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Abstract

The deep convolutional neural network (CNN) is the

state-of-the-art solution for large-scale visual recognition.

Following some basic principles such as increasing network

depth and constructing highway connections, researchers

have manually designed a lot of fixed network architectures

and verified their effectiveness.

In this paper, we discuss the possibility of learning deep

network structures automatically. Note that the number

of possible network structures increases exponentially with

the number of layers in the network, which motivates us to

adopt the genetic algorithm to efficiently explore this large

search space. The core idea is to propose an encoding

method to represent each network structure in a fixed-length

binary string. The genetic algorithm is initialized by gen-

erating a set of randomized individuals. In each genera-

tion, we define standard genetic operations, e.g., selection,

mutation and crossover, to generate competitive individuals

and eliminate weak ones. The competitiveness of each

individual is defined as its recognition accuracy, which is

obtained via a standalone training process on a reference

dataset. We run the genetic process on CIFAR10, a small-

scale dataset, demonstrating its ability to find high-quality

structures which are little studied before. The learned pow-

erful structures are also transferrable to the ILSVRC2012

dataset for large-scale visual recognition.

1. Introduction

Visual recognition is a fundamental task in computer

vision, implying a wide range of applications. Recently, the

state-of-the-art algorithms on visual recognition are mostly

based on the deep Convolutional Neural Network (CNN).

Starting from the fundamental chain-styled network model-

s [19], researchers have been increasing the depth of the

network [32], as well as designing novel network mod-

ules [36][13] to improve recognition accuracy. Although

these modern networks have been shown to be efficient, we

note that their structures are manually designed, not learned,

which limits the flexibility of the approach.

In this paper, we reveal the possibility of automatically

learning the structure of deep neural networks. We consider

a constrained case, in which the network has a limited

number of stages, and each stage is defined as a set of pre-

defined building blocks such as convolution and pooling

layers. Even under these limitations, the total number of

possible network structures grows exponentially with the

number of layers, making it impractical to enumerate all the

candidates and find the best one. Instead, we formulate this

problem as optimization in a large search space, and apply

the genetic algorithm to exploring the space efficiently.

The genetic algorithm involves constructing an initial

population of individuals, and performing genetic opera-

tions to allow them to evolve in an iterative process. We

propose a novel encoding scheme to represent each network

structure as a fixed-length binary string, and define several

standard genetic operations, i.e., selection, mutation and

crossover, so that new competitive individuals are generated

from the previous generation and weak ones are eliminated.

The quality (fitness function) of each individual is deter-

mined by its recognition accuracy on a reference dataset.

To this end, we perform a complete training process for

each individual (i.e., network structure) which is inde-

pendent to the genetic algorithm. The genetic process

comes to an end after a fixed number of generations.

It is worth emphasizing that the genetic algorithm is

computationally expensive, as we need to undergo a com-

plete network training process for each generated individ-

ual. We adopt the strategy to run the genetic process on a

small dataset (CIFAR10), in which we observe the ability

of the genetic algorithm to find effective network struc-

tures, and then transfer the learned top-ranked structures

to perform large-scale visual recognition. The learned

structures, most of which have been less studied before,

often perform better than the manually designed ones in

either small-scale or large-scale experiments.

The remainder of this paper is organized as follows.

Section 2 briefly introduces related work. Section 3 il-

lustrates the way of using the genetic algorithm to design

network structures. Experiments are shown in Section 4,

and conclusions are drawn in Section 5.



2. Related Work

2.1. Convolutional Neural Networks

Recent years have witnessed a revolution in visual recog-

nition. Conventional classification tasks [20][8] are extend-

ed into large-scale environments [5][44]. With the avail-

ability of powerful computational resources (e.g., GPU),

the Convolutional Neural Networks (CNNs) [19][32] have

shown superior performance over the conventional Bag-of-

Visual-Words [3][38][29] and compositional models [9].

