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Abstract State-of-the-art image classification approach-

es are mainly based on robust image representation,

such as the Bag-of-Features (BoF) model or the Con-

volutional Neural Network (CNN) architecture. In real

applications, the orientation (left/right) of an image

or an object might vary from sample to sample, whereas

some handcrafted descriptors (e.g., SIFT) and network

operations (e.g., convolution) are not reversal-invariant,

leading to the unsatisfied stability of image features

extracted from these models. To deal with, a popular

solution is to augment the dataset by adding a left-right

reversed copy for each image. This strategy improves
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the recognition accuracy to some extent, but also brings

the price of almost doubled time and memory consump-

tions on both the training and testing stages.

In this paper, we present an alternative solution

based on designing reversal-invariant representation of

local patterns, so that we can obtain the identical rep-

resentation for an image and its left-right reversed copy.

For the BoF model, we design a reversal-invariant ver-

sion of SIFT descriptor named Max-SIFT, and gener-

alize it to the RIDE algorithm which can be applied

to a large family of local descriptors. For the CNN

architecture, we present a simple idea of generating

reversal-invariant deep features (RI-Deep), and, in-

spired by which, design reversal-invariant convolution

(RI-Conv) layers to enlarge the CNN capacity without

increasing the model complexity. Experimental results

reveal consistent accuracy on various image classifica-

tion tasks, including scene understanding, fine-grained

object recognition, and large-scale visual recognition.

Keywords Image Classification · The BoF Model ·
CNN · Reversal-Invariant Image Representation

1 Introduction

Image classification is a fundamental problem in com-

puter vision which implies a large number of appli-

cations. One of the most popular approaches for im-

age classification is the Bag-of-Features (BoF) mod-

el (Csurka et al, 2004), a statistics-based algorithm in

which local features are extracted, encoded and summa-

rized into global image representation. Recently, as the

availability of large-scale image databases (Deng et al,

2009) and powerful computational resources, Convolu-

tional Neural Networks (CNN) have been dominant in

either large-scale image classification (Krizhevsky et al,
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Fig. 1: SIFT (Lowe, 2004) matching with (red) and

without (blue) reversal invariance (best viewed in col-

or). In the latter case, it is difficult to find feature

matches even between an image and its reversed copy

(the above example). RIDE (illustrated in Section 4)

brings reversal invariance to local descriptors, and sig-

nificantly reduces the feature (e.g., BoF) distance be-

tween each pair of reversed objects.

2012), or extracting transferrable features (Donahue

et al, 2014)(Jia et al, 2014)(Razavian et al, 2014) for

various computer vision tasks.

People often capture images or photos without car-

ing about its left/right orientation, since an image

and its reversed copy often deliver the same visual con-

cept. However, as we shall see in Section 3, statistics-

based image representation is not often robust to im-

age reversal. The reason mainly lies in that handcraft-

ed descriptors, such as SIFT (Lowe, 2004) and LC-

S (Perronnin et al, 2010), might change completely af-

ter being reversed (Figure 1), therefore it is difficult

to find feature correspondence between an image and

its reversed version. Consequently, the BoF represen-

tation of an image might be totally different after it

is reversed. Meanwhile, most CNN models are some-

what sensitive to image reversal, since convolution is

not reversal-invariant. The unsatisfied feature stability

limits machine learning algorithms from learning dis-

criminative models. To cope with, researchers propose

an effective approach named data augmentation, which

works by adding a reversed copy for each image (Chat-

field et al, 2011)(Chai et al, 2013), or reversing each

training image in the CNN training process with a prob-

ability of 50% (Krizhevsky et al, 2012). Although data

augmentation consistently improves recognition accura-

cy, it still suffers the disadvantage of being more com-

putationally expensive, especially on the online testing

stage of the BoF model.

This paper presents an alternative idea, i.e., design-

ing reversal-invariant representation of local patterns

for both the BoF and CNN models. On the BoF mod-

el, we start with observing the difference between the

original and reversed descriptors, and then suggest com-

puting the orientation of each descriptor so that we can

cancel out the impact of image reversal. For orientation

estimation, we adopt an approximated summation on

the gradient-based histograms of SIFT. Based on this

theory, we propose Max-SIFT and RIDE (Reversal-

Invariant Descriptor Enhancement), two simple, fast

yet generalized algorithms which bring reversal invari-

ance to local descriptors. Both Max-SIFT and RIDE

guarantee to generate identical representation for an

image and its left-right reversed copy. Experiments re-

veal that Max-SIFT and RIDE produce consistent ac-

curacy improvement to image classification. RIDE even

outperforms data augmentation with higher recogni-

tion rates and lower time/memory consumptions. Max-

SIFT and RIDE appear as preliminary publications (X-

ie et al, 2015b) and (Xie et al, 2015d), respectively.

In this extended journal version, we generalize the

idea to the state-of-the-art CNN architectures. We first

propose RI-Deep, a simple algorithm which extract-

s reversal-invariant deep features by post-processing.

Then we design a reversal-invariant convolution oper-

ation (RI-Conv) and plug it into conventional CNNs,

so that we can train reversal-invariant deep networks,

which generate reversal-invariant deep features direct-

ly (without requiring post-processing). RI-Conv enjoys

the advantage of enlarging the network capacity with-

out increasing the model complexity. Experiments ver-

ify the effectiveness of our algorithms, demonstrating

the importance of reversal invariance in training effi-

cient CNN models and transferring deep features.

The remainder of this paper is organized as fol-

lows. Section 2 briefly introduces related works. Sec-

tion 3 elaborates the importance of reversal invariance

of image representation. Sections 4 and 5 illustrate our

algorithms towards reversal-invariant representation of

local patterns, and the application on the BoF and

CNN models, respectively. Experiments are shown in

each section. Finally, we conclude our work in Section 6.
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2 Related Works

2.1 The BoF Model

The BoF model (Csurka et al, 2004) starts with describ-

ing local patches. Due to the limited descriptive pow-

er of raw image pixels, handcrafted descriptors, such

as SIFT (Lowe, 2004), HOG (Dalal and Triggs, 2005)

and LCS (Perronnin et al, 2010), are widely adopt-

ed. Although these descriptors can be automatically

detected using operators such as DoG (Lowe, 2004)

and MSER (Matas et al, 2004), the dense sampling

strategy (Bosch et al, 2006)(Tuytelaars, 2010) often

works better on classification tasks.

Next, a visual vocabulary (codebook) is trained to

estimate the feature space distribution. The codebook

is often computed with iterative algorithms such as K-

Means or GMM. Descriptors are then encoded with the

codebook. Popular feature encoding methods include

hard quantization, sparse coding (Yang et al, 2009),

LLC encoding (Wang et al, 2010), super-vector encod-

ing (Zhou et al, 2010), Fisher vector encoding (Sanchez

et al, 2013), etc.

On the final stage, quantized feature vectors are

aggregated as compact image representation. Sum pool-

ing, max-pooling and `p-norm pooling (Feng et al, 2011)

can be different choices, and visual phrases (Zhang et al,

2009)(Xie et al, 2014a) and/or spatial pyramids (Grau-

man and Darrell, 2005)(Lazebnik et al, 2006) are con-

structed for richer spatial context modeling. The rep-

resentation vectors are then summarized (Xie et al,

2015c) and fed into machine learning algorithms such

as the SVM.

It is also important to organize local features ac-

cording to the property of the image dataset. A pop-

ular case is fine-grained object recognition, which is

aimed at predicting the object class at a finer level

of granularity. Given that each image contains, say,

a bird, it remains to decide which species is depict-

ed. As observed in (Berg and Belhumeur, 2013)(Chai

et al, 2013)(Gavves et al, 2014), the key to fine-grained

recognition is the alignment of semantic object parts,

such as the head or tail of a bird. Meanwhile, for scene

understanding, it is reasonable to capture other types

of visual clues to assist recognition, such as orientation-

s (Xie et al, 2014b) and important semantic regions (Lin

et al, 2014).

2.2 Convolutional Neural Networks

The Convolutional Neural Network (CNN) serves as

a hierarchical model for large-scale visual recognition.

It is based on that a network with enough neurons is

able to fit any complicated data distribution. In the

early years, neural networks were shown effective for

simple recognition tasks such as digit recognition (Le-

Cun et al, 1990). More recently, the availability of large-

scale training data (e.g., ImageNet (Deng et al, 2009))

and powerful GPUs makes it possible to train deep

CNNs (Krizhevsky et al, 2012) which significantly out-

perform the BoF-based models. A CNN is composed of

several stacked layers, in each of which responses from

the previous layer are convoluted and activated by a

differentiable function. Hence, a CNN can be consid-

ered as a composite function, and is trained by back-

propagating error signals defined by the difference be-

tween supervised and predicted labels at the top level.

Recently, efficient methods were proposed to help CNNs

converge faster and prevent over-fitting, such as ReLU

activation (Krizhevsky et al, 2012), dropout and batch

normalization (Ioffe and Szegedy, 2015). It is believed

that deeper networks produce better recognition result-

s (Simonyan and Zisserman, 2015)(Szegedy et al, 2015).

The intermediate responses of CNNs, or the so-called

deep features, serve as an efficient image description (Don-

ahue et al, 2014), or a set of latent visual attributes.

They can be used for various types of vision applica-

tions, including image classification (Jia et al, 2014),

image retrieval (Razavian et al, 2014)(Xie et al, 2015a)

and object detection (Girshick et al, 2014). A discussion

of how different CNN configurations impact deep fea-

ture performance is available in (Chatfield et al, 2014).

Visualization also helps to understanding the behaviour

of CNN models (Zeiler and Fergus, 2014).

2.3 Towards Reversal Invariance

One of the major shortcomings of the BoF and CNN

models is the unsatisfied stability of image representa-

tion. Especially, in fine-grained recognition tasks, ob-

jects might have different left/right orientations. Since

handcrafted descriptors (such as SIFT) and convolution

operations are not reversal-invariant, feature represen-

tation of an image and its reversed version might be

totally different.

To cope with, researchers propose to augment the

image datasets by adding a reversed copy for each orig-

inal image, and perform classification on the enlarged

training and testing sets (Chatfield et al, 2011)(Chai

et al, 2013). In (Paulin et al, 2014), it is even suggest-

ed to learn a larger image transformation set for data

augmentation. Similar strategies are also adopted in

the CNN training process, including a popular method

which adds reversal on each training sample with a

probability of 50%, which, as a part of data augmen-

tation, is often cooperated with other techniques such
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Fig. 2: Content-based image retrieval on the right-oriented Aircraft-100 dataset. We use the same query image

with different orientations (best viewed in color).

as image cropping (Krizhevsky et al, 2012). Although

data augmentation improves the recognition accuracy

consistently, it brings heavier computational overheads,

e.g., almost doubled time and memory consumptions

on the online testing stage of the BoF model, or the

requirement of more training epoches to make the CNN

training process converge.

