
Geometric Neural Phrase Pooling:
Modeling the Spatial Co-occurrence of Neurons

Lingxi Xie1, Qi Tian2, John Flynn3, Jingdong Wang4, Alan Yuille5

1,5Center for Imaging Science, The Johns Hopkins University, Baltimore, MD, USA
2Department of Computer Science, University of Texas at San Antonio, TX, USA

3Department of Statistics, University of California, Los Angeles, CA, USA
4Microsoft Research, Beijing, China

1198808xc@gmail.com 2qitian@cs.utsa.edu
3john flynn@mac.com 4jingdw@microsoft.com 5alan.l.yuille@gmail.com

Codes: http://bigml.cs.tsinghua.edu.cn/~lingxi/Projects/GNPP.html

Abstract. Deep Convolutional Neural Networks (CNNs) are playing
important roles in state-of-the-art visual recognition. This paper focuses
on modeling the spatial co-occurrence of neuron responses, which is less
studied in the previous work. For this, we consider the neurons in the
hidden layer as neural words, and construct a set of geometric neural
phrases on top of them. The idea that grouping neural words into neu-
ral phrases is borrowed from the Bag-of-Visual-Words (BoVW) model.
Next, the Geometric Neural Phrase Pooling (GNPP) algorithm is
proposed to efficiently encode these neural phrases. GNPP acts as a
new type of hidden layer, which punishes the isolated neuron responses
after convolution, and can be inserted into a CNN model with little
extra computational overhead. Experimental results show that GNPP
produces significant and consistent accuracy gain in image classification.

Keywords: Image Classification, Convolutional Neural Networks, Spa-
tial Co-occurrence of Neurons, Geometric Neural Phrase Pooling

1 Introduction

We have witnessed a significant revolution in computer vision brought by the
deep Convolutional Neural Networks (CNNs). With powerful computational
resources (e.g., GPUs) and a large amount of labeled training data (e.g., [1]), a
hierarchical structure containing different levels of visual concepts is constructed
and trained [2] to produce impressive performance on large-scale visual recog-
nition tasks [3]. A pre-trained deep network is also capable of generating deep
features for various tasks, such as image classification [4][5], image retrieval [6][7]
and object detection [8][9].

CNN is composed of several stacked layers, each of which contains a number
of neurons. We argue that modeling the co-occurrence of neuron responses is
important, whereas less studied in the previous work. For this, we define a set
of geometric neural phrases on the basis of the hidden neurons, and propose



2 L. Xie, Q. Tian, J. Flynn, J. Wang and A. Yuille

the Geometric Neural Phrase Pooling (GNPP) algorithm to encode them
efficiently. GNPP can be regarded as a new type of layer, and inserted into a
network with little computational overhead (e.g., 1.29% and 2.52% extra time
and memory costs in the experiments on ImageNet). We explain the behavior
of GNPP by noting that it punishes the isolated neuron responses, and that
the isolated responses are often less reliable than clustered ones, especially in
the high-level network layers. Experimental results show that adding GNPP
layers boosts image classification accuracy significantly and consistently. Later,
we will discuss the benefits brought by the GNPP layer from different points of
view, showing that GNPP produces better internal representation, builds latent
connections, and accelerates the network training process.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces related work. Section 3 introduces the GNPP layer, and Section 4 shows
experimental results. We discuss the benefits brought by adding GNPP layers
in Section 5. Finally, we conclude this work in Section 6.

2 Related Work

2.1 The Bag-of-Visual-Words Model

The Bag-of-Visual-Words (BoVW) model [10] represents each image as a high-
dimensional vector. It typically consists of three stages, i.e., descriptor extrac-
tion, feature encoding and feature aggregation.

Due to the limited descriptive ability of raw pixels, handcrafted descriptors
such as SIFT [11], HOG [12] or other variants [13] are extracted. The set of

local descriptors on an image is denoted as D = {(dm, lm)}Mm=1, where M is the
number of descriptors, dm is the description vector and lm is the 2D location of
the m-th word. A visual vocabulary or codebook is then built to capture the data
distribution in feature space. The codebook is a set of codewords: B = {cb}Bb=1,
in which B is the codebook size and each codeword has the same dimension with
the descriptors. Each descriptor dm is then quantized onto the codebook as a
visual word fm ∈ RB

>0. Effective feature quantization algorithms include sparse

coding [14][15] and high-dimensional encoding [16][17][18]. F = {(fm, lm)}Mm=1

is the set of visual words. Finally, these words are aggregated as an image-level
representation vector [19][20]. These Image-level vectors are then normalized
and fed into machine learning algorithms [21] for training and testing, or used
in some training-free image classification algorithms [22][7].

2.2 Geometric Phrase Pooling

The basic unit in the BoVW model is a visual word, i.e., a quantized local
descriptor. Dealing with individual visual words does not consider the spa-
tial co-occurrence of visual features. To this end, researchers propose visual
phrase [23][24] as a mid-level data structure connecting low-level descriptors
and high-level visual concepts [25]. A visual phrase is often defined as a group of



Geometric Neural Phrase Pooling 3

neighboring visual words [25][26]. It can be used to filter out the false matches
in object retrieval [24][27], or improve the descriptive ability of visual features
for image classification [26][28].

Geometric Phrase Pooling (GPP) [26] is an efficient algorithm for extract-
ing and encoding visual phrases. GPP starts from constructing, for each vi-
sual word, a geometric visual phrase, which is a group of visual words: Gm =

(fm, lm) ∪
{(

f
(k)
m , l

(k)
m

)}K

k=1
. In Gm, (fm, lm) is the central word, and all the other

K words are side words, located in a small neighborhood Nm of the central po-
sition lm. GPP encodes each geometric visual phrase Gm by adding the maximal

response of the side words to the central word: pm = fm + maxK
k=1

{
s
(k)
m × f

(k)
m

}
,

where maxK
k=1 {·} denotes dimension-wise maximization. Note that the central

word is not included in the maximization. s
(k)
m is the smoothing weight of the

k-th side word in Gm. Most often, s
(k)
m is determined by the Euclidean distance

between l
(k)
m and lm, e.g., s

(k)
m = exp

{
−τ ×

∥∥∥lm − l
(k)
m

∥∥∥
2

}
, where τ > 0 is the pre-

defined smoothing parameter. Note that, at least in theory, the GPP algorithm
can be applied to any data with a spatial attribute.