CNN is a hierarchical model for large-scale visual recog-

nition. It is based on the observation that a network with

enough neurons is able to fit any complicated data distribu-

tion. In past years, neural networks were shown effective

for simple recognition tasks [22]. More recently, the avail-

ability of large-scale training data (e.g., ImageNet [5]) and

powerful GPUs make it possible to train deep CNNs [19]

which significantly outperform BoVW models. A CNN

is composed of several stacked layers. In each of them,

responses from the previous layer are convoluted with a

filter bank and activated by a differentiable non-linearity.

Hence, a CNN can be considered as a composite function,

which is trained by back-propagating error signals defined

by the difference between the supervision and prediction

at the top layer. Recently, several efficient methods were

proposed to help CNNs converge faster and prevent over-

fitting, such as ReLU activation [19], batch normaliza-

tion [17], Dropout [34] and DisturbLabel [40].

Designing powerful CNN structures is an intriguing

problem. It is believed that deeper networks produce better

recognition results [32][36]. But also, adding highway

information has been verified to be useful [13][42]. We also

find some work which uses stochastic [16] or dense [15]

structures. All these network structures are deterministic

(although a stochastic strategy is used in [16] to accelerate

training and prevent over-fitting), which limits the flexibility

of the models and thus inspires us to automatically learn

network structures.

2.2. Genetic Algorithm

The genetic algorithm is a metaheuristic inspired by the

natural selection process. It is commonly used to generate

high-quality solutions to optimization and search problem-

s [14][30][2][4] by performing bio-inspired operators such

as mutation, crossover and selection.

A standard genetic algorithm requires two prerequisites,

i.e., a genetic representation of the solution domain, and a

fitness function to evaluate each individual. A typical exam-

ple is the travelling-salesman problem (TSP) [11], a famous

NP-complete problem which aims at finding the optimal

Hamiltonian path in a graph of N nodes. In this situation,

each feasible solution is represented as a permutation of

{1, 2, . . . , N}, and the fitness function is the total distance

of the path. We will show in Section 3.1 that deep neural

networks can be encoded into a binary string.

The core idea of the genetic algorithm is to allow in-

dividuals to evolve via some genetic operations. Popular

operations include selection, mutation, crossover, etc. The

selection process allows us to preserve strong individuals

while eliminating weak ones. The ways of performing

mutation and crossover are often based on the properties of

the specific problem. For example, in the TSP problem with

the permutation-based representation, a possible mutation

operation is to change the order of two visited nodes.

Researches are conducted to improve the performance of

genetic algorithms, including performing local search [37]

and generating random keys [33]. In our work, we show that

the vanilla genetic algorithm works well enough without

these tricks. We also note that some previous work applied

the genetic algorithm to learning the structure [35][1] or

weights [41][6] of artificial neural networks, but our work

aims at learning the architecture of modern CNNs, which is

not studied in prior researches.

3. Our Approach

This section presents the genetic algorithm for learning

competitive network structures. First, we propose a way

of encoding a network structure into a fixed-length binary

string. Next, genetic operations are defined, including se-

lection, mutation and crossover, so that we can explore the

search space efficiently and find high-quality solutions.

Throughout this work, the genetic algorithm is only

used to propose new network structures, the param-

eters and recognition accuracy of each individual are

obtained via a standalone training-from-scratch.

3.1. Binary Network Representation

We provide a binary string representation for a network

structure in a constrained case. We consider those net-

work structures [32][13] which can be organized in several

stages. In each stage, the geometric dimensions (width,

height and depth) of the data cube remain unchanged.

Neighboring stages are connected via a spatial pooling op-

eration, which may change the spatial resolution. All the

convolutional operations within one stage have the same

number of filters, a.k.a. data channels.

We follow this idea to define a family of networks which

can be encoded into fixed-length binary strings. A network

is composed of S stages, and the s-th stage, s = 1, 2, . . . , S,

contains Ks nodes, denoted by vs,ks
, ks = 1, 2, . . . ,Ks.

