctly classified, while others are not.

The spatial stride and window size for SIFT descriptors are
5 and 5, while for Edge-SIFT are 8 and 8. We use 5, 15, 30,
45, 60 images per category for training, and others for testing.
Results are concluded in Table VII. Again, the classification
results of GPP shows advantages over the results of LLC [26].

C. The Pascal VOC 2007 Dataset

As a competition set, the Pascal VOC 2007 dataset [?]
contains 9963 images and 20 kinds of objects. From sample
images listed in Fig. 19, we could find it a challenging dataset,
for the significant varying of the appearances, scales, numbers
and locations of the objects. The task is to train an individual
retrieval model in the training set for each of the 20 objects,
and use it to find other images in the testing set containing
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TABLE VII
CLASSIFICATION RESULTS ON THE CALTECH256 DATASET

# training 5 15 30 45 60

Griffin [44] — 28.3 34.1 - —

Yang [25] - 27.73 34.02 37.46 40.14

Gao [45] - 29.77  35.67 38.61 40.30

Wang [26] — 34.36  41.19 45.31 47.68

Bosch [9] — — 44.0 — —

Ours 26.12 36.35 45.07 48.02 50.33
+0.21 +0.31 +£0.24 +0.25 =+0.18

person person tv monitor car sheep
dining table horse sofa bus aeroplane

sofa chair motorbike car

pot-plant

Fig. 19. Sample images from the Pascal VOC 2007 dataset. Upper: images
with objects from multiple categories. Middle: images with small objects.
Bottom: images with more than one objects from the same category. All the
objects on the bottom two rows are not retrieved (wrongly classified) by our
algorithm.

TABLE VIII

RESULTS LISTED BY CATEGORY OF THE PASCAL VOC 2007 DATASET

name [26] Ours improv. name [26] Ours improv.
aeropl 67.47 7229 4.82 bicycl 55.29 56.33 1.04
bird 40.68 4541 4.72 boat 58.56 61.26 2.71
bottle 21.19 26.24 5.05 bus 44.10 53.77 9.68
car 69.43 73.56 4.13 cat 46.73 52.18 5.44
chair 51.50 54.19 2.70 cow 31.21 40.78 9.58
dining 35.06 47.40 12.33 dog 39.00 41.58 2.57
horse 7241 7438 1.98 motorb  53.98 57.52 3.55
person  79.18 83.02 3.84 potted  18.77 26.03 7.80
sheep 33.14 37.51 4.37 sofa 44.73 52.30 7.57
train 66.59 69.51 2.92 tvmoni 40.96 47.50 6.53
average 48.50 * 53.64 ® 5.14

@ The average precision presented here is not the same as the reported ones,
i.e., 49.13 and 53.89, for the reported ones (higher) are averaged on the
best accuracies on all the categories among different codebooks, and the
ones presented here (a bit lower) is obtained from a single testing process.

the same object. We use the standard benchmark provided
by Pascal Challenge, which calculates the mean Average
Precision (mAP) measure for each object individually.

The spatial stride and window size for SIFT descriptors are
6 and 4, while for Edge-SIFT are 7 and 12. Individual accuracy
on each object and the averaged score are listed in Table VIIL.
We can find that our algorithm outperforms the LLC [26] in
each of the 20 individual task, and report a 53.89% average
accuracy, winning LLC (49.13%) remarkably by 4.76%.

D. The Butterfly-7 Dataset

The Butterfly-7 dataset [46] contains 619 images of
7 different species of butterflies. In each category, we can find

2005

Fig. 20. Samples from the Butterfly-7 dataset. Upper: normal cases. Middle:
difficult cases for object detection. Bottom: cases with multiple objects.
Images on the first row are correctly classified, while others are not.

TABLE IX
RESULTS ON THE BUTTERFLY-7 DATASET

# training 1 5 10 20 26
Lazebnik [46] — - - - 90.4% @
Larlus [47] - - — - 90.61% P
Wang [26] 54.41 77.98 83.38 86.33 87.54
Ours 64.25 80.19 85.30 88.93 90.83
+6.46 +1.72 4197 £+1.00 =£1.34

2 They used a complex part-based model, which is much more
computationally expensive than our algorithm.

b This is the accuracy on the best run, not averaged. The best run
among our 10 individual tests gives a 93.31% accuracy.

a number of challenging samples, including small objects and
multiple objects. Example images are listed in Fig. 20.

In this dataset, we use the OpponentSIFT descriptors [20]
with spatial stride of 7 and window size of 12. Due to
the discussion in Section III-D, we do not use Edge-SIFT
descriptors in this case. We use 1, 5, 10, 20, 26 (the number
specified in [46]) images per category for training, and others
for testing. Experimental results are shown in Table IX.

E. The Oxford Flower-17 Dataset

The Oxford Flower-17 dataset [36] contains 17 classes of
flowers with 80 images per category. The flowers suffer from
large variations of scale, viewpoint angle and illumination.
Example images could be found in Fig. 21.

In this dataset, we use the OpponentSIFT descriptors [20]
with spatial stride of 12 and window size of 16. Due to
the discussion in Section III-D, we do not use Edge-SIFT
descriptors in this case. We use 5, 10, 20, 30, 60 images
per category for training, and others for testing. Experimental
results are shown in Table X.

F. The Scene-15 Dataset

The Scene-15 dataset [15] contains 15 scenes and
4485 images. All the instances are grayscale images collected
from outdoor environments. It is one of the most widely used
dataset for scene understanding tasks, in which we need to
discriminate various categories of scenes listed in Fig. 22.