2.3 Convolutional Neural Networks

The Convolutional Neural Network (CNN) serves as a hierarchical model for
large-scale visual recognition. It is based on the observation that a network
with enough neurons is able to fit any complicated data distribution. In past
years, neural networks were shown effective for simple recognition tasks [29].
More recently, the availability of large-scale training data (e.g., ImageNet [1])
and powerful GPUs make it possible to train deep CNNs [2] which significantly
outperform BoVW models. A CNN is composed of several stacked layers. In each
of them, responses from the previous layer are convoluted with a filter bank and
activated by a differentiable non-linearity. Hence, a CNN can be considered as a
composite function, which is trained by back-propagating error signals defined
by the difference between supervision and prediction at the top layer. Efficient
methods were proposed to help CNNs converge faster and prevent over-fitting,
such as ReLU activation [2], batch normalization [30] and regularization [31][32].
It is believed that deeper networks produce better recognition results [33][34][35].

The intermediate responses of CNNs, i.e., the so-called deep features, serve as
effective image descriptions [5], or a set of latent visual attributes [36]. They can
be used for various types of vision tasks, including image classification [4][37],
image retrieval [6][7] and object detection [8]. A discussion of how different CNN
configurations impact deep feature performance is available in [38].

3 Geometric Neural Phrase Pooling

This section presents the Geometric Neural Phrase Pooling (GNPP) algorithm
and its application to improve the CNN model.



4 L. Xie, Q. Tian, J. Flynn, J. Wang and A. Yuille

side words

Neural Phrase: Type 1 Neural Phrase: Type 2

central word

Convolutional Neural Network

neuron
map

conv

pool

fully-
connect

input image

Fig. 1: Left: the architecture of a toy CNN model. A geometric neural phrase is
defined on the basis of a set of neural words. Right: two types of neighborhood
used in this work (best viewed in color PDF). The green side words are weighted
by σ and the blue ones by σ2, where σ is the smoothing parameter.

3.1 The GNPP Layer

We start with a hidden layer X in the CNN model. X is a 3D neuron cube with
W ×H ×D neurons, where W , H and D are the width, height and depth of the
cube. The response of each neuron corresponds to the inner-product of a local
patch in the previous layer and a filter (convolutional kernel). We naturally
consider the data as a set of D-dimensional visual words indexed over a 2D
spatial domain. We denote the set as X = {xw,h}W,H

w=1,h=1, in which xw,h ∈ RD
>0

for each w and h. The spatial domain coordinate (w, h) is not the same as the
pixel coordinate (a, b) in the original image, but they are linearly corresponded.

A geometric neural phrase is defined as Gw,h = {xw′,h′ | xw′,h′ ∈ Nw,h},
where Nw,h is the neighborhood of xw,h. Given the number of side words K,

we can rewrite it as Gw,h = xw,h ∪
{
x
(k)
w,h

}K

k=1
, where xw,h is the central word,

and all the others in Gw,h are side words. For simplicity, we consider two fixed
types of neighborhood, shown in Figure 1. If the central word is located on the
boundary of the neuron map, the side words outside the map are simply ignored.

The Geometric Neural Phrase Pooling (GNPP) algorithm computes an
updated neural response for each geometric neural phrase Gw,h individually:

zw,h =
1

2

[
xw,h +

K
max
k=1

{
s
(k)
w,h × x

(k)
w,h

}]
, (1)

where maxK
k=1 {·} is the maximization over K side words. Note that the central

word is not included in the maximization. We add the coefficient 1
2 to approx-

imately preserve the average scale of neuron responses. We define a smoothing

parameter σ ∈ (0, 1]. A side word is weighted by either s
(k)
w,h = σ or s

(k)
w,h = σ2,

according to the relative position to the central word. Of course, one can modify



Geometric Neural Phrase Pooling 5

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.2

0.0 0.0 0.0 0.4 0.4

0.8 0.0 0.0 1.0 0.8

0.0 0.0 0.0 0.8 0.0

0.0 0.0 0.0 0.0 0.1

0.0 0.0 0.0 0.2 0.3

0.4 0.0 0.2 0.7 0.6

0.4 0.4 0.5 0.9 0.9

0.4 0.0 0.4 0.9 0.4

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

1.0

Fig. 2: A conceptual illustration of GNPP (best viewed in color PDF). Left: an
image is convoluted with a template. Middle: the original one-dimensional neuron
responses. Right: the responses after GNPP (type 1, σ = 1.0). The isolated high
response (around the bottom-left corner) is decreased and smoothed, while the
clustered high responses (around the bottom-right corner) are preserved.

the definition of both neighborhood and weights, e.g., using a larger neighbor-
hood or assigning smaller weights on side words, but these minor changes do not
impact much on the performance (see Section 4.3).

GNPP averages neuron responses over the central word and the maximal
candidate among all side words. Although this looks like the behavior of a
local smoother, we emphasize that GNPP is intrinsically different from other
smoothers such as vanilla Gaussian blur. Gaussian blur can be formulated as
convoluting the input data with a fixed kernel. Applying Gaussian blur after a
convolutional layer is similar to using larger kernels, where some weights are not
independent to each other. As expected, adding Gaussian blur does not obtain
accuracy gain. We add a vanilla Gaussian blur layer before each pooling layer of
the LeNet, and test it on CIFAR10. The baseline error rate is 17.07%±0.15%,
and the network with Gaussian blur reports 17.05%± 0.13%. On the other side,
the network with GNPP reports 14.78%± 0.17% (see Section 4.2). In summary,
GNPP does something that a linear smoother cannot do.