The nodes within each stage are ordered, and we only

allow connections from a lower-numbered node to a higher-

numbered node. Each node corresponds to a convolutional

operation, which takes place after element-wise summing

up all its input nodes (lower-numbered nodes that are con-

nected to it). After convolution, batch normalization [17]
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Figure 1. A two-stage network (S = 2, (K1,K2) = (4, 5)) and the encoded binary string (best viewed in color). The default input and

output nodes (see Section 3.1.1) and the connections related to these nodes are marked in red and green, respectively. We only encode the

connections between the ordinary codes (regions with light blue background). Within each stage, the number of convolutional filters is

a constant (32 in Stage 1, 64 in Stage 2), and the spatial resolution remains unchanged (32 × 32 in Stage 1, 16 × 16 in Stage 2). Each

pooling layer down-samples the data by a factor of 2. ReLU and batch normalization are added after each convolution.

and ReLU [19] are followed, which are verified efficient in

training very deep neural networks [13]. We do not encode

the fully-connected layers of a network.

In each stage, we use 1 + 2 + . . .+ (Ks − 1) =
1

2
Ks (Ks − 1) bits to encode the inter-node connections.

The first bit represents the connection between (vs,1, vs,2),
then the following two bits represent the connection be-

tween (vs,1, vs,3) and (vs,2, vs,3), etc. This process con-

tinues until the last Ks − 1 bits are used to represent the

connection between vs,1, vs,2, . . . , vs,Ks−1 and vs,Ks
. For

1 6 i < j 6 Ks, if the bit corresponding to (vs,i, vs,j) is 1,

there is an edge connecting vs,i and vs,j , i.e., vs,j takes the

output of vs,i as a part of the element-wise summation, and

vice versa. In summary, an S-stage network with Ks nodes

at the s-th stage is encoded into a binary string of length

L = 1

2

∑

sKs (Ks − 1). Figure 1 illustrates an example of

encoding a 2-stage network.

We note that the number of possible network structures

(2L) may be very large. In the CIFAR10 experiments (see

Section 4.1), we have S = 3 and (K1,K2,K3) = (3, 4, 5),
therefore L = 19 and 2L = 524,288. It is computationally

intractable to enumerate all these structures and find the

optimal one(s). To this end, we use the genetic algorithm

to efficiently explore good candidates in this large space.

3.1.1 Technical Details

To make every binary string valid, we define two default

nodes in each stage. The default input node, denoted as vs,0,

receives data from the previous stage, performs convolution,

and sends its output to every node without a predecessor,

e.g., vs,1. The default output node, denoted as vs,Ks+1,

receives data from all nodes without a successor, e.g., vs,Ks
,

sums up them, performs convolution, and sends its output

to the pooling layer. Note that the connections between the

ordinary nodes and the default nodes are not encoded.

There are two special cases. First, if an ordinary node

vs,i is isolated (i.e., it is not connected to any other ordinary

nodes vs,j , i 6= j), then it is simply ignored, i.e., it is not

connected to the default input node nor the default output

node (see the B2 node in Figure 1). This is to guarantee

that a stage with more nodes can simulate all structures

represented by a stage with fewer nodes. Second, if there

are no connections at a stage, i.e., all bits in the binary string

are 0, then the convolutional operation is performed only

once, not twice (one performed by the default input node

and the other by the default output node).

3.1.2 Examples and Limitations

Many popular network structures can be represented us-

ing the proposed encoding scheme. Examples include

VGGNet [32], ResNet [13], and a modified variant of

DenseNet [15], which are illustrated in Figure 2.

Currently, the encoded structures only involve convolu-

tional and pooling operations, which makes it impossible

to generate some tricky network modules such as Max-

out [10]. Also, the convolutional kernel size and the number

of channels are fixed within each stage, which limits the

network from incorporating multi-scale information as in
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Figure 2. The basic building blocks of VGGNet [32], ResNet [13]

and a variant of DenseNet [15] can be encoded as binary strings

defined in Section 3.1.

the inception module [36]. We note that all automatically

learned network structures have such limitations [45]. Our

approach can be easily modified to include more types of

layers and more flexible inter-layer connections. As shown

in experiments, we can achieve competitive recognition

performance using merely these basic building blocks.