There are also efforts on designing reversal-invariant
descriptors for image retrieval. Some of them (Ma et al,

2010)(Xie et al, 2015b) consider geometry-inverted and

brightness-inverted variants, and perform a symmetric

function, such as dimension-wise summation or maxi-

mization, to cancel out the reversal operation. Other

examples include defining a set of spatial bins to cal-

culate histograms (Guo and Cao, 2010), or enforcing

that the flows of all regions should follow a pre-defined

direction (Zhao and Ngo, 2013). These works inspire us

that symmetry is the key to reversal invariance (Skelly

and Sclaroff, 2007)(Wang et al, 2011).

3 Why Reversal Invariance?

People often take pictures without caring about the

left/right orientation, since an image and its left-right

reversed copy often have the same semantic meaning.

Consequently, there exist both left-oriented and right-

oriented objects in almost every popular image dataset-

s, especially in the case of fine-grained object recog-

nition on animals, man-made tools, etc. For example,

among 11788 images of the Bird-200 dataset (Wah

et al, 2011), at least 5000 birds are oriented to the left

and other 5000 oriented to the right. In the Aircraft-

100 dataset (Maji et al, 2013) with 10000 images, we

can also find more than 4800 left-oriented and more

than 4500 right-oriented aircrafts, respectively.

However, we argue that most image representation

models are sensitive to image reversal, i.e., the features

extracted from an image and its reversed version may be

completely different. Let us take a simple case study us-

ing the BoF model which encodes SIFT with the Fisher

vectors (Perronnin et al, 2010). Detailed settings are

shown in Section 4.6. We perform image classification

and retrieval tasks on the Aircraft-100 dataset (Maji

et al, 2013). We choose this dataset mainly because that

the orientation of an aircraft is more easily determined

than, say, a bird. Based on the original dataset, we

manually reverse all the left-oriented images, generating

a right-aligned dataset.

With the standard training/testing split (around

2/3 images are used for training and others for testing),

the recognition rate is 53.13% on the original dataset

and rises up quickly to 63.94% on the right-aligned

dataset, with a more-than-10% absolute accuracy gain

(a more-than-20% relative gain). This implies that ori-

entation alignment brings a huge benefit to fine-grained
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object recognition. As a diagnostic experiment, we use

all (10000) images in the right-aligned dataset for train-

ing, and evaluate the model on two datasets with ex-

actly the same image contents but different orienta-

tions. When testing images are all right-oriented (i.e.,

performing self-validation), the classification accuracy

is 99.73%. However, when testing images are all left-

oriented (by reversing right-oriented ones), the accura-

cy drops dramatically to 46.84%. This experiment indi-

cates that a model learned from right-oriented objects

may not recognize left-oriented objects very well.

We also perform image retrieval on the right-aligned

dataset to observe the feature quality more directly.

Given a query image, we sort the candidates accord-

ing to the `2 distance between the representation vec-

tors. Some typical results are shown in Figure 2. When

the query is of the same orientation (right) with the

database, the search result is satisfying (mAP is 0.4143,

the first false-positive is ranked at #18). However, if

the query image is reversed, its feature representation

changes thoroughly, and the retrieval accuracy drops

dramatically (mAP is 0.0025, the first true-positive is

ranked at #388). It is worth noting, in the latter case,

that the reversed version of the query image is ranked at

#514, which means that more than 500 images, most of

them coming from different categories, are more similar

to the query than its reversed copy!

Although all the above experiments are based on the

BoF model with SIFT and Fisher vectors, we emphasize

that similar trouble also arises in the case of extracting

deep features from a pre-trained neural network. Since

convolution is not reversal invariance, the features ex-

tracted on an image and its reversed version are often

different, even when the network is trained with data

augmentation (each training image is reversed with a

50% probability). We shall present detailed analysis on

this point in Section 5.

Since an image and its reversed copy might have

totally different feature representation, in a fine-grained

dataset containing both left-oriented and right-oriented

objects, we are implicitly partitioning the images of

each class into two (or even more) prototypes. Con-

sequently, the number of training images of each pro-

totype is reduced and the risk of over-fitting increased.

With this observation, some algorithms (Chatfield et al,

2011)(Chai et al, 2013) augment the dataset by gener-

ating a reversed copy for each image to increase the

number of training cases of each prototype, meanwhile

the testing stage of deep networks often involves image

reversal (Krizhevsky et al, 2012)(Simonyan and Zisser-

man, 2015). We propose a different idea that generates

reversal-invariant image representation in a bottom-up

manner.
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Fig. 3: SIFT and its reversed version. Corresponding

grids/gradients are marked with the same number.

Numbers in the original SIFT indicate the order of

collecting grids/gradients.

4 Reversal Invariance for BoF

This section introduces reversal invariance to the BoF

model by designing reversal-invariant local descriptors.

We first discuss the basic principle of designing reversal-

invariant descriptors, and then provide a simple solu-

tion named Max-SIFT. After that, we generalize Max-

SIFT as RIDE, and show that it can be applied to

more types of local descriptors. Experiments on the

BoF model and Fisher vector encoding verify the ef-

fectiveness of our algorithms.

4.1 Reversal-Invariant Local Descriptors

4.1.1 Reversal Invariance as a Symmetric Function

We start from observing how SIFT, a typical handcraft-

ed descriptor, changes with left-right image reversal.

The structure of a SIFT descriptor is illustrated in

Figure 3. A patch is partitioned into 4×4 spatial grids,

and in each grid a 8-dimensional gradient histogram

is computed. Here we assume that spatial grids are

traversed from top to bottom, then left to right, and

gradient intensities in each grid is collected in a counter-

clockwise order. When an image is left-right reversed,

all the patches on it are reversed as well. In a reversed

patch, both the order of traversing spatial grids and col-

lecting gradient values are changed, although the abso-

lute gradient values in the corresponding directions do

not change. Taking the lower-right grid in the original

SIFT descriptor (#15) as the example. When the image

is reversed, this grid appears at the lower-left position
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(#12), and the order of collecting gradients in the grid

changes from (0, 1, 2, 3, 4, 5, 6, 7) to (4, 3, 2, 1, 0, 7, 6, 5).

Denote the original SIFT as d = (d0, d1, . . . , d127),

in which di×8+j = ai,j for i = 0, 1, . . . , 15 and j =

0, 1, . . . , 7. As shown in Figure 3, each index (0 to 127)

of the original SIFT is mapped to another index of

the reversed SIFT. For example, d117 (a14,5, the bold

arrow in Figure 3) would appear at d111 (a13,7) when

the descriptor is reversed. Denote the index mapping

function as fR(·) (e.g., fR(117) = 111), so that the

reversed SIFT can be computed as: dR .
= fR(d) =(

dfR(0), dfR(1), . . . , dfR(127)

)
.

Towards reversal invariance, we need to design a

descriptor transformation function r(d), so that

r(d) = r
(
dR
)

for any descriptor d. For this, we define

r(d) = s
(
d,dR

)
, in which s(·, ·) satisfies symmetry,

i.e., s(d1,d2) = s(d2,d1) for any pair (d1,d2). In this

way reversal invariance is achieved: r(d) = s
(
d,dR

)
=

s
(
dR,d

)
= s

(
dR,

(
dR
)R)

= r
(
dR
)
. We use the fact

that
(
dR
)R

= d holds for any descriptor d.

4.1.2 The Max-SIFT Descriptor

There are a lot of symmetric function s(·, ·), such as

dimension-wise summation or maximization. Here we

consider an extremely simple case named Max-SIFT,

in which we choose the one in d and dR with the larger

sequential lexicographic order. Here, by the sequential

lexicographic order we mean to regard each SIFT de-

scriptor as a sequence with length 128, and on each

dimension (an element in the sequence), the larger value

has the higher priority. Therefore, to compute the Max-

SIFT descriptor for d, we only need to compare the

dimensions of d and dR one by one and stop at the

first difference. Let us denote the Max-SIFT descriptor

of d by d̂, and use the following notation:

d̂ = r(d) = m̂ax
{
d,dR

}
. (1)

Obviously, d̂ equals to either d or dR, thus we maxi-

mally preserve the descriptive power of SIFT.

Algorithm 1 Max-SIFT

1: Input: D = {dm, lm}Mm=1.
2: procedure Max-SIFT

3: Reversal: DR =
{
dR
m, lm

}M
m=1

;

4: Selection: d̂m = r(dm), based on (1);
5: end procedure

6: Output: D̂ =
{
d̂m, lm

}M

m=1
.

The pseudo codes of Max-SIFT are illustrated in

Algorithm 1. We point out that there are many oth-
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Fig. 4: Estimating the orientation of SIFT.

er symmetric functions, but their performance is often

inferior to Max-SIFT. For example, using Average-

SIFT, i.e., r(d) = 1
2

(
d + dR

)
, leads to 1%–2% accu-

racy drop on every single image classification case.

4.2 RIDE: Generalized Reversal Invariance

4.2.1 The Orientation of SIFT

Let us choose the descriptor from d and dR in a more

generalized manner. In general, we can define an ori-

entation quantization function q(·), and choose the

one in
{
d,dR

}
with the larger function value. Ideally,

q(·) can capture the orientation property of a descrip-

tor, e.g., q(d) reflects the extent that d is oriented to the

right. Recall that in the original version of SIFT (Lowe,

2004), each descriptor is naturally assigned an orienta-

tion angle θ ∈ [0, 2π), so that we can simply take q(d) =

cos θ, but orientation is often ignored in the implemen-

tation of dense SIFT (Bosch et al, 2006)(Vedaldi and

Fulkerson, 2010). We aim at recovering the orientation

with fast computations.

The major conclusion is that, the global orienta-

tion of a densely-sampled SIFT descriptor can be esti-

mated by its local gradients. For each of the 128 di-

mensions, we take its gradient value and lookup for

its (1 of 8) direction. The gradient value is then de-

composed into two components along the x-axis and

y-axis, respectively. The left/right orientation of the

descriptor is then computed by collecting the x-axis

components over all the 128 dimensions. Formally, we

define 8 orientation vectors uj , j = 0, 1, . . . , 7. Ac-

cording to the definition of SIFT in Figure 3, we have

uj = (cos(jπ/8) , sin(jπ/8))
>

. The global gradient can

be computed as G(d) = (Gx, Gy)
>

=
∑15

i=0

∑7
j=0ai,juj .