The spatial stride and window size for SIFT descriptors are
5 and 5, while for Edge-SIFT are 8 and 8. We use 10, 20,
30, 50, 100 images per category for training, and others for
testing. Results are shown in Table XI.
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lily valley

bluebell

buttercup windflower

< £ 8

Fig. 21.  Wrongly classified samples from the Oxford Flower-17 dataset.
Many images from the dataset contain more than one objects of interest.

TABLE X
RESULTS ON THE OXFORD FLOWER-17 DATASET

# training 5 10 20 30 60
81.3% »

Nilsback [36] — . - —

Gehler [48] — - - — 85.5% &

Wang [26] 69.52 76.98 82.43 84.94 88.24

Ours 72.08 79.39 8447 8694 91.56
+1.60 +0.87 =£1.16 +£0.67 =+£1.61

# They used a fixed data split, and a different performance
measure with us. Under the specified setting, the reported
accuracy is 91.43%, which is much higher than theirs.

bedroom suburb industrial

living-room

op-country

Fig. 22.  Sample images from the Scene-15 dataset, one for each category.

TABLE XI
RESULTS ON THE SCENE-15 DATASET

# training 10 20 30 50 100
Lazebnik [15] — — — - 81.4
Li [49] — — — - 80.9
Gao [45] - — — - 83.68
Wang [26] 66.97 7244 7578 78.84 82.34
Ours 70.67 76.12 78.74 81.72 85.13
+0.46 +0.73 £0.88 +£0.48 +£0.72

G. The MIT Indoor-67 Dataset

The MIT Indoor-67 dataset [S0] contains 67 indoor scenes
and 15620 images. It is a challenging dataset for indoor scene
recognition. Sample images are listed in Fig. 23.

The spatial stride and window size for SIFT descriptors are
6 and 4. We do not use Edge-SIFT descriptors since the layouts
of indoor scenes are often similar. We use 5, 10, 20, 40, and

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 5, MAY 2014

closet

auditorium classroom

Fig. 23.  Sample images from the MIT Indoor-67 dataset. Upper: categories
on which accuracies are 80% or higher (80 trains). Middle and bottom:
category pairs (in column) with very high semantic similarities. Images on
the first row are correctly classified, while others are wrongly classified to the
corresponding confusing classes.

TABLE XII
RESULTS ON THE MIT INDOOR-67 DATASET

# training 5 10 20 40 80
Quattoni [50] — — — — 26.0
Li [49] — — — — 37.6
Bo [51] — - — — 41.8
Wang [26] 19.31 25.61 31.34 37.01 43.10
Ours 21.11 27.64 34.22 40.56 46.38
+0.49 £0.69 £045 +£0.60 =+0.75

80 images per category for training, and others for testing.
Results are shown in Table XII.

H. Discussion

It is shown above that the proposed model with 3 new
modules, i.e., extracting complementary descriptors, Geomet-
ric Phrase Pooling (GPP), and edge-based spatial weighting,
does produce superior performance over the traditional BoF
model. Here, we provide some extra experimental results on
the Caltech101 dataset to observe the effect of each module.
We use the case with 30 training images per category, in which
the overall accuracy gain is about 9%.

« Extracting complementary descriptors improves the
classification accuracy by about 5% in this case. We shall
emphasize that we can not only find compensation
between texture (SIFT) and shape (Edge-SIFT) descrip-
tors, but also in the case when we extract dense descrip-
tors with different spatial strides and window scales.
The latter technique is also widely used in the commu-
nity [12], [26].

« Geometric Phrase Pooling improves the classification
accuracy by about 4%. GPP provides an effective way
of spatial context modeling on the local feature groups.
With little extra time complexity, it produces significant
improvement on all the classification tasks.

+ Edge-based spatial weighting improves the classifica-
tion accuracy by about 2%. We observe both accuracy
gain and drop on different categories, but fortunately the
averaged accuracy is boosted, showing the effectiveness
of this simple trick.
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In conclusion, all the proposed modules could be adopted
individually to boost the classification performance. Even
though the overall accuracy gain is less than the sum of
individual improvements due to the marginal effect, we can
verify that the proposed modules could co-operate with each
other to produce a more powerful BoF model.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel framework based on the
traditional BoF model for image classification. We add three
new modules into the BoF model to enhance its description
power. First, we extract SIFT and Edge-SIFT descriptors
from the original image and the corresponding edgemap
respectively, and then fuse them directly into a large set
of descriptors. Experiments have revealed good compensa-
tion property of SIFT and Edge-SIFT descriptors. Moreover,
fusing them at very early stage gives us more opportunities
for spatial context modeling. Second, we propose a novel
pooling strategy named Geometric Phrase Pooling (GPP).
By extracting geometric visual phrases upon complementary
visual words, it is possible to construct mid-level structures
containing both texture and shape features, providing more
robust intermediate representation. Third, based on boundary
detection, we propose a simple and effective spatial weighting
scheme to detect regions-of-interest. Integrating all the above
modules coherently, we obtain a very powerful model that
outperforms the state-of-the-art algorithms on various image
classifications tasks.

Despite the excellent accuracy gain we have obtained,
there are still some open problems in our framework. It is
verified that objects are better described by complementary
features such as texture and shape. However, calculating SIFT
descriptors on the boundary images directly is not the best
way for shape description. Although there exist a number
of efficient shape descriptors such as shape context [52], it
still remains to integrate both texture and shape features in
an early fusion strategy. Geometric Phrase Pooling (GPP) is
an efficient algorithm to capture spatial contexts, and it is
reasonable to consider both scale and orientation of local
descriptors for a more sophisticated spatial modeling. As to the
naive spatial weighting scheme based on boundary detection,
due to the lack of semantic consideration, it sometimes harms
the classification accuracy (see Fig. 16). Saliency detection is
an intuitive and instructive way of finding useful regions for
image discrimination. We will investigate these problems in
the future towards a more powerful classification model.
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