As shown in a recent published work using reinforce-

ment learning to explore neural architecture [45], this type

of methods often require heavy computation to traverse the

huge solution space. We apply a strategy to learn network

architectures on a small dataset, and transfer the top-ranked

structures to large-scale visual recognition tasks.

3.2. Genetic Operations

The flowchart of the genetic process is shown in Al-

gorithm 1. It starts with an initialized population of N

randomized individuals. Then, we perform T rounds, or

T generations, each of which consists of three operations,

i.e., selection, mutation and crossover. The fitness function

of each individual is evaluated via training-from-scratch on

the reference dataset.

3.2.1 Initialization

We initialize a set of randomized models {M0,n}
N
n=1

. Each

model is a binary string with L bits, i.e., M0,n : b0,n ∈

{0, 1}
L

. Each bit in each individual is independently sam-

pled from a Bernoulli distribution: bl0,n ∼ B(0.5), l =
1, 2, . . . , L. After this, we evaluate each individual (see

Section 3.2.4) to obtain their fitness function values.

As we shall see in Section 4.1.2, different strategies of

initialization do not impact the genetic performance too

much. Even starting with a naive initialization (all individ-

uals are all-zero strings), the genetic process can discover

quite competitive structures via crossover and mutation.

3.2.2 Selection

The selection process is performed at the beginning of every

generation. Before the t-th generation, the n-th individual

Mt−1,n is assigned a fitness function, which is defined as

the recognition rate rt−1,n obtained in the previous genera-

tion or initialization. rt−1,n directly impacts the probability

that Mt−1,n survives the selection process.

We perform a Russian roulette process to determine

which individuals survive. Each individual in the next gen-

eration Mt,n is determined independently by a non-uniform

sampling over the set {Mt−1,n}
N
n=1

. The probability of

sampling Mt−1,n is proportional to rt−1,n − rt−1,0, where

rt−1,0 = minNn=1 {rt−1,n} is the minimal fitness function

value in the previous generation. This means that the best

individual has the largest probability of being selected, and

the worst one is always eliminated. As the number of

individuals N remains unchanged, each individual in the

previous generation may be selected multiple times.

3.2.3 Mutation and Crossover

The mutation process of an individual Mt,n involves flip-

ping each bit independently with a probability qM. In

practice, qM is often small, e.g., 0.05, so that mutation is

not likely to change one individual too much. This is to

preserve the good properties of a survived individual while

providing an opportunity of trying out new possibilities.

The crossover process involves changing two individuals

simultaneously. Instead of considering each bit individual-

ly, the basic unit in crossover is a stage, which is motivated

by the need to retain the local structures within each stage.

Similar to mutation, each pair of corresponding stages are

exchanged with a small probability qC.

Both mutation and crossover are performed in an overall

flowchart (see Algorithm 1). The probabilities of mutation

and crossover for each individual (or pair) are pM and pC,

respectively. Of course, there are many different ways of

performing mutation and crossover. In experiments, our

simple choice leads to competitive performance.

3.2.4 Evaluation

After the above processes, each individual Mt,n is evaluated

to obtain the fitness function value. A reference dataset D
is pre-defined, and we individually train each model Mt,n

from scratch. If Mt,n is previously evaluated, we simply

evaluate it once again and compute the average accuracy

over all its occurrences. This strategy, at least to some

extent, alleviates the instability caused by the randomness

in the training process.



Algorithm 1 The Genetic Process for Network Design

1: Input: the reference dataset D, the number of generations T , the number of individuals in each generation N , the

mutation and crossover probabilities pM and pC, the mutation parameter qM, and the crossover parameter qC.