The computing process is illustrated in Figure 4. The

proof of the estimation is provided in Appendix A.
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4.2.2 The RIDE Algorithm

We simply take Gx as the value of quantization func-

tion, i.e., q(d) = Gx(d) for every d. It is worth noting

that q(d) = −q
(
dR
)

holds for any d, therefore we can

simply use the sign of q(d) to compute the reversal-

invariant descriptor transform d̃:

d̃ = r(d) =


d q(d) > 0

dR q(d) < 0

m̂ax
{
d,dR

}
q(d) = 0

. (2)

We name the algorithm RIDE (Reversal-Invariant De-

scriptor Enhancement). When q(d) = 0, RIDE degen-

erates to Max-SIFT. Since Max-SIFT first compares d0
and d28 (fR(0) = 28), we can regard it as a special case

of RIDE, with q(d) = d0 − d28.

4.2.3 The Generalization of RIDE

We generalize RIDE to (a) other local descriptors and

(b) more types of reversal invariance.

When RIDE is applied on other dense descriptors,

we can first extract SIFT descriptors on the same patch-

es, then compute G to estimate the orientation of those

patches, and perform reversal operation if necessary. A

generalized flowchart of RIDE is illustrated in Algorith-

m 2. The extra time overheads in this process mainly

come from the computation of SIFT, which can be

exempted in the case of using Color-SIFT descriptors.

For example, RGB-SIFT is composed of three SIFT

vectors dR, dG and dB, from the individual red, green

and blue channels, therefore we can compute GR, GG

and GB individually, and combine them with G =

0.30GR + 0.59GG + 0.11GB. For other color SIFT de-

scriptors, the only difference lies in the linear combina-

tion coefficients. By this trick we can perform RIDE on

Color-SIFT descriptors very fast.

Algorithm 2 Generalized RIDE

1: Input: D = {dm, lm}Mm=1.
2: procedure RIDE

3: Reversal: DR =
{
dR
m, lm

}M
m=1

;

4: SIFT: DS =
{
dS
m, lm

}M
m=1

, if necessary;

5: Orientation: q(dm) = Gx

(
dS
m

)
;

6: Selection: d̃m = r(dm), based on (2);
7: end procedure

8: Output: D̃ =
{
d̃m, lm

}M

m=1
.

In the case that RIDE is applied to fast binary

descriptors for image retrieval, we can obtain the ori-

entation vector G without computing SIFT. Let us

take the BRIEF descriptor (Calonder et al, 2010) as
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Fig. 5: The distribution of q(·) values on the Bird-

200 dataset. For Max-SIFT, q(d) = d0 − d28 (see Sec-

tion 4.2.2). All the SIFT descriptors are `2-normalized

so that ‖·‖2 = 1.

an example. For a descriptor d, Gx(d) is obtained by

accumulating the binary tests. For each tested pixel pair

(p1, p2) with distinct x-coordinates, if the left pixel has

a smaller intensity value, add 1 to Gx(d), otherwise

subtract 1 from Gx(d). If the x-coordinates of p1 and

p2 are the same, this pair is ignored. Gy(d) is similarly

computed. We still take q(d) = Gx(d) to quantize left-

right orientation. This idea can also be generalized to

other binary descriptors such as ORB (Rublee et al,

2011), which is based on BRIEF.

RIDE is also capable of cancelling out a larger fami-

ly of reversal operations, including the upside-down im-

age reversal, and image rotation by 90◦, 180◦ and 270◦.

For this we need to constrain the descriptor more strict-

ly with global gradient G = (Gx, Gy)
>

. Recall that

limiting Gx > 0 selects 1 descriptor from 2 candidates,

resulting in RIDE-2 (equivalent to RIDE mentioned

previously) for left-right reversal invariance. Similarly,

limitingGx > 0 andGy > 0 selects 1 from 4 descriptors,

obtaining RIDE-4 for both left-right and upside-down

reversal invariance, and limiting Gx > Gy > 0 obtains

RIDE-8 for both reversal and rotation invariance. We

do not use RIDE-4 and RIDE-8 in this paper, since

upside-down reversal and heavy rotations are not often

observed, whereas the descriptive power of a descrip-

tor is reduced by strong constraints. An experimental

analysis of these issues can be found in Appendix B.

4.3 Numerical Stability Issues

Both Max-SIFT and RIDE may suffer from numerical

stability issues, especially in areas with low gradient

magnitudes. When the quantization function value q(d)

is close to 0, small image noises may change the sign of
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q(d) and, consequently, the Max-SIFT and/or RIDE

descriptors. To quantitatively analyze the impact of

image noises, we first estimate the distribution of q(d)

on the Bird-200 dataset (Wah et al, 2011). According

to the histogram in Figure 5, one may observe that most

SIFT descriptors have relatively small q(·) values using

Max-SIFT. With the descriptors normalized (‖d‖2 = 1

for all d), the median of q(d) values is 0.0556 for Max-

SIFT and 0.1203 for RIDE, which implies that RIDE is

more robust than Max-SIFT to small image noises. The

reason is that RIDE summarizes the information of the

whole SIFT descriptor, while Max-SIFT only considers

few dimensions.

Back to the image classification experiments on the

Bird-200 dataset, we add a random Gaussian noise

with standard deviation 0.1203 (the median of |q(·)|
values) to each of the q(·) value of RIDE, and find that

random noises only cause the classification accuracy of

SIFT case drop by less than 1%, which is relatively

smaller compared to the gain of RIDE (6.37%, see Ta-

ble 2(d)). Experiments on the Aircraft-100 dataset (Ma-

ji et al, 2013) also lead to similar results.

4.4 Applications to Image Classification

We briefly discuss the application of Max-SIFT and

RIDE for image classification. Consider an image I, and

a set of, say, SIFT descriptors extracted from the image:

D = {d1,d2, . . . ,dM}. When the image is left-right re-

versed, the set D becomes: DR =
{
dR
1 ,d

R
2 , . . . ,d

R
M

}
. If

the descriptors are not reversal-invariant, i.e., D 6= DR,

the feature representation produced byD andDR might

be totally different. With Max-SIFT or RIDE, we have

d̂ = d̂R or d̃ = d̃R, for any d, therefore D̂ = D̂R and

D̃ = D̃R. Consequently, we generate the same represen-

tation for an image and its reversed copy.

A simple trick applies when Max-SIFT or RIDE

is adopted with Spatial Pyramid Matching (Lazebnik

et al, 2006). Note that corresponding descriptors might

have different x-coordinates on an image and its re-

versed copy, e.g., a descriptor appearing at the upper-

left corner of the original image can also be found at the

upper-right corner of the reversed image, resulting in

the difference in spatial pooling bin assignment. To cope

with, we count the number of descriptors to be reversed,

i.e., those satisfying d̂ 6= d or d̃ 6= d. If the number is

larger than half of the total number of descriptors, we

left-right reverse the descriptor set by replacing the x-

coordinate of each descriptor with W − x, where W is

the image width. This is equivalent to predicting the

orientation of an image using the orientation of SIFT

descriptors (see Section 4.6.3).

Dataset Images Trains

Pet-37 (Parkhi et al, 2012) 7390 100
Aircraft-100 (Maji et al, 2013) 10000 67
Flower-102 (Nilsback et al, 2008) 8189 20
Bird-200 (Wah et al, 2011) 11788 30

LandUse-21 (Yang et al, 2010) 2100 80
Indoor-67 (Quattoni et al, 2009) 15620 80
SUN-397 (Xiao et al, 2010) 108754 50

Caltech256 (Griffin, 2007) 30607 60

Table 1: Image classification datasets used in our exper-

iments. We partition them as four fine-grained object

recognition, three scene classification and one generic

object recognition sets. The final column indicates the

number of training images in each category.

4.5 Comparison with Previous Works

Many recently published papers achieve reversal invari-

ance with data augmentation (Wang et al, 2010)(Chat-

field et al, 2011)(Chai et al, 2013)(Paulin et al, 2014).

In Section 4.6.2, we will show that RIDE works better

than data augmentation.

Although some reversal-invariant descriptors have

been proposed for image retrieval (Guo and Cao, 2010)(Ma

et al, 2010)(Zhao and Ngo, 2013)(Xie et al, 2015b),

these descriptors have not been adopted in classification

tasks. We implement several of them, and compare it

with Max-SIFT and RIDE in Table 3. One can ob-

serve that Max-SIFT and RIDE significantly outperfor-

m these competitors in every single case. Especially, MI-

SIFT (Ma et al, 2010) works even worse than original

descriptors, which is probably because it destroys the s-

patial structure of SIFT and thus harms the descriptive

power of SIFT.

4.6 Experiments

4.6.1 Datasets and Settings

We evaluate our algorithm on four publicly available

fine-grained object recognition datasets, three scene clas-

sification datasets and one generic object classification

dataset. The detailed information of the used datasets

is listed in Table 1.

Basic experimental settings follow the recent pro-

posed BoF model (Sanchez et al, 2013). An image is

scaled, with the aspect ratio preserved, so that there

are 300 pixels on the larger axis. We only use the re-

gion within the bounding box if it is available. We

use VLFeat (Vedaldi and Fulkerson, 2010) to extract

dense RootSIFT (Arandjelovic and Zisserman, 2012)

descriptors. The spatial stride and window size of dense
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ORIG MAX RIDE AUGM RIDE×2
S 37.92 41.78 42.28 42.24 45.61
L 43.25 − 44.27 45.12 46.83
F 52.06 53.92 54.69 54.67 57.51
R 44.90 46.73 47.35 46.98 49.53
O 46.53 48.39 49.01 48.72 51.19

(a) Pet-37 Results

ORIG MAX RIDE AUGM RIDE×2
S 53.13 57.72 57.82 57.16 60.14
L 41.82 − 42.86 43.13 44.81
F 57.36 60.49 61.27 60.59 63.62
R 57.89 61.90 63.09 62.48 65.11
O 47.06 52.35 53.12 51.39 55.79

(b) Aircraft-100 Results

ORIG MAX RIDE AUGM RIDE×2
S 53.68 58.12 59.12 58.01 61.09
L 73.47 − 75.30 75.88 77.40
F 76.96 79.59 80.51 79.49 82.14
R 71.52 74.00 74.97 74.18 77.10
O 76.12 78.40 79.68 78.83 81.69

(c) Flower-102 Results

ORIG MAX RIDE AUGM RIDE×2
S 25.77 31.59 32.14 31.60 34.07
L 36.18 − 38.50 38.97 40.16
F 38.11 43.48 44.73 43.98 46.38
R 31.36 38.20 39.16 38.79 41.73
O 35.40 41.15 42.18 41.72 44.30

(d) Bird-200 Results

Table 2: Classification accuracy (%) of different models. Evaluated features include SIFT (S), LCS (L), FUSED (F,

where SIFT and LCS features are concatenated), RGB-SIFT (R) and OPP-SIFT (O) features, while models include

using the original descriptors (ORIG), Max-SIFT (MAX), RIDE (RIDE) or data augmentation (AUGM). Max-

SIFT does not work on LCS, thus the LCS part remains unchanged in the FUSED feature. RIDE×2 denotes

using RIDE with doubled codebook size. See the texts in Section 4.6.2 for details.

sampling are 6 and 12, respectively. On the same set of

patches, LCS, RGB-SIFT and Opponent-SIFT (van de

Sande et al, 2010) descriptors are also extracted. Max-

SIFT or RIDE is thereafter computed for each type

of descriptors. We can only apply Max-SIFT on SIFT-

based descriptors, thus the LCS descriptors remain un-

changed. The dimensions of SIFT, LCS and color SIFT

descriptors are reduced by PCA to 64, 64 and 128,

respectively. We cluster the descriptors with a GMM

of 32 components, and use the improved Fisher vectors

(IFV) for feature encoding. A spatial pyramid with 4

regions (the entire image and three horizontal stripes) is

adopted. Features generated by SIFT and LCS descrip-

tors are concatenated as the FUSED feature. The final

vectors are square-root normalized followed by `2 nor-

malized (Lapin et al, 2014), and then fed into LibLIN-

EAR (Fan et al, 2008), a scalable SVM implementation,

with the slacking parameter C = 10. Averaged accuracy

by category is reported on the fixed training/testing

split provided by the authors.