Since GNPP does not change the dimension (W , H and D) of the neuron
cube, we can regard GNPP as an intermediate network layer, i.e., the GNPP
layer. Although the GNPP layer can, at least in theory, appear anywhere, we
only insert it between a convolutional layer and a pooling layer, due
to the reason to be elaborated in the next subsection.

3.2 Modeling the Spatial Co-occurrence

We show that GNPP is an implicit way of punishing isolated neuron responses.
Therefore, GNPP works well on the assumption that clustered neuron responses
are more reliable than isolated ones. In this subsection, we will elaborate that
such an assumption is better satisfied on the high-level layers of a CNN.

To start, we note that the computation in (1) is carried out in parallel over
the D channels. Without loss of generality, we only consider a single channel in a



6 L. Xie, Q. Tian, J. Flynn, J. Wang and A. Yuille

hidden layer, and our conclusion remains valid for the entire layer (containing D
channels). In other words, we can simplify to the situation where we are dealing
with W ×H one-dimensional visual words.

In a CNN, neuron responses in one layer are generated by convolution.
Convoluting data with the kernel can be regarded as template matching on
different spatial locations. After ReLU activation [2], the preserved positive
neuron responses correspond to those local patches with high similarity to the
template. Figure 2 shows a toy example of (ReLU-activated) convolution results,
in which we can find some clustered high responses and some isolated ones. Since
GNPP averages the neuron responses over the central word and the maximal
candidate of side words, the clustered responses are approximately preserved,
while the isolated ones are punished. A toy example is shown in Figure 2.

We explain why clustered responses are more reliable, especially on a high-
level layer, where the isolated responses often correspond to unexpected random
noise [39]. This is because high-level convolutional kernels are highly “special-
ized”, i.e., they often represent concrete visual concepts, e.g., car wheel or aircraft
nose [39]. Meanwhile, as the network level goes up, the receptive field of a neuron
becomes larger (e.g., a neuron on the conv-5 layer of the AlexNet can “see”
163× 163 pixels on the input image), and neighboring neurons share more and
more common visual information (e.g., the overlapping rate of two neighboring
neurons on the conv-5 layer is 90.2%). Thus, if a positive neuron response is
caused by the correct match of a visual concept, its neighboring neurons are
also likely to be activated, leading to a cluster of positive neuron responses.
Oppositely, if it is caused by some random noise, its neighboring neurons may
not be activated, and this isolated response shall be punished.

In conclusion, the core idea of GNPP is to model the spatial co-occurrence of
neurons produced by a convolutional layer, or find reliable features by punishing
the isolated responses which are more likely to be unexpected random noise.
We note that pooling, when applied right after GNPP, is an efficient way of
aggregating these rectified neuron responses. Therefore, in this work, we only
insert GNPP between a convolutional layer and a pooling layer.

3.3 Comparison to Other Work

The GNPP algorithm is inspired by the GPP algorithm which originates from the
BoVW model (see Section 2.2). GPP models the spatial context of visual words,
and GNPP models the spatial co-occurrence of neural words. In the BoVW
model, GPP can only be applied before a max-pooling layer, but GNPP can be
inserted anywhere into the CNN model. In the SVHN and CIFAR experiments,
we also show that GNPP cooperates well with the average-pooling layers.

The GNPP layer is related to the Spatial Pyramid Pooling (SPP) layer [40]
and the Region-Of-Interest (ROI) pooling layer [41]. However, the motivation
and working mechanism of GNPP are quite different from these two layers. The
goal of GNPP is to punish isolated neuron responses and improve the descriptive
power of every single neuron, while the SPP layer and the ROI pooling layer aim
at summarizing local neurons into a regional description. The basic unit in the



Geometric Neural Phrase Pooling 7

GNPP layer is a single neuron, and pooling is performed on a small set of its
neighboring neurons, whereas both the SPP layer and the ROI pooling layer
work on image regions. Finally, we point out that GNPP can be integrated with
other network layers to further improve the recognition performance.

4 Experiments

In this section, we show the experimental results of inserting the GNPP layer into
different CNN models. We first observe the performance by evaluating relatively
shallow networks on small datasets, then use our conclusions to inform the
application of GNPP to deeper networks and the large-scale database.

4.1 The MNIST and SVHN Datasets

MNIST [42] is one of the most popular datasets for handwritten digit recogni-
tion. It contains 60,000 training and 10,000 testing samples, uniformly distribut-
ed over 10 categories (digits 0–9). All the samples are 28× 28 grayscale images.
We use a modified version (2 convolutional layers) of the LeNet [29] as the
baseline. With abbreviated notation, the network configuration is written as:

{C5(S1P0)@20-MP2(S2)}{C5(S1P0)@50-MP2(S2)}{FC500}{FC10}.

Here, C5(S1P0)@20 denotes a convolutional layer with 20 kernels of size 5 × 5,
spatial stride 1 and padding width 0, MP2(S2) is a max-pooling layer with pooling
region 2× 2 and spatial stride 2, and FC500 is a fully-connected layer with 500
outputs. All the convolution results are activated by ReLU [2], and we use the
softmax loss function. In the later experiments, we will directly use the same
notations. We apply 20 training epochs with learning rate 10−3, followed by 4
epochs with learning rate 10−4, and another 1 epoch with learning rate 10−5. We
test each network five times individually with different initialization and report
the averaged error rate and standard deviation.

The SVHN dataset [43] is a larger collection of 32 × 32 RGB images, with
73,257 training samples, 26,032 testing samples, and 531,131 extra training
samples. We split the data as in the previous methods [43], i.e., preserving
6,000 images for validation, and using the remainder for training. We use Local
Contrast Normalization (LCN) for data preprocessing, following [44][45][46]. We
use another version of the LeNet with 3 convolutional layers, abbreviated as:

{C5(S1P2)@32-MP3(S2)}{C5(S1P2)@32-AP3(S2)}{C5(S1P2)@64-AP3(S2)}{FC10}.

Here, AP indicates an average-pooling layer. We apply 12 training epochs with
learning rate 10−3, followed by 2 epochs with learning rate 10−4, and another 1
epoch with learning rate 10−5. Each network is individually tested five times.

