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ABSTRACT
Part-based Bag-of-Features (BoF) models such as Spatial
Pyramid Matching (SPM) play an important role in image
classification. Before sending the feature vectors into classi-
fiers for training and testing, it is required to normalize them
in order to approximately equalize ranges of the attributes and
make them have comparable effects in distance computation.
Although some works have been focused on general feature
normalization, we do not see any discussion on specialized
normalization algorithms for part-based BoF models.

In this paper, we fill in the blank with extensive experi-
ments and discussions. Based on solid normalization param-
eters (power and coefficient), we further study two straight-
forward part-based properties, i.e., the independent assump-
tion and the hierarchical-contribution assumption, to scale the
feature super-vectors separately. Finally, we test our algorith-
m on challenging image sets, i.e., Caltech101 and CUB-200-
2011, for general and fine-grained classification, and show its
efficiency, scalability and adaptability in both scenarios.

Index Terms— Part-Based Bag-of-Features Models, Im-
age Classification, Feature Normalization, Experiments.

1. INTRODUCTION

Large-scale image classification has been a hot topic for many
years. It is a challenge towards image understanding and im-
plies a wide range of real applications. Today, one of the most
popular methods of image classification is to represent images
with long super-vectors, and use a generalized classifier (such
as SVM [1]) for training and testing.

The Bag-of-Features (BoF) model [2] [3] is widely used
for image representation. It is a statistics-based model which
summarizes local features in a sparse vector. The major short-
comings of the BoF model come from the well-known gap
between low-level pixels and high-level concepts [4] [5]. In
recent years, new modules were proposed to bridge the se-
mantic gap and provide more robust image representations.
System with the state-of-the-art techniques [6] produces rela-
tively discriminative representation in terms of super-vectors.

Before using the super-vectors for classification, fea-
ture normalization is considered as an important data pre-
processing step to avoid attributes in greater numeric ranges
dominating those in smaller numeric ranges. Despite the
existing works on feature normalization applied to various
classification models, there still lacks a specialized algorithm
for part-based BoF models.

In this respect, we conduct an in-depth study on part-
based feature normalization by proposing several novel algo-
rithms and comparing them with baseline systems. We claim
a two-fold contribution. First, we formulate power and coef-
ficient, two normalization parameters, and show their tremen-
dous impact on classification accuracies in experiments. Sec-
ond, taking the part-based properties into consideration, we
develop specialized normalization approaches for part-based
BoF models. Integrating both techniques obtains an enhanced
algorithm to outperform the state-of-the-art models.

The rest of this paper is organized as follows. First, we
provide a brief overview of the BoF model in Section 2. Then
Section 3 proposes several novel algorithms for feature nor-
malization. After extensive experiments and discussions are
given in Section 4, we draw our conclusions in Section 5.

2. THE BAG-OF-FEATURES MODEL

The Bag-of-Features model starts from a raw image I:

I = (aij)W×H (1)

where aij is the pixel at position (i, j). For better local repre-
sentation, we extract a set of SIFT [7] descriptors D:

D = {d1,d2, . . . ,dM} (2)

where dm denotes the description vector of the m-th de-
scriptor. M is the total number of descriptors.

After descriptors have been extracted, they are quantized
to be compact. For this purpose, we train a codebook C,
which is a B×D matrix consisting of B vectors with dimen-
sion D, each of which is called a codeword. The codebook
size B, is thousands in classification tasks.
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Fig. 1. Illustrations of pooling matrices. Rows are pooling
bins, columns are basic regions, and shaded blocks are en-
tries with value 1. Above the dash line are basic pooling bins
(green), and below are high-level ones. (a): SPM [9], where
the basic regions are 16(4× 4) grids on the image plane, and
we manually set 2× 2 and 1× 1 grids as high-level bins. (b):
HPM [10], where the basic regions are semantic body parts of
birds, e.g., beak, nape, left/right wing, and high-level bins are
heuristically learned parts, e.g., neck (nape+throat).

Next, descriptors are quantized using the codewords. This
process is called coding, for we encode each descriptor as
a sparse vector using the Locality-constrained Linear Cod-
ing (LLC) [8] algorithm. Given a codebook with B code-
words, the encoded vector or feature vector would be a B-
dimensional code wm, which is named the corresponding vi-
sual word of descriptor dm. LetW be the visual word set:

W = {w1,w2, . . . ,wM} (3)

We aggregate the visual words using global max-pooling:

f = max
16m6M

wm (4)

and take f as the global representation vector of image I.
However, global pooling ignores spatial information,

which is very useful to image understanding. The state-
of-the-art image classification systems divide images into
smaller regions and construct a hierarchical structure for s-
patial context modeling. Successful cases include Spatial
Pyramid Matching (SPM) [9] and Hierarchical Part Matching
(HPM) [10]. After dividing the image (object) into U basic
regions, we use prior knowledge [9] or heuristic learning [10]
to define S spatial pooling bins for multi-level individual s-
tatistics. The corresponding relation between pooling bins
and basic regions are represented as an S × U pooling ma-
trix:

P = (psu)S×U (5)

where psu is either 1 (which means s-th pooling bin contains
u-th basic region) or 0 (otherwise). Standard pooling matrices
for SPM [9] and HPM [10] are plotted in Figure 1.