2: Initialization: generating a set of randomized individuals {M0,n}
N
n=1

, and computing their recognition accuracies;

3: for t = 1, 2, . . . , T do

4: Selection: producing a new generation
{

M
′
t,n

}N

n=1
with a Russian roulette process on {Mt−1,n}

N
n=1

;

5: Crossover: for each pair {(Mt,2n−1,Mt,2n)}
⌊N/2⌋
n=1

, performing crossover with probability pC and parameter qC;

6: Mutation: for each non-crossover individual {Mt,n}
N
n=1

, doing mutation with probability pM and parameter qM;

7: Evaluation: computing the recognition accuracy for each new individual {Mt,n}
N
n=1

;

8: end for

9: Output: a set of individuals in the final generation {MT,n}
N
n=1

with their recognition accuracies.

4. Experiments

Like other methods to learn network structures [45], our

genetic algorithm requires a very large amount of compu-

tational resources, which makes it intractable to be directly

evaluated a large-scale dataset such as ILSVRC2012 [31].

Our strategy is to explore promising network structures on

a small dataset, namely CIFAR10 [18], then transfer these

structures to the large-scale environment.

4.1. CIFAR10 Experiments

The CIFAR10 dataset [18] contains 10 basic categories

of 32 × 32 RGB images. There are 50,000 images for

training, and 10,000 images for testing. To avoid seeing

the testing data in the genetic process, we leave out 10,000
images from the training set for validation.

4.1.1 Settings and Results

The basic configuration follows a revised version of

LeNet [21], and the network structure abbreviated as:

C3(P1)@8-MP3(S2)-C3(P1)@8-MP3(S2)-

C3(P1)@16-MP3(S2)-FC32-D0.5-FC10.

Here, C3(P1)@8 is a convolutional layer with a kernel size

of 3 × 3, a default spatial stride of 1, a padding width of 1
and the number of kernels of 8. MP3(S2) is a max-pooling

layer with a kernel size of 3 and a spatial stride of 2, FC32

is a fully-connected layer with 32 outputs, and D0.5 is a

Dropout layer with a drop ratio of 0.5. Please note that

we significantly reduce the number of filters at each stage

to accelerate the training process. We apply 120 training

epochs with a learning rate of 10−2, followed by 60 epochs

with a learning rate of 10−3, 40 epochs with a learning rate

of 10−4 and another 20 epochs with a learning rate of 10−5.

We keep the fully-connected part of the above network

unchanged, and set S = 3 and (K1,K2,K3) = (3, 4, 5).
Within each stage, the first convolutional layer remains the

same as in the original LeNet, and other convolutional

layers take the kernel size 3 × 3 and the same channel

number. The length L of each binary string is 19, which

means that there are 219 = 524,288 possible individuals.

We create an initial population with N = 20 individuals,

and run the genetic process for T = 50 rounds. Other

parameters are set to be pM = 0.8, qM = 0.05, pC = 0.2
and qC = 0.2. The mutation and crossover parameters qM
and qC are set to be smaller because the strings become

longer. The maximal number of explored individuals is

20× (50 + 1) = 1,020 ≪ 524,288. Training each indi-

vidual takes an average of 0.4 hour, and the entire genetic

process takes about 17 GPU-days. 10 GPUs are used, and

each of them trains 2 networks in each generation. As a

result, we can finish the entire genetic process in 2 days.

We note that [45] trained 10× more networks and each one

is much more complicated, resulting in at least 100× more

computational overheads than our work.

We perform two individual genetic processes. The re-

sults of one of them are summarized in Table 1. With the ge-

netic operations, we can find competitive network structures

with improved recognition performance. Although over a

short period the best individual may not be updated, the

average and medium accuracies generally get higher from

generation to generation. This is very important, because

it guarantees the genetic algorithm improves the overall

quality of the individuals. According to our diagnosis in

Section 4.1.3, this facilitates strong individuals to be creat-

ed, since the quality of a new individual is positively cor-

related to the quality of its parent(s). After 50 generations,

the recognition error rate of the best individual drops from

24.04% to 22.81%. We also visualize the best structures

found by these two processes in Figure 5.