When the GNPP layer is inserted into the network, it can appear before any
subset of the pooling layers. We enumerate all the possibilities, and summarize
the results in Table 1. One can observe that the use of GNPP significantly
improves the recognition accuracy. The relative error rates are decreased by
over 20% on both datasets. Meanwhile, GNPP can be used with Dropout [31]
(randomly discarding some neuron responses on the second pooling layer): on
MNIST, the error rate is reduced from 0.72% to 0.58%.



8 L. Xie, Q. Tian, J. Flynn, J. Wang and A. Yuille

L1 L2 T1(1.0) T1(0.9) T1(0.8) T2(1.0) T2(0.9) T2(0.8)

0.87 ± .02 0.87 ± .02 0.87 ± .02 0.87 ± .02 0.87 ± .02 0.87 ± .02

X 0.72 ± .04 0.73 ± .03 0.70 ± .05 0.71 ± .06 0.71 ± .06 0.72 ± .04

X 0.75 ± .03 0.79 ± .02 0.77 ± .05 0.73 ± .04 0.75 ± .04 0.73 ± .05

X X 0.72± .03 0.67± .04 0.69± .04 0.63± .03 0.64± .03 0.67± .03

(a) MNIST, with the 2-layer LeNet, no Dropout

L1 L2 T1(1.0) T1(0.9) T1(0.8) T2(1.0) T2(0.9) T2(0.8)

0.72 ± .03 0.72 ± .03 0.72 ± .03 0.72 ± .03 0.72 ± .03 0.72 ± .03

X 0.59 ± .02 0.61 ± .05 0.62 ± .03 0.59 ± .03 0.59 ± .02 0.63 ± .03

X 0.63 ± .03 0.62 ± .07 0.64 ± .03 0.62 ± .05 0.60 ± .03 0.65 ± .03

X X 0.58± .05 0.55± .02 0.57± .02 0.54± .05 0.56± .04 0.61± .05

(b) MNIST, with the 2-layer LeNet, Dropout ratio 0.5

L1 L2 L3 T1(1.0) T1(0.9) T1(0.8) T2(1.0) T2(0.9) T2(0.8)

4.63 ± .06 4.63 ± .06 4.63 ± .06 4.63 ± .06 4.63 ± .06 4.63 ± .06

X 4.46 ± .06 4.47 ± .05 4.42 ± .09 4.42 ± .08 4.42 ± .07 4.43 ± .09

X 4.15 ± .08 4.18 ± .01 4.17 ± .07 4.08 ± .10 4.19 ± .07 4.20 ± .05

X 3.76 ± .03 3.72 ± .05 3.77 ± .06 3.53 ± .07 3.64 ± .07 3.65 ± .10

X X 4.10 ± .05 4.07 ± .03 4.10 ± .05 4.10 ± .07 4.10 ± .03 4.14 ± .07

X X 3.55 ± .10 3.60 ± .03 3.67 ± .06 3.47 ± .05 3.47 ± .02 3.55 ± .09

X X 3.43± .06 3.52 ± .07 3.55± .04 3.41± .03 3.42 ± .04 3.51 ± .05

X X X 3.46 ± .07 3.47± .06 3.55± .06 3.43 ± .05 3.39± .01 3.46± .03

(c) SVHN, with the 3-layer LeNet, no Dropout
Table 1: Classification error rates (%) on MNIST and SVHN. L1, L2 and L3
are three pooling layers, ‘X’ denotes that GNPP is added. T1 and T2 indicate
two types of neighborhood (see Figure 1). 1.0, 0.9 and 0.8 are σ values.

4.2 The CIFAR10 and CIFAR100 Datasets

Both CIFAR10 and CIFAR100 datasets [47] are subsets of the 80-million
tiny image database [48]. Both of them have 50,000 training and 10,000 testing
samples, uniformly distributed over 10 or 100 categories. We also use the 3-
layer LeNet as in SVHN, with the fully-connected layer replaced by FC100 in
CIFAR100. We augment the training data by randomly flipping each training
image with 50% probability. We apply 120 training epochs with learning rate
10−3, followed by 20 epochs with learning rate 10−4, and another 10 epochs with
learning rate 10−5. Each network is individually tested five times.

Results with all possible GNPP settings are summarized in Table 2. Once
again, GNPP improves the baseline error rate significantly: the baseline error
rates on both CIFAR10 and CIFAR100 are reduced by more than 2%, and
the relative error rate decrease are 11.25% and 6.56%, respectively.



Geometric Neural Phrase Pooling 9

L1 L2 L3 T1(1.0) T1(0.9) T1(0.8) T2(1.0) T2(0.9) T2(0.8)

17.07 ± .15 17.07 ± .15 17.07 ± .15 17.07 ± .15 17.07 ± .15 17.07 ± .15

X 16.67 ± .22 16.80 ± .25 16.84 ± .12 16.65 ± .19 17.03 ± .15 17.04 ± .17

X 15.79 ± .22 16.09 ± .17 15.95 ± .31 15.69 ± .11 16.07 ± .27 15.90 ± .09

X 15.49 ± .15 15.31 ± .20 15.51 ± .25 15.27 ± .10 15.29 ± .14 15.28 ± .16

X X 15.82 ± .23 15.76 ± .18 15.98 ± .14 16.05 ± .29 15.90 ± .25 15.94 ± .09

X X 15.15 ± .20 15.29 ± .12 15.44 ± .19 15.29 ± .32 15.19 ± .35 15.20 ± .35

X X 14.92± .18 15.00 ± .18 15.15 ± .15 14.83± .25 14.93 ± .20 14.92 ± .16

X X X 14.97 ± .17 14.83± .23 14.78± .17 15.22 ± .16 14.79± .26 14.85± .26

(a) CIFAR10, with the 3-layer LeNet, Dropout ratio 0.2

L1 L2 L3 T1(1.0) T1(0.9) T1(0.8) T2(1.0) T2(0.9) T2(0.8)