The individually pooled representation vectors are final-
ly concatenated as a super-vector:

F = (f1, f2, . . . , fS) (6)

which is the output of the part-based BoF model.

3. FEATURE NORMALIZATION

Feature normalization, or feature scaling, is a basic tech-
nique for data pre-processing. With a clear motivation to
approximately equalize the range and weight of input at-
tributes, researchers proposed various techniques to apply on
different classification models, such as Support Vector Ma-
chines [11] [12] [13], Naive Bayes Classifier [14], Hidden
Markov Model Estimation [15], Kernel Fisher Discriminant
Analysis [16], and even image retrieval systems [17].

3.1. Normalization Power and Coefficient

One of the simplest and most widely-used formulation is the
`p-normalization, which calculates the super-vector’s linear
projection on the `p-norm unit hyper-sphere:

F̃ =
F

‖F‖p
(7)

where ‖F‖p is the `p-norm: ‖F‖p = (
∑

F p
i )

1/p, and p is
named the normalization power. In most cases, we use SVM
for image classification. Since the formulation of SVM is
quite sensitive to the numerical ranges of input data, it is rea-
sonable to choose a proper normalization coefficient for ro-
bust feature super-vectors. For this, we modify (7) as:

F̃ = w × F

‖F‖p
(8)

where w is the normalization coefficient.
We plot the classification results using (8) in Figure 2.

Detailed settings are mentioned in Section 4. It is shown that
proper p and w are very important for normalization. Further,
we claim the ability of `1-normalization by showing its com-
parable performances with `2 and `∞, under a large coeffi-
cients w = 100 which is suitable for all powers. This refutes
the opinion that `1-normalization would cause classification
accuracies drop dramatically [8]. In later experiments, we
fix w = 100 for all normalization powers.

3.2. Separate Normalization by Parts

Till now, we make no efforts on designing specialized nor-
malization methods for part-based BoF models. If we assume
that each part contributes independently to the entire model
(the independent assumption), it is straightforward to keep
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Fig. 2. LLC [8] and EdgeGPP [6] classification results on
the Caltech101 Dataset using different normalization powers
p and coefficients w. w is dominant under `1-normalization.

the same `p-norm individually in all the pooling bins, which
leads in normalizing f1, f2, ..., fS in (6) separately:

f̃s =
w

S1/p

fs
‖fs‖p

, s = 1, 2, . . . S (9)

and concatenating f̃1, f̃2, ..., f̃S again:

F̃ =
(
f̃1, f̃2, . . . , f̃S

)
(10)

The modified normalization coefficient w
S1/p in (9) aims to

preserve ‖F‖p = w as it is in (8).

3.3. Hierarchical Weighting Scheme (HRC)

It is not always true that each part contributes equally. Most
often, high-level pooling bins consist of more basic regions
and therefore are more robust and discriminative. Denote ks
as the number of basic regions contained in s-th pooling bin,
and assume that s-th bin’s contribution is proportional to k

1/p
s

(the hierarchical-contribution assumption). Appending the
fixed constraint ‖F‖p = w obtains the equations system:{

wp
s ∝ ks∑S

s=1w
p
s = wp (11)

Solving (11) gives a group of new coefficients for part-wise
normalization, in which we enhance the spatial weights on
high-level pooling bins to emphasize global information.

4. EXPERIMENTAL RESULTS

This section shows experimental results on different part-
based BoF models: SPM [9] [6] on Caltech101 [18], and

accordion car_side trilobite leopard motorbike

anchor butterfly pyramid cougar_body pigeon

Fig. 3. Sample images from the Caltech101 dataset.

Table 1. Classification results on Caltech101 using different
models and normalization techniques The normalization co-
efficient w is set as 100 in all cases. The standard deviation
of each result is around 0.6%.

Algorithm LLC GPP EdgeGPP
No normalization 73.14 76.35 80.78
Global `1 73.91 76.26 80.86
Global `2 74.41 77.03 82.45
Global `∞ 73.25 76.47 80.89
Separate `1 71.99 75.20 78.05
Separate `2 73.68 75.47 81.24
Separate `∞ 73.39 76.43 80.93
Separate `1 + HRC 72.71 75.88 80.40
Separate `2 + HRC 74.31 76.86 83.19
Separate `∞ + HRC 73.89 76.55 81.37

HPM [10] on CUB-200-2011 [19]. To make comparison, we
keep the same settings as the referred literatures:

• Local descriptors. We use the VLFeat [20] library
to extract SIFT [7] or or OppSIFT [21] descriptors for
grayscale and color images, respectively.