4.1.2 Initialization Issues

We observe the impact of different initializations. For this,

we start a naive population with N = 20 all-zero individ-

uals, and use the same parameters for a complete genetic

process. Results are shown in Figure 3. We find that,

although the all-zero string corresponds to a very simple and



Gen Max % Min % Avg % Med % Std-D Best Network Structure

00 75.96 71.81 74.39 74.53 0.91 0-01|0-01-111|0-11-010-0111

01 75.96 73.93 75.01 75.17 0.57 0-01|0-01-111|0-11-010-0111

02 75.96 73.95 75.32 75.48 0.57 0-01|0-01-111|0-11-010-0111

03 76.06 73.47 75.37 75.62 0.70 1-01|0-01-111|0-11-010-0111

05 76.24 72.60 75.32 75.65 0.89 1-01|0-01-111|0-11-010-0011

08 76.59 74.75 75.77 75.86 0.53 1-01|0-01-111|0-11-010-1011

10 76.72 73.92 75.68 75.80 0.88 1-01|0-01-110|0-11-111-0001

20 76.83 74.91 76.45 76.79 0.61 1-01|1-01-110|0-11-111-0001

30 76.95 74.38 76.42 76.53 0.46 1-01|0-01-100|0-11-111-0001

50 77.19 75.34 76.58 76.81 0.55 1-01|0-01-100|0-11-101-0001

Table 1. Recognition accuracy (%) on the CIFAR10 testing set. The zeroth generation is the initial population. We set S = 3 and

(K1,K2,K3) = (3, 4, 5). The best individual in each generation is also shown in binary codes.
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Figure 3. The average recognition accuracy over all individuals

with respect to the generation number. The bars indicate the

highest and lowest accuracies in the corresponding generation.

less competitive network structure, the genetic algorithm

is able to find strong individuals after several generations.

This naive initialization achieves the initial performance of

randomized individuals with about 5 generations. After

about 30 generations, there is almost no difference, by

statistics, between these two populations.

4.1.3 Reasonability and Efficiency

We perform diagnostic experiments to verify the hypothe-

sis, that a better individual is more likely to generate a good

individual via mutation or crossover. For this, we randomly

select several occurrences of mutation and crossover in the

genetic process, and observe the relationship between an

individual and its parent(s). Figure 4 shows the results.

We argue that the genetic operations tend to preserve the

excellent “genes” from the parent(s), making it possible for

the population to evolve after some generations.

We also investigate the efficiency of the genetic algorith-

m. To this respect, we randomly generate 20× (50 + 1) =
1020 network architectures and evaluate each of them. The

0.758 0.761 0.764 0.767 0.770 0.773
0.758

0.761
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Figure 4. The relationship in accuracy between the parent(s) and

the child(ren) (best viewed in color). A dot is bigger and close

to red if the recognition rate is higher, otherwise it is smaller and

close to blue. The dots on the horizontal axis are from mutation

operations, while others are from crossover operations.

best individual in these 1020 candidates reports 76.94%
accuracy, which is lower than the number (77.19%) ob-

tained after the entire genetic process. From Table 1, we

find that after 30 rounds, the genetic process is able to find

an individual generating 76.95% accuracy, which suggests

that the genetic process is much more efficient than random

search in the large solution space.

4.1.4 Parameters and Complexity

We note that the number of learnable weights of a network

is related to the number of non-isolated nodes, since each of

them contributes the same number of weights regardless of

the number of lower-numbered nodes that are connected to

it. In experiments, isolation rarely happens, and thus all the



individuals have a very similar number of parameters.

The number of 1-bits in network encoding (inter-layer

connections) is the main factor of network complexity.