To compare our results with the state-of-the-art clas-

sification results, strong Fisher vectors are extracted

by resizing the images to 600 pixels in the larger axis,

using spatial stride 8, window size 16, and clustering

256 GMM components.

4.6.2 Image Classification Results

We first report fine-grained object recognition accuracy

with different descriptors in Table 2. Beyond original

descriptors, we adopt both RIDE and data augmenta-

tion. By augmentation we mean to generate a reversed

copy for each training/testing image, use the enlarged

set to train the model, test with both original and

reversed samples, and predict the label with a soft-max

function (Paulin et al, 2014).

In Table 2, one can see that both Max-SIFT and

RIDE produces consistent accuracy gain beyond origi-

nal descriptors (ORIG). Moreover, when we use SIFT

or Color-SIFT descriptors, RIDE also produces higher

accuracy than that using data augmentation (AUG-

M). When the LCS descriptors are used, RIDE works

a little worse than AUGM, which is probably because

the orientation of LCS (not a gradient-based descriptor)

is not very well estimated with SIFT gradients.

We shall emphasize that data augmentation requires

almost doubled computational costs than those of RIDE

(see Section 4.6.5 for details), since the time/memory

complexity of many classification models is proportion-

al to the number of training/testing images. To make

fair comparison, we double the codebook size used in

RIDE to obtain longer features, since it is a common

knowledge that larger codebooks often lead to better

classification results. Such a model, denoted by RIDE×2,

works better than AUGM in every single case.

We also use strong features and compare Max-SIFT

and RIDE with other reversal-invariant descriptors, name-

ly MI-SIFT (Ma et al, 2010), FIND (Guo and Cao,

2010) and F-SIFT (Zhao and Ngo, 2013). We com-

pute these competitors for each SIFT component in

RGB-SIFT, and leave LCS unchanged in the FUSED

feature. Results are shown in Table 3. The consisten-
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P-37 A-100 F-102 B-200 L-21 I-67 S-397 C256

ORIG 60.24 74.61 83.53 47.61 93.64 63.17 48.35 58.77
MAX 62.80 77.54 85.82 49.93 94.13 64.12 49.39 59.21
RIDE 63.49 78.92 86.45 50.81 94.71 64.93 50.12 60.25

MI(Guo and Cao, 2010) 58.91 72.26 81.06 45.59 92.86 61.49 46.51 55.39
FIND(Guo and Cao, 2010) 59.63 74.06 82.91 47.49 93.14 62.91 47.87 56.72
F(Zhao and Ngo, 2013) 61.06 75.95 84.72 48.21 93.64 63.36 48.61 58.57

(Angelova and Zhu, 2013) 54.30 − 80.66 − − − − −
(Maji et al, 2013) − 48.69 − − − − − −
(Murray and Perronnin, 2014) 56.8 − 84.6 33.3 − − − −
(Paulin et al, 2014) − − − 45.2 − − − −
(Pu et al, 2014) − − − 44.2 − − − −
(Wang et al, 2014) 59.29 − 75.26 − − − − −
(Juneja et al, 2013) − − − − − 63.10 − −
(Kobayashi, 2014) − − − − 92.8 63.4 46.1 57.4
(Xie et al, 2014b) − − − − − 63.48 45.91 −
(Lapin et al, 2014) − − − − − − 49.5 −

Table 3: Classification accuracy (%) comparison with recent works. We use RGB-SIFT on the Aircraft-100

dataset, and the FUSED (SIFT with LCS) features on other datasets. We implement MI-SIFT (Ma et al, 2010),

FIND (Guo and Cao, 2010) and F-SIFT (Zhao and Ngo, 2013) by ourselves.

t 3%-4% gain verifies that RIDE makes stable con-

tribution to visual recognition. Moreover, researchers

design complex part-based recognition algorithms on

the Bird-200 dataset (Chai et al, 2013)(Gavves et al,

2014)(Xie et al, 2013) (Zhang et al, 2013)(Zhang et al,

2014b)(Zhang et al, 2014a)(Li et al, 2015). We also

evaluate RIDE on the detected parts provided by sym-

biotic segmentation and localization (Chai et al, 2013)

and gravitational alignment (Gavves et al, 2014). RIDE

boosts the recognition accuracy of (Chai et al, 2013)

and (Gavves et al, 2014) from 56.6% to 60.7% and from

65.3% to 67.4%, respectively. In comparison, (Gavves

et al, 2014) applies data augmentation to boost the

accuracy from 65.3% to 67.0%. RIDE produces better

results with only half time/memory consumption. With

the parts learned by deep CNNs (Zhang et al, 2014a),

we get 73.1% with the FUSED features.

To reveal that Max-SIFT and RIDE can be applied

to generalized classification, we perform experiments on

the scene classification and generic object recognition

tasks. The FUSED (SIFT with LCS) features are used,

and the results are summarized in Table 3. It is inter-

esting to see that Max-SIFT and RIDE also work well

to outperform the recent competitors. Thus, although

Max-SIFT and RIDE are motivated by the observation

on fine-grained cases, it enjoys good recognition perfor-

mance on a wide range of image datasets.

4.6.3 Object Orientation Prediction

As an diagnostic experiment, we predict the left/right

orientation of an image based on the orientation quanti-

zation function q(·). We use the Aircraft-100 dataset,

in which the orientation (left or right) of each aircraft is

manually labeled. We adopt the ground-truth bounding

box to crop the image, so that the objects are better

aligned. After cropping, all the images are resized so

that the longer axis has 600 pixels, and dense SIFT de-

scriptors are extracted using the VLFeat library (Vedal-

di and Fulkerson, 2010).

We use 2/3 images (approximately 67 per category)

for training. Without the loss of generality, we assume

that all the training images are oriented to right. For

each testing image, we compute its orientation score

by accumulating clues from each descriptor. Suppose

the width and height of the testing image are W and H,
then a descriptor on the position (x, y) has the “relative

position” (x/W, y/H). On each training image, we seek

for the nearest descriptor measured by the `2 distance of

relative positions, and compare their orientation quan-

tization function values: if the values are of the same

sign, add 1 to the score, otherwise subtract 1 from the

score. After all the descriptors are processed, if the score

is positive, then this testing image is oriented to right;

if it is negative, to left; if it is 0, we perform a random

guess (this situation merely happens).

One can note that different results are produced

with different orientation quantization functions. Using

Max-SIFT (q(d) = d0 − d28), the prediction accuracy

is 65.45%, whereas using RIDE (q(d) = Gx(d)), it is

54.69%, barely above random guess (50%). Considering

information from all 128 dimensions, RIDE produces

more accurate prediction than Max-SIFT, thus better

image alignment. As we have seen in Section 3, this

significantly helps image classification.
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Fig. 6: Global vs. local image reversal. Local reversal (with manually labeled regions in the yellow boxes) allows

more flexible image representation, and produces smaller feature distances between the test and target images.

4.6.4 Global Reversal vs. Local Reversal

Based on the above experiments, one can conclude that

RIDE produces powerful image features by predicting

the orientation of objects in an implicit manner.

An essential difference between RIDE and data aug-

mentation comes from the comparison of local and glob-

al image reversal. By local reversal we mean that RIDE

can decide whether to reverse every single descriptor

individually, while data augmentation only allows to

choose one image from two candidates, i.e., either o-

riginal or globally reversed. Figure 6 compares both

strategies in an intuitive manner. In these cases, we aim

at matching a target image with a possibly reversed

test image. With global reversal, we have only two

choices and the flexibility of our model is limited. With

local reversal, however, it is possible to reverse smaller

regions such as the turned head of the bird or cat. By

this we can find larger numbers of true feature match-

es and obtain more similar image representation, i.e.,

smaller feature distance. Therefore, it is not difficult

to understand the reason why RIDE works even better

than data augmentation.

4.6.5 Computational Costs

We report the time/memory cost of RIDE with SIFT

in Table 4. The time cost of Max-SIFT is consistently

lower than RIDE, and the memory cost is the same.

Since the only extra computation of RIDE comes

from gradient accumulation and descriptor permuta-

tion, the additional time cost of RIDE is merely about

1% of SIFT computation. RIDE does not require any

extra memory storage. However, if the dataset is aug-

mented with left-right image reversal, one needs to com-

pute and store two instances for each image, descriptor

and feature vector, resulting in almost doubled time

ORIG RIDE AUGM RIDE×2
Descriptor 2.27 hrs 2.29 hrs 2.30 hrs 2.29 hrs
Codebook 0.13 hrs 0.13 hrs 0.13 hrs 0.27 hrs
Encoding 0.78 hrs 0.78 hrs 1.56 hrs 1.28 hrs
Recognition 1.21 hrs 1.21 hrs 2.46 hrs 2.42 hrs
(RAM cost) 3.71 GB 3.71 GB 7.52 GB 7.51 GB

Table 4: Time/memory cost in each step of the BoF

model. All the data are recorded with SIFT descrip-

tors with 32 GMM components on the Bird-200

dataset (Wah et al, 2011).

and memory overheads, which is comparable with using

a double-sized codebook, whereas the latter produces

better classification results.

4.7 Summary

In this section, we explore reversal invariance in the

context of the BoF model. We propose the Max-SIFT

descriptor and the RIDE (Reversal-Invariant Descrip-

tor Enhancement) algorithm which bring reversal in-

variance to local descriptors. Our idea is inspired by the

observation that most handcrafted descriptors are not

reversal-invariant, whereas many fine-grained datasets

contain objects with different left/right orientations.