44.99 ± .19 44.99 ± .19 44.99 ± .19 44.99 ± .19 44.99 ± .19 44.99 ± .19

X 44.62 ± .17 44.53 ± .45 44.78 ± .06 44.43 ± .29 44.58 ± .36 44.58 ± .52

X 43.34 ± .23 43.71 ± .19 43.37 ± .26 43.21 ± .23 43.03 ± .27 43.37 ± .30

X 43.11 ± .24 42.77 ± .37 42.99 ± .24 42.96 ± .32 42.81 ± .38 43.08 ± .39

X X 43.99 ± .07 43.63 ± .11 43.50 ± .26 43.38 ± .37 43.34 ± .27 43.46 ± .25

X X 42.85 ± .38 42.81 ± .27 42.82 ± .29 43.08 ± .27 42.79 ± .34 42.93 ± .22

X X 42.35± .30 42.34± .31 42.04± .20 42.92± .33 42.72± .25 42.54± .29

X X X 42.97 ± .29 42.77 ± .36 42.36 ± .18 43.31 ± .34 42.85 ± .18 42.60 ± .36

(b) CIFAR100, with the 3-layer LeNet, no Dropout
Table 2: Classification error rates (%) on the CIFAR datasets. We use the same
notations as in Table 1. We apply Dropout on the simpler CIFAR10 task.

4.3 Analysis on Small Experiments

Before we go into deeper networks and larger datasets, we conduct some prelim-
inary analysis based on the results we already have.

First, although inserting GNPP before any pooling layers improves the per-
formance, the most significant accuracy gain brought by a single GNPP layer is
obtained by adding GNPP before the last pooling layer. This reinforces the
conclusion drawn in Section 3.2, i.e., GNPP works better on the high-level
neuron responses. Meanwhile, on the SVHN and CIFAR datasets, adding
GNPP before all three pooling layers produces inferior results to that adding
GNPP before the second and third pooling layers. In the later experiments, we
first add the GNPP layer before each pooling layer individually, then use the
results to inform the design of the final model.

Regarding the scale of neural phrases, i.e., K, we find that increasing the
scale is not guaranteed to produce better recognition results. We explain this
by noticing that adding a faraway side word to a neural phrase, most often,
does not provide much related information but risks introducing noise to that
unit. This idea can also be used to explain why a proper smoothing parameter,
say, σ = 0.8, helps to reduce the contribution of faraway side words, leading to



10 L. Xie, Q. Tian, J. Flynn, J. Wang and A. Yuille

MNIST SVHN CIFAR10 CIFAR100

Zeiler et.al [45] 0.47 2.80 15.13 42.51

Goodfellow et.al [46] 0.45 2.47 9.38 38.57

Lin et.al [51] 0.47 2.35 8.81 35.68

Lee et.al [52] 0.39 1.92 7.97 34.57

Liang et.al [53] 0.31 1.77 7.09 31.75

Lee et.al [54] 0.31 1.69 6.05 32.37

BigNet (without GNPP) 0.36 2.14 7.80 31.03

BigNet (with GNPP) 0.32 1.87 7.14 29.74

WRN (without GNPP) 0.34 1.77 5.54 25.52

WRN (with GNPP) 0.31 1.67 5.31 25.01

Table 3: Comparison of the recognition error rate (%) with the state-of-the-arts.
We apply data augmentation on all these datasets, but the competitors do not
use it in CIFAR100. Without data augmentation, we report 29.92% and 29.17%
error rates (using WRN) without and with GNPP, respectively.

better recognition performance. One may certainly try other choices such as a
large neighborhood with a very small σ, but we note that the time complexity
of a GNPP layer is linear to K. In the later experiments, we will directly use
the first type of neighborhood (K = 4) with σ = 0.8.

4.4 Deeper Networks and the State-of-the-Arts

We adopt two deeper networks on the above four small datasets to compare
with the state-of-the-art results. One of them (we name it as the BigNet) is
borrowed from [49] in the Kaggle recognition competition, and other one one is
the 16-layer Wide Residual Network (WRN) [50] with dropout. Both networks
can be used in each of the four small datasets. In CIFAR datasets, we randomly
flip the image with 50% probability. We train the BigNet using 6×106 samples
with learning rate 10−2, followed by 3×106 samples with learning rate 10−3 and
1 × 106 samples with learning rate 10−4, respectively. We report a 7.80% error
rate on CIFAR10, comparable to the original version [49], which uses a very
complicated way of data preparation and augmentation to get a 6.68% error rate.
Training our model needs about 1 hour, while the original version [49] requires
6 hours. We train the WRN following the original configuration in [50].

We compare our results with the state-of-the-arts in Table 3. We add GNPP
before the second and the third pooling layers for BigNet, and the last pool-
ing layer for WRN. Although the baseline is already pretty high, GNPP still
improves it by a margin: on BigNet, the relative error rate drops are 11.11%,
12.62%, 8.46% and 4.16% on the four datasets, respectively. Without complicat-
ed tricks, our results are very competitive among these recent works. We believe
that GNPP can also be applied to other powerful networks in the future.



Geometric Neural Phrase Pooling 11

4.5 ImageNet Experiments

Finally, we evaluate our model on the ImageNet large-scale visual recognition
task (the ILSVRC2012 dataset [3] with 1000 categories). We use the AlexNet
(provided by the CAFFE library [4]), abbreviated as:

{C11(S4)@96-MP3(S2)}{C5(S1P2)@256-MP3(S2)}{C3(S1P1)@384}{C3(S1P1)@384}

{C3(S1P1)@256-MP3(S2)}{FC4096-D0.5}{FC4096-D0.5}{FC1000}.

The input image is of size 227× 227, randomly cropped from the original 256×
256 image. Following the setting of CAFFE, a total of 450,000 mini-batches
(approximately 90 epochs) are used for training, each of which has 256 image
samples, with the initial learning rate 10−2, momentum 0.9 and weight decay
5×10−4. The learning rate is decreased to 1/10 after every 100,000 mini-batches.