• Codebook learning. We train a 2048-entry codebook
with K-Means clustering. The number of SIFT de-
scriptors collected for training is around 2 million.

• Coding. We use LLC [8] for coding, and Geometric
Phrase Pooling [10] for visual phrase enhancement.

• Classification. A linear SVM, LibLinear [22], is used
for training and testing. The penalty parameter C for
slack variables is 10.

• Accuracy evaluation. To test our algorithm, we use
random data split which is repeated 10 times and aver-
age accuracies and standard deviations are reported.

4.1. The Caltech101 Dataset

The Caltech101 Dataset [18] is a basic object collection con-
taining 9144 images from 102 categories. Sample images are
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Fig. 4. Samples from the CUB-200-2011 Dataset. Upper:
widely different birds from the same category (Black-footed
Albatross). Lower: similar birds from different species.

Table 2. Classification results on CUB-200-2011 using dif-
ferent models and normalization techniques The normaliza-
tion coefficient w is set as 100 in all cases. The standard de-
viation of each result is around 0.3%.

Algorithm LLC LLC-HP GPP-HP
No normalization 25.58 27.55 30.67
Global `1 27.61 29.85 33.22
Global `2 27.06 29.30 32.96
Global `∞ 25.04 27.41 30.71
Separate `1 24.58 26.94 31.84
Separate `2 30.93 32.75 35.98
Separate `∞ 27.73 29.67 31.92
Separate `1 + HRC − 28.12 33.85
Separate `2 + HRC − 32.89 36.48
Separate `∞ + HRC − 29.45 32.08

listed in Figure 3. Following [6], we use 30 images per cate-
gory for training, and others for testing.

We apply 3 versions of SPM models, i.e., a traditional
BoF model (LLC [8]) for sparse coding, an improved mod-
el (GPP [6]) for spatial context modeling, and an ultimate
version (EdgeGPP [6]) for combining heterogeneous features.
Classification results are listed in Table 1.

4.2. The Caltech-UCSD Birds-200-2011 Dataset

The Caltech-UCSD Birds-200-2011 Dataset [19] contains
200 bird species and 11788 images in total. As shown in Fig-
ure 4, it is a very challenging fine-grained image collection.
Following [10], we use 5 images per category to train the
model, and test it on remaining images.

We apply 3 versions of HPM models learned from [10],
with the difference of whether to learn a hierarchical part
structure and whether to use Geometric Phrase Pooling. We
name them LLC, LLC-HP (Hierarchical Part) and GPP-HP,
respectively. Classification results are listed in Table 2.

4.3. Discussions

Here are some discussions based on experimental results.

• Global `1-norm vs. `2-norm. It is a popular opin-
ion that `1-normalization would cause the classifica-
tion accuracies drop, especially in the models using
max-pooling [8] [23]. However, we show in exper-
iments that with a large enough coefficient w, global
`1-normalization gives comparable and even higher ac-
curacies than global `2 (see Table 2). i.e., hierarchical
weighting beyond separate normalization.

• Separate normalization vs. model selection. The ef-
fect of separate normalization is highly related to mod-
el selection. SPM uses a naive spatial division (4 × 4
grids), while HPM works on semantic body parts (beak,
head, wings, tail, etc.). Comparatively speaking, HPM
is more likely to preserve part-based properties, espe-
cially the independent assumption. That is why sepa-
rate normalization produces much higher accuracies in
HPM, but works slightly worse in SPM.

• Hierarchical weighting. Hierarchical weighting work-
s better than equal weighting in both scenarios. Here,
we benefit from the hierarchical-contribution assump-
tion, and exploit a straightforward estimation to in-
crease the weighting on more robust spatial bins.

In general, the choice of normalization strategy has a great
impact on classification accuracies. The more we exploit prior
knowledge, the better normalization results we could obtain.

5. CONCLUSIONS

In this paper, we claim the importance of feature normaliza-
tion in part-based Bag-of-Features models, by representing
novel algorithms, extensive experiments and in-depth discus-
sions. Based on proper normalization power and coefficient,
our approach differs from previous ones in the careful con-
sideration of part-based properties, i.e., the independent as-
sumption and the hierarchical-contribution assumption. Ex-
perimental results provide strong evidences to support our s-
tatements: (1) `1-normalization is also good for image classi-
fication, and (2) hierarchical weighting beyond separate nor-
malization is supreme in part-based BoF models.
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