However, we point out that a network with more 1-bits does

not mean to dominate another with fewer 1-bits. As a direct

evidence, we investigate the individual with all bits set to

be 1. which leads to a network in which any two layers

within the same stage are connected. This network produces

a 76.84% recognition rate, which is significantly lower than

the number (77.19%) reported in Table 1. Considering that

the densely-connected network requires heavier computa-

tional overheads, we conclude that the structures learned by

the genetic algorithm are more effective and efficient than

using dense connections.

4.1.5 Visualization

In Figure 5, we visualize the the network structures learned

from two individual genetic processes. The structures

learned by the genetic algorithm are somewhat different

from the manually designed ones, although some manual-

ly designed local structures are observed, like the chain-

shaped networks, multi-path networks and highway net-

works. We emphasize that these two networks, though

obtained by independent genetic processes, are somewhat

similar, which demonstrates that the genetic process gener-

ally converges to similar network structures.

4.2. Small­Scale Transfer Experiments

We apply the networks learned from the CIFAR10 ex-

periments to more small-scale datasets. We test three

datasets, i.e., CIFAR10, CIFAR100 and SVHN. CI-

FAR100 is an extension to CIFAR10 which contains 100
categories at a finer level. It has the same numbers of

training and testing images as CIFAR10, and these images

are also uniformly distributed over 100 categories.

SVHN (Street View House Numbers) [28] is a large

collection of 32 × 32 RGB images, i.e., 73,257 training

samples, 26,032 testing samples, and 531,131 extra train-

ing samples. We preprocess the data as in the previous

work [28], i.e., selecting 400 samples per category from the

training set as well as 200 samples per category from the

extra set, using these 6,000 images for validation, and the

remaining 598,388 images as training samples. We also use

local contrast normalization (LCN) for preprocessing [10].

We evaluate the best network structure in each genera-

tion of the genetic process. We resume using a large number

of filters at each stage, i.e., the three stages and the first

fully-connected layer are equipped with 64, 128, 256 and

1024 filters, respectively. The training strategy, include the

numbers of epochs and learning rates, remains the same as

in the previous experiments.

We compare our results with some state-of-the-art meth-
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Figure 5. Two network structures learned from the two inde-

pendent genetic processes on the CIFAR10 dataset (best viewed

in color). These are three-stage networks (S = 3) with

(K1,K2,K3) = (3, 4, 5).

ods in Table 2. First we note that the recognition accu-

racy goes up through the genetic process, which verifies

the transfer ability of the learned network structures. Al-

though these accuracies are lower than some state-of-the-

art candidates [42][16][15], we note that these networks are

much deeper (e.g., 40–100 layers, compared to the 17-layer

GeNet #1 and #2). For fair comparison, we start from the

40-layer wide residual network [42]. We create a population

of 10 identical individuals, and perform genetic operation

for 5 rounds. Each of the initialized individuals is a variant

of the 40-layer network with a few bits randomly reversed.

Using 10 GPUs to train these networks simultaneously, this

process takes around 10 days. As a result, we find a better

individual different from the original network structure, and

the error rates on CIFAR10, CIFAR100 and SVHN are

5.39%, 25.12% and 1.71%, respectively. This provides



SVHN CF10 CF100

Zeiler et.al [43] 2.80 15.13 42.51

Goodfellow et.al [10] 2.47 9.38 38.57

Lin et.al [26] 2.35 8.81 35.68

Lee et.al [24] 1.92 7.97 34.57

Liang et.al [25] 1.77 7.09 31.75

Lee et.al [23] 1.69 6.05 32.37

Zagoruyko et.al [42] 1.77 5.54 25.52

Xie et.al [39] 1.67 5.31 25.01

Huang et.al [16] 1.75 5.25 24.98

Huang et.al [15] 1.59 3.74 19.25

GeNet after G-00 2.25 8.18 31.46

GeNet after G-05 2.15 7.67 30.17

GeNet after G-20 2.05 7.36 29.63

GeNet #1 (G-50) 1.99 7.19 29.03

GeNet #2 (G-50) 1.97 7.10 29.05

GeNet from WRN [42] 1.71 5.39 25.12

Table 2. Comparison of the recognition error rate (%) with the

state-of-the-arts. We apply data augmentation on all these datasets.