AlexNet contains three max-pooling layers, i.e., pool-1, pool-2 and pool-5.
After individual tests, we only add GNPP before the last one (pool-5), since
adding GNPP before either pool-1 or pool-2 causes accuracy drop. With the
GNPP layer, the top-1 and top-5 recognition error rates are 42.16% and 19.24%,
respectively. Comparing to the original rates (43.19% and 19.87%), GNPP boosts
them by about 1.0% and 0.6%, respectively. We emphasize that the accuracy gain
is not so small as it seems, especially considering that we do not introduce extra
parameters and that the overall training time is only increased by 1.29%.

Although GNPP is tested on AlexNet, we believe it can be applied to other
models, such as VGGNet [33], GoogleNet [34] and Deep Residual Nets [35].

5 Benefits of GNPP

This section presents several discussions and diagnostic experiments that help
us understand the side benefits brought by the GNPP layer.

5.1 Improving Internal Representation

Here we compare the conv-5 layer of the standard AlexNet with the corre-
sponding layers in the GNPPNet (defined in Section 4.5). That is, we compare
AlexNet’s conv-5 layer with GNPPNet’s conv-5 layer and GNPP-5 layer.
Each layer is a 13 × 13 × 256 neuron blob corresponding to 256 convolutional
kernels. We average over the 256 channels and obtain a 13 × 13 heatmap. To
allow direct comparison with the input image (227×227), we diffuse each neuron
response as a Gaussian distribution over its receptive field on the input image
(the same standard deviation is used on all layers). Results are shown in Figure 3.
It is observed in [39] that the activation patterns in higher convolutional layers
correspond to mid-level parts. The average over filters is a crude measure that
some mid-level parts are detected. Then Figure 3 shows the spatial pattern
corresponding to mid-level part detection.

First note that AlexNet’s conv-5 layer and GNPPNet’s GNPP-5 layer are
broadly similar. This is to be expected as both of them occur at corresponding
places in the network architecture, i.e., just before the pool-5 layer and the fully-
connected layers. We might think of the filter averages shown in Figure 3 as



12 L. Xie, Q. Tian, J. Flynn, J. Wang and A. Yuille

Original
Image

AlexNet
Heatmap on
conv-5 layer

GNPPNet
Heatmap on
conv-5 layer

GNPPNet
Heatmap on
GNPP-5 layer

eagle snakepig turkey boat monkey sleigh crab

Fig. 3: Neuron response heatmaps produced by AlexNet and GNPPNet.
When the background is relatively simple (e.g., first two images), both methods
work well. On those challenging cases, GNPP produces better saliency detection
results, implying that the internal representation of CNN is improved.

spatial summaries of average scores over object parts. The higher layers in both
networks combine spatial co-occurrences of parts into whole object detectors.
For example, car wheels and car doors are combined into a whole car.

Next notice that GNPPNet’s conv-5 layer is sparser and more concentrated
than AlexNet’s conv-5 layer. Broadly speaking the GNPP operation acts as a
smoother and it is the smoothed conv-5 layer (i.e., the GNPP-5 layer) that
resembles AlexNet’s conv-5 layer. The difference between AlexNet’s conv-5
layer and GNPPNet’s GNPP-5 layer is subtle, but we see that the GNPP-5
layer is more diffuse corresponding to GNPP’s action as local smoother.

As a result, GNPPNet’s conv-5 layer produces better saliency detection re-
sults compared to AlexNet’s conv-5 layer. This property can be used to extract
better deep features. We verify our hypothesis on the Caltech256 dataset [55].
256-dimensional feature vectors are extracted from the conv-5 layer by averaging
over 13× 13 spatial locations. The classification accuracy using the AlexNet is
59.36%, and GNPPNet improves it to 60.56%. This improvement is significant
given that no extra time or memory is required for feature extraction.

In summary, applying GNPP to CNN produces better internal representa-
tion. The deep features extracted from the GNPPNet can also benefit other
vision applications, such as image retrieval [6] and object detection [8][9].

5.2 Building Latent Connections

We show that GNPP builds latent connections between hidden layers in the CNN

model. Consider a geometric neural phrase Gw,h = xw,h ∪
{
x
(k)
w,h

}K

k=1
. Let Sw,h

be the set of neurons in the previous layer that are connected to xw,h, and S(k)w,h



Geometric Neural Phrase Pooling 13

be the set connected to x
(k)
w,h, k = 1, 2, . . . ,K. If we consider Gw,h as a GNPP

neuron, then the set of neurons in the previous layer that are connected to it is

Sw,h∪
⋃K

k=1S
(k)
w,h. Thus, we are actually building latent neuron connections which

do not exist in the original network. For example, applying GNPP (type 1) before
the pool-5 layer of the AlexNet increases the number of neuron connections
between conv-4 and conv-5 from 149.5M (million) to 348.9M (on each neuron in
conv-5, the number of connections to the previous layer increases from 9 to 21),
meanwhile the number of learnable parameters remains unchanged.

To verify the benefits of latent connections, we train another version of
AlexNet, referred to as AlexNet2, with the difference that the number of
channels on the conv-5 layer increases from 256 to 512. The number of neuron
connections between conv-4 and conv-5 increases from 149.5M to 299.0M, com-
parable to 348.9M in GNPPNet. AlexNet2 requires 9.97% extra training time
and 5.58% extra GNPP memory, while the numbers for GNPPNet are 1.29%
and 2.52%, respectively. AlexNet2 produces 42.45% (top-5) and 19.47% (top-
1) recognition error rates, which are higher than 43.19% and 19.97% reported
by AlexNet, but lower than 42.16% and 19.24% reported by GNPPNet. To
summarize, GNPP allows latent connections to be built in an efficient manner.

5.3 Accelerating Network Training

We show that adding GNPP layers accelerates the network training process,
since GNPP allows visual information to propagate faster, like [56].

Let us investigate the case that training the 3-layer LeNet on the SVHN
and CIFAR datasets. We are interested in the following question: if the input
is a 32× 32 image, which is the earliest layer containing a neuron able to “see”
the entire image? Without GNPP, we need to wait until the conv-3 layer. When
GNPP is inserted before the second pooling layer, the receptive field of the
neurons on the subsequent layers are increased. Consequently, some neurons in
pool-2 can already “see” the entire image. This allows some low-level and mid-
level information (e.g., object parts) be combined earlier.