Max-SIFT and RIDE cancels out the impact of im-

age/object reversal by estimating the orientation of each

descriptor, and then forcing all the descriptors to have

the same orientation. Experiments reveal that both of

them significantly improve the accuracy of fine-grained

object recognition and scene classification with very

few computational costs. Both Max-SIFT and RIDE

are robust to small image noises. Compared with data

augmentation, RIDE produces better results with lower

time/memory consumptions.
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5 Reversal Invariance for CNN

In this section, we generalize the above ideas from BoF

to CNN. We first present a simple strategy to improve

deep features, which demonstrates the importance of

reversal invariance in CNN. Motivated by which, we

propose a new convolution operation so that we can

train reversal-invariant deep networks directly.

5.1 Reversal-Invariant Deep Features (RI-Deep)

5.1.1 Average-Deep and Max-Deep

We start with observing the behavior of deep features,

which are the neuron responses of a testing image ex-

tracted from a pre-trained CNN model. In general, when

an image is reversed, the neuron responses on each

layer change accordingly, because the convolution op-

eration is not reversal-invariant. In most deep CNN

models (Krizhevsky et al, 2012)(Szegedy et al, 2015)(Si-

monyan and Zisserman, 2015), data augmentation with

image reversal is widely adopted on both the training

and testing stages. In training, each sample is reversed

with a probability of 50%, so that the network can see

objects with different orientations. In testing, neuron

responses on both the original and reversed versions are

computed and averaged. We shall verify in the later ex-

periments that data augmentation modules in training

and testing are complementary to each other.

Let us denote an image as I and its left-right re-

versed version as IR. Given a deep CNN modelM and

a specified layer number l, the feature vector extracted

on the l-th layer is fl(I;M) ∈ RKl , where Kl is the

number of channels (convolution kernels) on that layer.

With the reversed image, we can also compute the re-

versed deep feature: fRl (I;M)
.
= fl

(
IR;M

)
. Most often,

fl(I;M) 6= fRl (I;M).

Inspired by Section 4.1.1, we seek for a deep fea-

ture transformation function r(·), which satisfies

r(I) = r
(
IR
)

for any image I. Here, we choose two

simple symmetric operations, named Avg-Deep and

Max-Deep, respectively:

rAVG
l (I) =

1

2

[
fl(I;M) + fRl (I;M)

]
, (3)

rMAX
l (I) = max

{
fl(I;M) , fRl (I;M)

}
, (4)

where max {·, ·} denotes the element-wise maximization

of two vectors. This strategy is different with that used

in Section 4.1.2 which chooses the one with the larger

sequential lexicographic order. Let us take a little space

to illustrate the difference between SIFT descriptors

and deep features. SIFT is a type of handcrafted de-

scriptor in which each dimension corresponds to the

intensity of gradient. If we simply take the dimension-

wise average or maximum of a SIFT and its reversed

version, the inner structure as well as the relationship

between corresponding dimensions may be damaged,

leading to significant accuracy drop. In a deep feature

vector, however, each dimension corresponds to the ex-

tent that a visual concept or attribute arises, therefore

it is reasonable to take dimension-wise operation to

consider the visual attributes contained in both the

original and reversed images.

We point out that Avg-Deep is similar to the testing

strategy used in the state-of-the-art CNNs (Krizhevsky

et al, 2012)(Simonyan and Zisserman, 2015)(Szegedy

et al, 2015). In which, using both the original and re-

versed testing images produces around 0.2%–0.5% ac-

curacy gain. We shall verify that this strategy is also

useful in transferring features for image classification.

Regarding computational costs, both Avg-Deep and

Max-Deep require doubled time complexity on the fea-

ture extraction stage, but they do not need extra time

or memory on the online testing stage. Considering that

the feature extraction is performed only once, the extra

cost is thus reasonable.

5.1.2 Image Classification Experiments

We evaluate the models on all the eight datasets intro-

duced in Section 4.6. For pre-trained deep networks, we

use the AlexNet and the VGGNet (both the 16-layer

and 19-layer models), provided by the MatConvNet

library (Vedaldi and Lenc, 2014). To demonstrate the

importance of reversal invariance, we also train another

version of the AlexNet, in which we do not add re-

versal data augmentation in the training process. The

top-5 recognition error rate on the ILSVRC2012 val-

idation set increases by about 2% (19.9% vs. 21.9%).

Most often, it is reasonable to pre-process the test-

ing image according to the way of network training. For

the AlexNet, we simply resize each image to 227×227

pixels and feed it into the network. In the original test-

ing process (Krizhevsky et al, 2012), the image is resized

to 256×256 and five sub-images are cropped at different

positions and the average response is computed. While

this strategy improves the accuracy consistently, we

do not use it so that the feature extraction stage is

accelerated. For the VGGNet-16 and VGGNet-19,

we maximally preserve the aspect ratio of the input

image, constrain the width and height divisible by 32

(the down-sampling rate), and the number of pixels

is approximately 5122. Such a strategy improves the

performance of deep features significantly, compared to

resizing all images to 224×224 pixels. After the neuron

responses are computed, we extract the features from
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Model C256 L-21 I-67 S-397 P-37 A-100 F-102 B-200

AlexNet (w/o AUGM), ORIG 67.69 93.81 53.91 41.01 76.95 44.68 84.56 43.43
AlexNet (w/o AUGM), AVG 70.39 95.74 58.10 44.47 79.60 52.74 87.17 47.98
AlexNet (w/o AUGM), MAX 70.17 95.64 57.77 44.19 79.40 53.06 86.88 47.82

AlexNet (w/ AUGM), ORIG 70.48 95.07 57.78 44.77 80.85 49.34 87.27 47.17
AlexNet (w/ AUGM), AVG 71.75 95.55 59.76 46.42 81.79 53.89 88.34 49.28
AlexNet (w/ AUGM), MAX 71.57 95.50 59.45 46.24 81.55 53.86 88.26 49.15

VGGNet-16 (w/ AUGM), ORIG 82.69 95.71 75.78 60.43 93.09 67.18 93.69 71.62
VGGNet-16 (w/ AUGM), AVG 83.09 96.02 76.06 61.50 93.31 68.20 94.01 72.66
VGGNet-16 (w/ AUGM), MAX 83.12 95.83 75.93 61.39 93.25 68.37 93.97 72.73

VGGNet-19 (w/ AUGM), ORIG 83.51 95.10 75.49 61.30 93.10 68.20 93.57 71.70
VGGNet-19 (w/ AUGM), AVG 83.90 95.07 75.93 62.40 93.17 69.31 93.83 72.55
VGGNet-19 (w/ AUGM), MAX 83.90 94.98 75.83 62.25 93.12 69.44 93.84 72.59

SIFT+LCS, original 58.77 93.64 63.17 48.35 60.24 74.61 83.53 47.61
Max-SIFT+LCS 59.21 94.13 64.12 49.39 62.80 77.54 85.82 49.93
SIFT+LCS, w/ RIDE 60.25 94.71 64.93 50.12 63.49 78.92 86.45 50.81

Chatfield et.al (Chatfield et al, 2014) 77.61 − − − − − − −
Donahue et.al (Donahue et al, 2014) − − − 40.94 − − − 64.96
Razavian et.al. (Razavian et al, 2014) − − 69.0 − − − 86.8 61.8
Zeiler et.al (Zeiler and Fergus, 2014) 74.2 − − − − − − −
Zhou et.al. (Zhou et al, 2014) − − 69.0 54.3 − − − −
Krause et.al. (Krause et al, 2015) − − − − − − − 82.8
Lin et.al. (Lin et al, 2015) − − − − − − − 80.26
Qian et.al. (Qian et al, 2015) − − − − 81.18 − 89.45 67.86
Xie et.al. (Xie et al, 2015a) − 94.71 70.13 54.87 90.03 − 86.82 62.02

Table 5: Classification accuracy (%) without or with reversal-invariant deep features. We also list the results of the

BoF model (please refer to Table 3) and several recent works using deep features for comparison. All our results

are obtained with the fc-6 features (4096D) after ReLU activation.

each layer by average-pooling over all spatial positions.

Throughout the rest part, we use the features extracted

from the fc-6 layer, activated by ReLU (Krizhevsky

et al, 2012). These feature vectors are `2-normalized

and sent to LIBLINEAR (Fan et al, 2008), a scalable

SVM implementation, with the slacking parameter C =

10. Averaged accuracy by category is reported. Results

are summarized in Table 5.

5.1.3 Discussions

First, it is obvious that feature quality, reflected by

classification accuracy, is improved with data augmen-

tation techniques, either in the training stage (reversing

each training sample with the probability of 50%) or in

the testing stage (computing the average or maximal

neuron responses on an image and its reversed copy),

which reveals the importance or reversal invariance in

training CNN models and transferring CNN features.

In most cases, Avg-Deep works slightly better than

Max-Deep, whereas Max-Deep is often faster, since the

feature vector contains more 0-entries in this situation.

Let us take the results produced by the AlexNet

as an example. On the one hand, when the network is

trained with both original and reversed samples, the

validation accuracy on ILSVRC2012 is improved by

about 2%, and, consequently, consistent accuracy gain

on each dataset is obtained. On the other hand, both

Avg-Deep and Max-Deep boost the classification ac-

curacy, sometimes even by a large margin, e.g., more

than 8% on the Aircraft-100 dataset. Even when the

network is trained with data augmentation, Avg-Deep

and Max-Deep still improve the classification rate con-

sistently, although the gain becomes relatively smaller

(approximately 2% on the Aircraft-100 dataset) due

to the marginal effect. Considering that in most cases

the baseline is already high, meanwhile both Avg-Deep

and Max-Deep are extremely easy to implement, the

accuracy gain is significant yet effortless to get.

To compare with the BoF model with handcrafted

descriptors, we also copy a part of Table 3 here. We can

see that, in most cases, deep features outperform BoF

significantly, except in the Aircraft-100 dataset: this

set contains 100 aircraft models which are rigid (suit-

able for handcrafted descriptors) and do not appear in

the pre-training set (the ILSVRC2012 dataset) of the

deep networks. The BoF model obtains higher accuracy

only in this dataset. In contrast, in the Pet-37 dataset,

all the objects (cats or dogs) are deformable and the pre-

training set contains a lot of these concepts, therefore

the performance of deep features is dominant to that of

the BoF model. Finally, we observe that the reported
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accuracy on the Bird-200 dataset is inferior to some

recent publications, mainly because we do not use part-

based models, which are crucial for classifying birds.