GeNet #1 and GeNet #2 are the structures shown in Figure 5.

an alternative strategy to generate better architectures from

existing manually designed ones.

4.3. Large­Scale Transfer Experiments

We evaluate the learned network structures on the

ILSVRC2012 classification task [31]. This is a subset of

the ImageNet database [5] which contains 1,000 object

categories. The training set, validation set and testing set

contain 1.3M, 50K and 150K images, respectively. The

input images are of 224 × 224 × 3 pixels. We first apply

the first two stages in the VGGNet (4 convolutional layers

and two pooling layers) to change the data dimension to

56× 56× 128. Then, we apply the two networks shown in

Figure 5, and adjust the numbers of filters at three stages to

256, 512 and 512 (following VGGNet), respectively. After

these stages, we obtain a 7×7×512 data cube. We preserve

the fully-connected layers in VGGNet with the dropout rate

0.5. We apply the training strategy as in VGGNet. Training

each network takes around 20 GPU-days.

Results are summarized in Table 3. We can see that,

in general, structures learned from a small dataset (CI-

FAR10) can be transferred to large-scale visual recogni-

tion (ILSVRC2012). Our model achieves better perfor-

mance than VGGNet-16 and VGGNet-19, because the o-

riginal chain-styled stages are replaced by the automatically

learned structures which are verified more effective.

Finally, we evaluate the transfer ability of the GeNets

on the Caltech256 dataset [12]. We use VGGNet-16,

VGGNet-19 and GeNets to extract 4,096-dimensional fea-

tures on the first fully-connected layer, perform ReLU ac-

Top-1 Top-5 # Paras

AlexNet [19] 42.6 19.6 62M
GoogLeNet [36] 34.2 12.9 13M
VGGNet-16 [32] 28.5 9.9 138M
VGGNet-19 [32] 28.7 9.9 144M

GeNet #1 28.12 9.95 156M
GeNet #2 27.87 9.74 156M

Table 3. Top-1 and top-5 recognition error rates (%) on

the ILSVRC2012 dataset. For all competitors, we report the

single-model performance without using any complicated data

augmentation in testing. These numbers are copied from this page:

http://www.vlfeat.org/matconvnet/pretrained/.

GeNet #1 and GeNet #2 are the structures shown in Figure 5.

tivation [27] followed by square-root normalization and ℓ2
normalization, and feed the feature vectors to a linear SVM

classifier [7]. With 60 training samples per category, the

classification accuracy with VGGNet-16 and VGGNet-19

features are 82.69% and 83.51%, respectively. The GeNets

#1 and #2 produce 83.59% and 83.78% accuracies, which

is slightly higher. This verifies that the benefits of GeNets

are generally transferrable to other visual recognition tasks.

5. Conclusions

This paper applies the genetic algorithm to automatically

learning the structure of deep convolutional neural network-

s. Our main idea is to use an encoding scheme to represent

each network structure as a fixed-length binary string, and

evaluate each generated individual via a standalone training

process on a reference dataset. Based on this framework,

we design some genetic operations, such as mutation and

crossover, to explore the search space efficiently. We per-

form the genetic algorithm on a small reference dataset

(CIFAR10), and find that the generated structures are able

to transfer to the ILSVRC2012 dataset and extracting deep

features for other visual recognition tasks.

Despite the interesting results we have obtained, our

algorithm suffers from several drawbacks. First, a large

fraction of network structures are still unexplored, including

some novel modules like Maxout [10], channel concatena-

tion [36][15], and introducing multi-scale into convolution-

s [36]. In addition, the recurrent structure is also worth

exploring [45]. Second, in the current work, the genetic

algorithm is only used to explore the network structure,

whereas the network training process is performed separate-

ly. It would be very interesting to incorporate the genetic

algorithm to training the network structure and weights

simultaneously. These directions are left for future work.
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