As a result, GNPP helps the network training process converge faster. To
verify, we plot the testing error rates and the loss function values throughout
the training process. The results on the SVHN and CIFAR100 datasets, using
the LeNet, are shown in Figure 4. One can see that GNPP causes the error
rate and loss function curves drop more quickly, especially in the early epochs.
For example, in the SVHN dataset, the network without GNPP requires about
36,000 iterations to reach 6% error rate, while that with GNPP only needs about
15,000 iterations to get the same rate. Meanwhile, the training process reaches
plateau sooner in the GNPP-equipped networks (see the error rate curve between
6–12 epochs in SVHN, and that between 60–120 epochs in CIFAR100).

With the help of GNPP, we can even train a network faster and obtain
better performance. The baseline error rates on SVHN and CIFAR100, using
the LeNet, are 4.63% and 44.99%, respectively. We train a GNPP-equipped
LeNet with half training epochs under each learning rate, and obtain 3.78%
and 43.35% error rates (the full training reports 3.55% and 42.04%).



14 L. Xie, Q. Tian, J. Flynn, J. Wang and A. Yuille

0 3 6 9 12 15 18 20
0.03

0.04

0.05

0.06

0.07

0.08

0.09
The SVHN Dataset

Number of Epoches

R
ec

og
ni

tio
n 

E
rr

or
 R

at
e

 

 

LeNet, testing error
GNPPNet, testing error

0 30 60 90 120 140 150
0.41

0.46

0.51

0.56

0.61

0.66

0.71
The CIFAR100 Dataset

Number of Epoches

R
ec

og
ni

tio
n 

E
rr

or
 R

at
e

 

 

LeNet, testing error
GNPPNet, testing error

0 3 6 9 12 15 18 20
0.13

0.16

0.19

0.22

0.25

0.28

0.31
The SVHN Dataset

Number of Epoches

Lo
ss

 F
un

ct
io

n 
(lo

g 
sc

al
e)

 

 

LeNet, testing loss
GNPPNet, testing loss

0 30 60 90 120 140 150
1.5

1.7

1.9

2.1

2.3

2.5

2.7
The CIFAR100 Dataset

Number of Epoches

Lo
ss

 F
un

ct
io

n 
(lo

g 
sc

al
e)

 

 

LeNet, testing loss
GNPPNet, testing loss

Fig. 4: Error rate and loss function curves on the SVHN and CIFAR100
datasets. GNPPNet refers to the LeNet with two GNPP layers inserted before
the second and third pooling layers. The curves in red frames indicate that
GNPPNet enjoys better convergence, i.e., it reaches the plateau sooner.

6 Conclusions

In this paper, we demonstrate that constructing and encoding neural phrases
boost the performance of state-of-the-art CNNs. We insert Geometric Neural
Phrase Pooling (GNPP) as an intermediate layer into the network, and show
that it improves the performance of deep networks without requiring much
more computational resources. GNPP can be explained as an implicit way of
modeling the spatial co-occurrence of neurons. We also show that GNPP enjoys
the advantage of improving the internal representation of CNN, building latent
connections, and speeding up the network training process.

We learn from GNPP that the isolated neuron responses are less reliable
than the clustered ones. We hope that other kinds of prior knowledge can also be
incorporated into the CNN architecture. Meanwhile, other visual tasks, including
detection, segmentation, etc., may also benefit from the GNPP algorithm. The
exploration of these topics is left for future work.

Acknowledgements This paper is supported by iARPA MICrONS contract
D16PC00007, ONR N00014-12-1-0883, ARO grants W911NF-15-1-0290, Facul-
ty Research Gift Awards by NEC Labs of America and Blippar, and NSFC
61429201. We thank Junhua Mao, Cihang Xie and Zhuotun Zhu for discussion.



Geometric Neural Phrase Pooling 15

References

1. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale
Hierarchical Image Database. Computer Vision and Pattern Recognition (2009)

2. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet Classification with Deep
Convolutional Neural Networks. Advances in Neural Information Processing
Systems (2012)

3. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (2015) 1–42

4. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadar-
rama, S., Darrell, T.: CAFFE: Convolutional Architecture for Fast Feature
Embedding. ACM International Conference on Multimedia (2014)

5. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.:
DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition.
International Conference on Machine Learning (2014)

6. Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN Features off-the-shelf:
an Astounding Baseline for Recognition. Computer Vision and Pattern Recognition
(2014)

7. Xie, L., Hong, R., Zhang, B., Tian, Q.: Image Classification and Retrieval are
ONE. International Conference on Multimedia Retrieval (2015)

8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation. Computer Vision and
Pattern Recognition (2014)

9. Girshick, R.: Fast R-CNN. International Conference on Computer Vision (2015)
10. Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual Categorization

with Bags of Keypoints. Workshop on Statistical Learning in Computer Vision,
European Conference on Computer Vision 1(22) (2004) 1–2

11. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International
Journal on Computer Vision 60(2) (2004) 91–110

12. Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection.
Computer Vision and Pattern Recognition (2005) 886–893

13. Xie, L., Wang, J., Lin, W., Zhang, B., Tian, Q.: RIDE: Reversal Invariant
Descriptor Enhancement. International Conference on Computer Vision (2015)

14. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear Spatial Pyramid Matching Using
Sparse Coding for Image Classification. Computer Vision and Pattern Recognition
(2009) 1794–1801

15. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-Constrained
Linear Coding for Image Classification. Computer Vision and Pattern Recognition
(2010)

16. Perronnin, F., Sanchez, J., Mensink, T.: Improving the Fisher Kernel for Large-
scale Image Classification. European Conference on Computer Vision (2010)

17. Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image Classification Using Super-
Vector Coding of Local Image Descriptors. European Conference on Computer
Vision (2010)

18. Kobayashi, T.: Dirichlet-Based Histogram Feature Transform for Image Classifi-
cation. Computer Vision and Pattern Recognition (2014)