It is instructive to note that the accuracy gain brought

by reversal invariance differs from case to case. For

example, on the Aircraft-100 and Bird-200 datasets,

the accuracy gain is impressive (> 1% using VGGNet-

19), however in the LandUse-21 and Pet-37 datasets,

it is less significant (< 0.2%). The reason lies in the

intrinsic property of the datasets and their relation-

ship with the pre-training data. The orientation of an

aircraft or a bird is more significant, and also more

meaningful in visual recognition, than that of a scene

captured from the sky. Moreover, all the above networks

are pre-trained with the ILSVRC2012 dataset, which

contains a large number of cat and dog images (but no

aircraft images), therefore it is easier to achieve reversal

invariance when the testing image contains a similar

visual concept.

The above experiments suggest that designing re-

versal invariance also helps to improve the quality of

deep features. In what follows, we will design intrinsic

reversal-invariant convolution modules, i.e., Avg-Conv

and Max-Conv, which lead to a more direct way of

generating reversal-invariant deep features. These two

strategies will be compared in Section 5.3.

5.2 Reversal-Invariant Convolution (RI-Conv)

5.2.1 Average-Conv and Max-Conv

As an alternative solution to post-processing deep fea-

tures towards reversal invariance, we show that directly

training a reversal-invariant deep CNN is possible and

more efficient. Here, we call a CNN model reversal-

invariant if it produces symmetric neural responses on

each pair of symmetric images, i.e., for an arbitrary

image I, taking I and IR as the input, the neuron re-

sponses on each layer of the pre-trained network M,

i.e., fl(I;M) and fl
(
IR;M

)
, are symmetric to each oth-

er: fRl (I;M) = fl
(
IR;M

)
. In such a network, when we

extract features on a fully-connected layer (e.g., fc-6 in

the AlexNet), the original and reversed outputs are

exactly the same since the spatial resolution is 1 × 1.

If the features are extracted on an earlier layer (e.g.,

conv-5 in the AlexNet), we can also achieve reversal in-

variance by performing average-pooling or max-pooling

the responses over all the spatial locations, similar to

the strategy used in Section 5.1 and some previous

publications (He et al, 2015).

The key to constructing a reversal-invariant CNN

model is to guarantee that all the network layers are

performing symmetric operations. Among the frequent-

ly used network operations (e.g., convolution, pooling,

normalization, non-linear activation, etc.), only convo-

lution is non-symmetric, i.e., a local patch and its re-

versed copy may produce different convolution outputs.

We aim at designing a new reversal-invariant convolu-

tion operation to replace the original one.

Mathematically, let l be the index of a convolution

layer withKl convolution kernels, and fl−1
.
= fl−1(I;M)

is the input of the l-th layer. θl ∈ RWl×Hl×Kl and bl ∈
RKl are the weighting and bias parameters, respective-

ly. The convolution operation takes each small patch

f
(a,b)
l−1 with the same spatial scale as the kernels, com-

putes its inner-product with each kernel, and adds the

bias to the result. For the k-th kernel, k = 1, 2, . . . ,Kl,

we have:

f
(a,b,k)
l (I;M) =

〈
f
(a,b)
l−1 ,θ

(k)
l

〉
+ b

(k)
l , (5)

where 〈·, ·〉 denotes the inner-product operation.

Inspired by the reversal-invariant deep features, re-

versal invariance is achieved if we perform a symmetric

operation on the neuron responses from a patch and its

reversed copy. Again, we take the element-wise average

and maximal responses, leading to the Avg-Conv and

the Max-Conv formualtion:

r
(a,b,k)
l,AVG (I;M) =

1

2

[
f
(a,b,k)
l (I;M) + f

(a,b,k)
l

(
IR;M

)]
=

1

2

[〈
f
(a,b)
l−1 ,θ

(k)
l

〉
+
〈
f
(a,b),R
l−1 ,θ

(k)
l

〉]
+ b

(k)
l

=

〈
1

2

[
f
(a,b)
l−1 + f

(a,b),R
l−1

]
,θ

(k)
l

〉
+ b

(k)
l , (6)

r
(a,b,k)
l,MAX(I;M) = max

{
f
(a,b,k)
l (I;M) , f

(a,b,k)
l

(
IR;M

)}
= max

{〈
f
(a,b)
l−1 ,θ

(k)
l

〉
,
〈
f
(a,b),R
l−1 ,θ

(k)
l

〉}
+ b

(k)
l . (7)

Since Avg-Conv and Max-Conv simply perform the

corresponding pooling operation on two convoluted da-

ta blobs, it is straightforward to derive the formula of

back-propagation. In the case of Avg-Conv, we can ac-

celerate both forward-propagation and back-propagation

by modifying the input data (the original input f
(a,b)
l−1

is replaced by the average of f
(a,b)
l−1 and f

(a,b),R
l−1 ), thus

the time-consuming convolution process is performed

only once. In the case of Max-Conv, we need to create

a mask blob to store the index of forward-propagated

units, as in max-pooling layers.

In what follows, we will plug the reversal-invariant

convolution modules into the conventional CNN model-

s. We name a CNN model RI-CNN if all the convolu-

tion layers in it, including the fully-connected layers, are

reversal-invariant. We start with discussing its property

of reversal invariance, and the cooperation with data

augmentation strategies.
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5.2.2 Reversal Invariance and Data Augmentation

It is obvious that both Avg-Conv and Max-Conv are

symmetric operations. We prove that an RI-CNN is

reversal-invariant, i.e., the feature vectors extracted from

an image and its reversed copy are identical.

We use mathematical induction, with the starting

point that an image and its reversed copy are symmet-

ric to each other, i.e., fR0 (I;M) = f0
(
IR;M

)
. Now,

given that fRl−1(I;M) = fl−1
(
IR;M

)
, we derive that

fRl (I;M) = fl
(
IR;M

)
, if both of them are comput-

ed with a reversal-invariant convolution operation on

the l-th layer. For this, we assume that when padding

(increasing data width/height with 0-valued stripes) is

used, the left and right padding width must be the

same, so that the geometric symmetry is guaranteed.

Consider a patch f
(a,b)
l−1 (I;M). According to sym-

metry, we have f
(a,b),R
l−1 (I;M) = f

(Wl−1−a−1,b)
l−1

(
IR;M

)
,

where (Wl−1 − a− 1, b) is the left-right symmetric po-

sition to (a, b). These two patches are fed into the k-th

convolution kernel θk, and the outputs are f
(a,b,k)
l (I;M)

and f
(Wl−1−a−1,b,k)
l

(
IR;M

)
. These two scalars equal

to each other since both Avg-Conv and Max-Conv are

symmetric, thus the neuron responses on the l-th layer

are also symmetric: fRl (I;M) = fl
(
IR;M

)
. This fin-

ishes the induction, i.e., the neuron responses on each

layer are symmetric.

We point out that such a good property in feature

extraction can be a significant shortcoming in the net-

work training process, since an RI-CNN model suffers

from the difficulty to cooperate with “reversal data

augmentation”. Here by reversal data augmentation we

mean to reverse each training sample with the probabil-

ity of 50%. As an RI-CNN model generates exactly the

same (symmetric) neuron responses for an image and

its reversed copy, these two training samples actually

produce the same gradients with respect to the network

parameters on each layer. Consequently, reversing a

training image cannot provide any “new” information

to the network training process. As we shall see in

Section 5.2.5, using reversal-invariant convolution op-

erations increases the capacity of the CNN model, the

decrease of training data may cause over-fitting, which

harms the generalization ability of the model.

To deal with, we intentionally damage the reversal-

invariant property of the network in the training pro-

cess. For this, we crop the training image into a smaller

size, so that the geometric symmetry does not hold

any more. Taking the AlexNet as an example. The

original input image size is 227×227, in which geometric

symmetry holds on each convolutional/pooling layer. If

the size becomes S′ × S′ where S′ is a little smaller

than 227, then in some layers, the padding margin on

CIFAR10 w/o AUGM w/ AUGM
LeNet 18.11± 0.20 16.99± 0.22
LeNet-AVG 21.01± 0.35 20.99± 0.26
LeNet-MAX 16.93± 0.18 16.64± 0.17

CIFAR100 w/o AUGM w/ AUGM
LeNet 46.08± 0.26 44.55± 0.10
LeNet-AVG 47.79± 0.41 47.55± 0.31
LeNet-MAX 43.90± 0.19 43.65± 0.16

Table 6: CIFAR classification error rate (%) with

respect to different training strategies.

the left side is not the same as that on the right side.

By the way, S′ shall be at least 199, so that the input

of the fc-6 layer still has a spatial resolution of 6 × 6.

In practise, we simply use S′ = 199, so that we can

generate as many training images as possible. As we

shall see in Section 5.2.4, this strategy slightly improves

the baseline accuracy.

5.2.3 CIFAR Experiments

The CIFAR10 and CIFAR100 datasets (Krizhevsky

and Hinton, 2009) are subsets of the 80 million tiny

images database (Torralba et al, 2008). Both of them

have 50000 training samples and 10000 testing sam-

ples, each of which is a 32× 32 color image, uniformly

distributed among the categories (they have 10 and

100 categories, respectively). It is a popular dataset

for training relatively small-scale neural networks for

simple recognition tasks.

We use a modified version of the LeNet (LeCun

et al, 1990). A 32×32×3 image is passed through three

units consisting of convolution, ReLU and max-pooling

operations. Using abbreviation, the network configura-

tion for CIFAR10 can be written as:

[C5(S1P2)@32-MP3(S2)]-[C5(S1P2)@32-MP3(S2)]-

[C5(S1P2)@64-MP3(S2)]-FC10.

On CIFAR100, we replace the final layer as FC100 in

order to categorize 100 classes. A 2-pixel wide padding

is added to each convolution operation so that the width

and height of the data remain unchanged. We do not

produce multiple sizes of input images, since the LeNet

is not symmetric itself: on each pooling layer, the left

padding margin is 0 while the right margin is 1. We

apply 120 training epoches with the learning rate 10−3,

followed by 20 epoches with the learning rate 10−4, and

another 10 epoches with the learning rate 10−5.

We train six different models individually, i.e., train-

ing a network with the original version of convolution,

Avg-Conv or Max-Conv (three choices), and using data

augmentation (probabilistic training image reversal) or

not (two choices). We name these models as LeNet,
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LeNet-AUGM (“AUGM” for augmentation), LeNet-

AVG, LeNet-AVG-AUGM, LeNet-MAX and LeNet-

MAX-AUGM, respectively. For instance, LeNet-MAX

indicates the network with Max-Conv but without data

augmentation. To reveal the statistics significance, we

train 5 independent models in each case, and report the

average accuracy.

Results are summarized in Table 6. One can observe

similar phenomena on both datasets. First, Avg-Conv

causes dramatic accuracy drop, and we will analyze

the reason of bad performance in Section 5.2.5. On the

other side, data augmentation and Max-Conv improve

the recognition accuracy consistently, In the CIFAR10

dataset, both data augmentation and Max-Conv boost

the accuracy by about 1%, and these two strategies co-

operate with each other to beat the baseline by 1.5%. In

the CIFAR100 dataset, Max-Conv alone contributes

a more-than-2% accuracy gain, which is higher than

the 1.5% gain by data augmentation, and the cooper-

ation obtains a nearly 2.5% gain. As a last note, the

improvement on CIFAR100 is much larger than that

on CIFAR10, which indicates that CIFAR100 is a

more difficult dataset (with more categories), and that

Max-Conv enlarges the capacity of LeNet to fit this

challenging recognition task.

5.2.4 ILSVRC2012 Classification Experiments

We also evaluate our model on the ILSVRC2012 clas-

sification dataset (Russakovsky et al, 2015), a subset

of the ImageNet database (Deng et al, 2009) which

contains 1000 object categories. The training set, vali-

dation set and testing set contain 1.3M, 50K and 150K
images, respectively. We use the AlexNet (provided

by the CAFFE library (Jia et al, 2014), sometimes

referred to as the CaffeNet). The input image is of size

199×199, randomly cropped from the original 256×256

image (see Section 5.2.2). The AlexNet structure is

abbreviated as:

[C11(S4)@96-MP3(S2)-LRN]-[C5(S1P2)@256-

MP3(S2)-LRN]-[C3(S1P1)@384]-[C3(S1P1)@384]-

[C3(S1P1)@256-MP3(S2)]-FC4096-D0.5-FC4096-

D0.5-FC1000.

Following the setting of CAFFE, a total of 450000

mini-batches (approximately 90 epoches) are used for

training, each of which has 256 image samples, with the

initial learning rate 0.01, momentum 0.9 and weight

decay 0.0005. The learning rate is decreased to 1/10

after every 100000 mini-batches.

We individually train four models, i.e., using origi-

nal convolution or Max-Conv, using data augmentation

or not. Similarly, we name these variations as AlexNet,

ILSVRC2012, top-1 w/o AUGM w/ AUGM

AlexNet 43.05± 0.19 42.52± 0.17
AlexNet-MAX 42.16± 0.05 42.10± 0.07

ILSVRC2012, top-5 w/o AUGM w/ AUGM

AlexNet 20.62± 0.08 19.52± 0.05
AlexNet-MAX 19.42± 0.03 19.12± 0.07

Table 7: ILSVRC2012 classification error rate (%)

with respect to different training strategies.

AlexNet-AUGM, AlexNet-MAX and AlexNet-MAX-

AUGM, respectively. Considering the large computa-

tional costs, we only train two individual networks for

each setting. We do not train models based on Avg-

Conv according to the dramatic accuracy drop in CI-

FAR experiments.

Result are summarized in Table 7. As we have s-

lightly modified the data augmentation strategy, the

baseline performance (80.48% top-5 accuracy) is slight-

ly better than that reported using the standard setting

(approximately 80.1% top-5 accuracy 1). With Max-

Conv, the top-5 accuracy is boosted to 80.88%, which

show that Max-Conv and data augmentation cooperate

to improve the recognition performance. We emphasize

that the 0.40% accuracy gain is not small, given that

the network structure is unchanged. Meanwhile, the

conclusions drawn in CIFAR experiments also hold in

this large-scale image recognition task.

5.2.5 Discussions

The success of data augmentation and Max-Conv im-

plies that it is instructive to force the network to learn

reversal invariance by constructing corresponding spe-

cific structures. This part provides several discussions

based on the experimental results.

We first provide another perspective on the behav-

ior of reversal-invariant convolution. Let us consider a

convolution layer (the l-th layer), in which we compute

the inner product of a patch f
(a,b)
l−1 (probably together its

reversed copy) and each of the Kl convolution kernels

θk, k = 1, 2, . . . ,Kl. Since inner production measures

the similarity between f
(a,b)
l−1 and θk. the patches with

similar appearance to θk will get a significant neuron

response. In this situation, θk behaves like a codeword

and Kl is the codebook size. Meanwhile, we note that

image patterns are often left-right asymmetric, e.g., a

slash may have either a positive or a negative angle.

Without reversal-invariant convolution, we need two

different codewords to encode a visual pattern and its

1 https://github.com/BVLC/caffe/wiki/

Models-accuracy-on-ImageNet-2012-val
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Fig. 7: Error rate curves and training/testing loss curves on the CIFAR datasets and the ILSVRC2012 dataset.

We report top-1 and top-5 error rates in CIFAR and ILSVRC2012, respectively.

reversed version, which significantly decreases the ca-

pacity of the limited codebook size (Kl), and, conse-

quently, the capacity of the network. Reversal-invariant

convolution brings the opportunity for each local patch

to be compared with a codeword and its reversed copy,

so that equivalently, we need only one codeword to store

a visual pattern and its reversed version.

Now, it is easy to see the difference between Avg-
Conv and Max-Conv. Both of them compute the simi-

larity between each codeword and each original/reversed

local patch, after that, Avg-Conv considers the average

response and Max-Conv gets the larger response. Which

means that, in the context of average-convolution, a

local patch can get a high response if it is similar to

both the codeword itself and its reversed copy, which is

not reasonable since image patterns are often left-right

asymmetric. In opposite, Max-Conv animates those lo-

cal patches which are similar to either the original or

reversed codeword. Therefore in CIFAR experiments,

Avg-Conv causes dramatic accuracy drop, while Max-

Conv boosts the performance significantly. This is the

reason why we do not train Avg-Conv models in ILSVR-

C2012 experiments.

To take a closer observation on the network train-

ing with data augmentation and/or reversal-invariant

convolution, we plot the testing error rate as well as

the training/testing loss with respect to the number of

training epoches. Note that both strategies augment

the training data, i.e., data augmentation implicitly

increases the number of training samples, meanwhile

reversal-invariance convolution makes it possible to “see”

more variations of local patches. From the results shown

in Figure 7, we can see that using data augmentation

slows down the network training since it introduce reg-

ularization to the training process. However, with Max-

Conv, network training converges faster since the net-

work capacity is significantly enlarged. These two s-
trategies cooperate with each other to make full use of

the enlarged model capacity, meanwhile prevent over-

fitting.

5.3 Model Comparison

We compare the two strategies discussed in this section,

i.e., training a non-reversal-invariant deep network and

post-processing deep features for reversal invariance,

and training a reversal-invariant deep network which

generates reversal-invariant deep features directly.

We use the networks trained in the previous experi-

ments, namely AlexNet-AUGM and AlexNet-MAX-

AUGM, to extract deep features on the image classifi-

cation dataset used in Section 5.1. Results are summa-

rized in Table 8. We observe that, features extracted

from AlexNet-MAX produce consistently higher accu-

racy than the original features extracted from AlexNet,

comparable to the Avg-Deep and Max-Deep features
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Model C256 L-21 I-67 S-397 P-37 A-100 F-102 B-200

AlexNet, ORIG feature 70.75 95.14 58.04 45.12 81.02 49.89 87.39 47.53
AlexNet, AVG feature 71.97 95.60 60.01 46.64 81.98 54.10 88.40 49.53
AlexNet, MAX feature 71.81 95.55 59.77 46.47 81.73 54.03 88.29 49.42

AlexNet-MAX, ORIG feature 71.78 95.67 59.91 46.47 81.92 54.11 88.17 49.55

Table 8: Classification accuracy (%) comparison with deep features extracted using different strategies. Note that

the first part of this table is not the same as in Table 5, since we have used a different way of training AlexNet

(see Section 5.2.2). With Max-Conv, we do not need to post-process the feature vector since it is naturally reversal-

invariant.

from AlexNet. Therefore, we can observe the benefit

of designing intrinsically reversal-invariant modules.

5.4 Summary

In this part, we generalize the idea of reversal-invariant

representation from the BoF model to deep CNNs, and

verify that reversal invariance is also important in both

deep feature extraction and deep network training. We

propose two effective algorithms (RI-Deep and RI-

Conv), both of which are easy to implement. First,

computing neuron responses on a testing image as well

as its reversed version makes it possible to extract reversal-

invariant deep features from a pre-trained network which

is not reversal-invariant. Second, a small modification in

convolution leads to a deep network which is intrinsical-

ly reversal-invariant, which has larger capacity yet un-

changed complexity, meanwhile makes the feature ex-

traction more effective. Reversal-invariant convolution

also cooperates well with data augmentation, creating

the possibility of applying deep neural networks to even

larger databases.

6 Conclusions

It is important to consider reversal invariance in or-

der to achieve more robust image representation, but

conventional BoF and CNN models often lack of an

explicit implementation of reversal invariance. This pa-

per presents a basic idea that designs reversal-invariant

local patterns, such as Max-SIFT and RIDE (local

descriptors), RI-Deep (deep features) and RI-Conv

(convolution), so that reversal invariance is guaranteed

in the representation based on the BoF and CNN mod-

els. The proposed algorithms are very easy to imple-

ment yet efficient to carry out, meanwhile producing

consistent accuracy improvement. The success of our al-

gorithms also reveals that designing invariance directly

is often more effective than using data augmentation,

and that these two strategies can often cooperate with

each other towards better image representation.

A Orientation Estimation of Dense SIFT

In this section, we aim at proving an approximated estimation
of SIFT orientation based on its local gradient values. The
approximation is used in Section 4.2.1 of the main article.

A.1 The Implementation of SIFT

The implementation of SIFT is based on the original pa-
per (Lowe, 2004). In this subsection, we briefly review the
process of orientation assignment and descriptor representa-
tion. Part of the statements refer to (Lowe, 2004).

First let us assume that the assignment of descriptor scale
is finished, which fits the case of dense sampling (Bosch et al,
2006) where all the descriptors have the same, fixed window
size. Denote an image as I = [a(x, y)]W×H . The gradient

magnitude, m(x, y), and orientation, θ(x, y), is pre-computed
for each pixel:{
m(x, y) =

[
∆x(x, y)2 +∆y(x, y)2

]1/2
θ(x, y) = arctan [∆y(x, y) /∆x(x, y)]

, (8)

in which ∆x(x, y) and ∆y(x, y) are defined as:{
∆x(x, y) = a(x+ 1, y)− a(x− 1, y)
∆y(x, y) = a(x, y + 1)− a(x, y − 1)

. (9)

The magnitude and orientation on each pixel are then
used to estimate the dominant orientation of that descriptor.
An orientation histogram is constructed using the gradient
orientation of the pixels within a region around the keypoint.
Each sample added to the histogram is weighted by its gradi-
ent magnitude and by a Gaussian-weighted circular window
with a smoothing parameter σ that is 1.5 times that of the
scale of the keypoint. Peaks in the orientation histogram
correspond to dominant orientations of local gradients. The
highest peak in the histogram is detected, and then any other
local peak that is within 80% of the highest peak is used to
also create a keypoint with that orientation. Therefore, for
locations with multiple peaks of similar magnitude, there will
be multiple keypoints created at the same location and scale
but different orientations.