19. Lazebnik, S., Schmid, C., Ponce, J.: Beyond Bags of Features: Spatial Pyramid
Matching for Recognizing Natural Scene Categories. Computer Vision and Pattern
Recognition (2006)



16 L. Xie, Q. Tian, J. Flynn, J. Wang and A. Yuille

20. Feng, J., Ni, B., Tian, Q., Yan, S.: Geometric Lp-norm Feature Pooling for Image
Classification. Computer Vision and Pattern Recognition (2011)

21. Fan, R., Chang, K., Hsieh, C., Wang, X., Lin, C.: LIBLINEAR: A Library for Large
Linear Classification. Journal of Machine Learning Research 9 (2008) 1871–1874

22. Boiman, O., Shechtman, E., Irani, M.: In Defense of Nearest-Neighbor Based Image
Classification. Computer Vision and Pattern Recognition (2008)

23. Yuan, J., Wu, Y., Yang, M.: Discovery of Collocation Patterns: from Visual Words
to Visual Phrases. Computer Vision and Pattern Recognition (2007)

24. Zhang, Y., Jia, Z., Chen, T.: Image Retrieval with Geometry-Preserving Visual
Phrases. Computer Vision and Pattern Recognition (2011)

25. Zhang, S., Tian, Q., Hua, G., Huang, Q., Li, S.: Descriptive Visual Words and
Visual Phrases for Image Applications. ACM Multimedia (2009)

26. Xie, L., Tian, Q., Wang, M., Zhang, B.: Spatial Pooling of Heterogeneous Features
for Image Classification. IEEE Transactions on Image Processing 23(5) (2014)
1994–2008

27. Jiang, Y., Meng, J., Yuan, J.: Randomized Visual Phrases for Object Search.
Computer Vision and Pattern Recognition (2012)

28. Xie, L., Tian, Q., Hong, R., Yan, S., Zhang, B.: Hierarchical Part Matching for
Fine-Grained Visual Categorization. IEEE International Conference on Computer
Vision (2013)

29. LeCun, Y., Denker, J., Henderson, D., Howard, R., Hubbard, W., Jackel, L.:
Handwritten Digit Recognition with a Back-Propagation Network. Advances in
Neural Information Processing Systems (1990)

30. Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift. International Conference on Machine Learning
(2015)

31. Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Im-
proving Neural Networks by Preventing Co-adaptation of Feature Detectors. arXiv
preprint, arXiv: 1207.0580 (2012)

32. Xie, L., Wang, J., Wei, Z., Wang, M., Tian, Q.: DisturbLabel: Regularizing CNN
on the Loss Layer. Computer Vision and Patter Recognition (2016)

33. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition. International Conference on Learning Representations (2015)

34. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going Deeper with Convolutions. Computer Vision
and Pattern Recognition (2015)

35. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition.
arXiv preprint, arXiv: 1512.03385 (2015)

36. Zhang, N., Paluri, M., Ranzato, M., Darrell, T., Bourdev, L.: PANDA: Pose
Aligned Networks for Deep Attribute Modeling. Computer Vision and Pattern
Recognition (2014)

37. Xie, L., Zheng, L., Wang, J., Yuille, A., Tian, Q.: InterActive: Inter-Layer
Activeness Propagation. Computer Vision and Patter Recognition (2016)

38. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the Devil in the
Details: Delving Deep into Convolutional Nets. British Machine Vision Conference
(2014)

39. Wang, J., Zhang, Z., Premachandran, V., Yuille, A.: Discovering Internal Repre-
sentations from Object-CNNs Using Population Encoding. arXiv preprint, arXiv:
1511.06855 (2015)

40. He, K., Zhang, X., Ren, S., Sun, J.: Spatial Pyramid Pooling in Deep Convolutional
Networks for Visual Recognition. European Conference on Computer Vision (2014)



Geometric Neural Phrase Pooling 17

41. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. Advances in Neural Information
Processing Systems (2015)

42. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based Learning Applied
to Document Recognition. Proceedings of the IEEE 86(11) (1998) 2278–2324

43. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.: Reading Digits
in Natural Images with Unsupervised Feature Learning. NIPS Workshop on Deep
Learning and Unsupervised Feature Learning (2011)

44. Sermanet, P., Chintala, S., LeCun, Y.: Convolutional Neural Networks Applied
to House Numbers Digit Classification. International Conference on Pattern
Recognition (2012)

45. Zeiler, M., Fergus, R.: Stochastic Pooling for Regularization of Deep Convolutional
Neural Networks. International Conference on Learning Representations (2013)

46. Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout
Networks. International Conference on Machine Learning (2013)

47. Krizhevsky, A., Hinton, G.: Learning Multiple Layers of Features from Tiny
Images. Technical Report, University of Toronto (2009)

48. Torralba, A., Fergus, R., Freeman, W.: 80 Million Tiny Images: A Large Data Set
for Nonparametric Object and Scene Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence 30(11) (2008) 1958–1970

49. Nagadomi: The Kaggle CIFAR10 Network. https://github.com/nagadomi/kaggle-
cifar10-torch7/ (2014)

50. Zagoruyko, S., Komodakis, N.: Wide Residual Networks. arXiv preprint, arXiv:
1605.07146 (2016)

51. Lin, M., Chen, Q., Yan, S.: Network in Network. International Conference on
Learning Representations (2014)

52. Lee, C., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-Supervised Nets.
International Conference on Artificial Intelligence and Statistics (2015)

53. Liang, M., Hu, X.: Recurrent Convolutional Neural Network for Object Recogni-
tion. Computer Vision and Pattern Recognition (2015)

54. Lee, C., Gallagher, P., Tu, Z.: Generalizing Pooling Functions in Convolutional
Neural Networks: Mixed, Gated, and Tree. International Conference on Artificial
Intelligence and Statistics (2016)

55. Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset. Technical
Report: CNS-TR-2007-001, Caltech (2007)

56. Srivastava, R., Greff, K., Schmidhuber, J.: Training Very Deep Networks. Advances
in Neural Information Processing Systems (2015)