The above method works well on image matching and
retrieval (Lowe, 2004), but we do not need to assign multiple
orientations for a descriptor in the classification tasks. As an
alternation, we can also estimate a unique accumulated orien-
tation using the following method. Every gradient magnitude
is decomposed along both x and y axes, i.e.,{
mx(x, y) = m(x, y)× cos θ(x, y)
my(x, y) = m(x, y)× sin θ(x, y)

, (10)
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and all the decomposed components are accumulated on x
and y axes, respectively:{
Gx =

∑
x,ymx(x, y)

Gy =
∑

x,ymy(x, y)
. (11)

Finally we get a 2-D vector G = (Gx, Gy)> indicating the
orientation of that descriptor.

Of course, we can also follow the orientation assignment
of original SIFT implementation (Lowe, 2004). In practise,
we have implemented RIDE with both dominant and accu-
mulated orientations, and found that the latter one is slightly
better. Another reason why we prefer the accumulated orien-
tation is that it is a continuous value in [0, 2π), which makes
it easier for us to design the RIDE-8 algorithm.

In descriptor representation, we inheritm(x, y) and θ(x, y)
values of each pixel. The implementation of dense SIFT (Vedal-
di and Fulkerson, 2010) does not rotate the descriptor region.
The region of a descriptor is partitioned into 4× 4 grids, and
an 8-bin orientation histogram is constructed in each grid.
The central orientation value of the j-th bin is θj = jπ/4,
j = 0, 1, . . . , 7. Then the gradient magnitude of each pixel is
then trilinearly quantized onto at most two bins. By trilinear
we mean that if the orientation of a pixel, θ(x, y), is closest
to two standard orientation, say, θa < θ(x, y) < θb, then the
coefficients assigned to the bins are:
ma = m(x, y)×

θb − θ(x, y)

θb − θa
mb = m(x, y)×

θ(x, y)− θa
θb − θa

. (12)

An 8-dimensional orientation histogram is thereafter obtained
in each of the 4×4 grids. Finally, the 128-dimensional descrip-
tor is constructed by concatenating the histogram vectors
from all 4× 4 grids.

A.2 Orientation Estimation

The main goal of this part is to prove the next theorem for
orientation approximation:

Theorem: Given a densely sampled SIFT descriptor d =
(dk, θk)k=1,2,...,128, where dk and θk are the gradient value
and the histogram orientation for the k-th dimension, respec-
tively. Its accumulated orientation θ approximately satisfies:

tan θ =
Gy(x, y)

Gx(x, y)
=

∑
x,ymy(x, y)∑
x,ymx(x, y)

≈
∑

kdk sin θk∑
kdk cos θk

. (13)

For this, we only need to prove the following lemma:
Lemma: When a gradient value (m, θ) with an arbitrary

orientation is quantized as (ma, θa) and (mb, θb) (θa < θ <
θb) with the trilinear interpolation, i.e., using (12):
ma = m×

θb − θ
θb − θa

mb = m×
θ − θa
θb − θa

, (14)

the impacts on SIFT descriptor representation, before and
after quantization, are approximately the same, i.e.,{
m cos θ ≈ ma cos θa +mb cos θb
m sin θ ≈ ma sin θa +mb sin θb

. (15)

Proof: we only prove the first formula, since the proof of
the other one is very similar.

Using (14) to substitute ma and mb in (15) yields:

ma cos θa +mb cos θb

= m×
θb − θ
θb − θa

× cos θa +m×
θ − θa
θb − θa

× cos θb

= m×
(
θb − θ
θb − θa

× cos θa +
θ − θa
θb − θa

× cos θb

)
. (16)

Let us make the approximation that:
θb − θ
θb − θa

≈
sin(θb − θ)
sin(θb − θa)

θ − θa
θb − θa

≈
sin(θ − θa)

sin(θb − θa)

, (17)

thus (16) becomes:

ma cos θa +mb cos θb

= m×
θb − θ
θb − θa

× cos θa +m×
θ − θa
θb − θa

× cos θb

≈ m×
[

sin(θb − θ)
sin(θb − θa)

× cos θa +
sin(θ − θa)

sin(θb − θa)
× cos θb

]
=
m× [sin(θb − θ) cos θa + sin(θ − θa) cos θb]

sin(θb − θa)

=
m× (sin θb cos θ cos θa − cos θ sin θa cos θb)

sin(θb − θa)

=
m× cos θ × (sin θb cos θa − cos θb sin θa)

sin(θb − θa)

= m cos θ,

which finishes the proof. �
We provide a discussion on the approximation (17). Giv-

en that θb − θa = π/4, the maximum relative error of the
approximation is less than 11%. Let us define f(x) = sin x

x
.

Since limx→0f(x) = 1 and f(x) is a monotonically decreasing
function, large errors of (17) appear when θb − θ or θ− θa is
quite small, in which case the ma or mb is also quite small
thus the absolute estimation error is ignorable. Therefore, we
can conclude that the approximation (17) is reasonable.

B Generalized RIDE: RIDE-4 and RIDE-8

In this section, we provide a detailed discussion of generalizing
RIDE to dealing with more types of reversal and rotation
invariance. It is a supplementary explanation to Section 4.2.3
of the main article.

B.1 RIDE-2, RIDE-4 and RIDE-8

We start from an alternative description of the RIDE-2, RIDE-
4 and RIDE-8 algorithms.

Recall that we have computed a 2-D global gradient vec-
tor G = (Gx, Gy)>, in which Gx and Gy estimate the hor-
izontal and vertical orientation of a descriptor, respectively.
If it is constrained that Gx > 0 holds for a descriptor d,
we need to generate a left-right reversed version of that de-
scriptor, dR, and select the one in d and dR that satisfies
Gx > 0. Such a descriptor, denoted as r2(d), is left-right
reversal-invariant. If Gx = 0 for d, both d and dR satisfy the
condition. In such cases, we choose the one with the larger
sequential lexicographic order.

If we need to achieve upside-down reversal invariance, the
value Gy should also be constrained, i.e., Gy > 0. We then
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Algorithm Aircraft-100-1 Aircraft-100-2 Aircraft-100-4 Aircraft-100-8

ORIG 58.75 48.52 39.33 25.11
RIDE-2 55.22 55.22 43.20 29.71
RIDE-4 47.44 47.44 47.44 35.41
RIDE-8 43.47 43.47 43.47 43.47

Table 9: Classification accuracy (%) of different versions of RIDE on different versions of the Aircraft-100 dataset.

generate 3 other versions of a descriptor d, namely d0, d1,
d2 and d3, in which d0 is just d, d1 is the left-right reversed
version of d, d2 is the upside-down reversed version of d,
and d3 is the left-right and upside-down reversed version of
d. Obviously, there exists at least one of them that satisfies
both Gx > 0 and Gy > 0. If more than one candidates satisfy
the conditions, we choose the one with the largest sequential
lexicographic order. Such a descriptor, denoted as r4(d), is
both left-right and upside-down invariant.

The last type of variant comes from rotating the descrip-
tor by 90◦. Adding the 90◦-rotation option into left-right and
upside-down reversals obtains up to 8 descriptor versions. We
generate all these variants and select one from them by con-
straining Gx > Gy > 0, i.e., Gx > 0, Gy > 0 and Gx > Gy.
If more than one candidates satisfy the conditions, we choose
the one with the largest sequential lexicographic order. Such
a descriptor, denoted as r8(d), is invariant through all the
reversal and rotation operations.

We provide an intuitive explanation of RIDE-2, RIDE-4
and RIDE-8 algorithms. All the reversal and rotation opera-
tions change the orientation of a descriptor correspondingly.
RIDE-2, in which Gx > 0, limits the orientation to falling into
an interval of a 180◦ range. This range is further shrunk into
90◦ in RIDE-4, and 45◦ in RIDE-8. A descriptor with any
orientation can be aligned into the range with one or a few
reversal or rotation variations, and in this way we cancel out
the reversal and rotation operations and achieve the desired
reversal invariance.

B.2 Experiments

We evaluate the original descriptors with RIDE-2, RIDE-4
and RIDE-8 on the Aircraft-100 dataset (Maji et al, 2013).
We use four different versions of the dataset. The aligned
version, denoted as Aircraft-100-1, is the one in which all
the objects are manually aligned to the right. Other three
versions, denoted as Aircraft-100-2, Aircraft-100-4 and
Aircraft-100-8, are generated by randomly assigning one
of 2, 4 and 8 image transformations to each image in the
aligned dataset. Here, 2 transformations include unchanged
and the left-right reversal, 4 transformations are constructed
by adding the option of upside-down reversal to 2 transforma-
tions, and 8 transformations are constructed by adding the
option of 90◦ rotation to 4 transformations. The property
of Aircraft-100-2 is very similar to the original (unaligned)
version of the Aircraft-100 dataset.

The basic setting follows what is used in the main article
(Section 4.6.1). We only use the SIFT descriptor, and do not
use spatial pyramids in the following experiments. The clas-
sification results are summarized in Table 9. One can observe
that on the Aircraft-100-1 dataset, the system with original
descriptors (ORIG) works best. After original descriptors are
processed by RIDE, classification accuracy drops dramatical-
ly. The underlying reason is that RIDE harms the descriptive

power of original descriptors by performing a one-of-many
selection. The more candidates generated for selection, the
heavier accuracy drop is observed.

However, in the case of Aircraft-100-2, RIDE-2 works
better than ORIG. This implies that RIDE-2 captures the
left-right reversal invariance. Although the descriptive power
of SIFT is reduced, the benefit of reversal invariance is larger
than the loss in descriptive power. However, when we use
RIDE-4 and RIDE-8, the descriptive power continues to
drop but we do not obtain any new invariance, resulting
in the accuracy drop from RIDE-2 to both RIDE-4 and
RIDE-8. Similar results are also observed in the Aircraft-
100-4 dataset, i.e., RIDE-4 is just enough to capture left-
right and upside-down reversal. In Aircraft-100-8 dataset,
all the reversal and rotation variance might be encountered,
therefore RIDE-8 produces the highest accuracy.

The above experiments verify that RIDE increases the
robustness of descriptors but harms the descriptive power.
According to Table 9, one type of reversal/rotation variance,
if not captured, causes about 10% accuracy drop, meanwhile
performing RIDE to capture an unnecessary invariance causes
about 5% accuracy drop. Therefore it is not wise to cover
those unnecessary types of invariance: the best strategy is
to take what we need.

Consequently, we do not use RIDE-4 and RIDE-8 in all
the experiments presented in the main article, since all the
evaluated datasets, either on fine-grained object recognition
or scene understanding, often do not contain upside-down
reversed or 90◦-rotated objects. RIDE-2 produces the best
classification accuracy in such cases.
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