

Multi-objects Generation with Amortized Structural Regularization

Introduction

Figure: How to embed human knowledge into structured DGMs?

Embedding human knowledge into DGMS:

- The most straightforward way: Designing proper prior distribution.
- Sometimes Infeasible, such as the non-overlapping case.
- More challenging to optimization.
- Posterior Regularization:
- Flexible and general.
- Easy to optimize.
- Hard to generalize to DGMs.

ASR: amortized **PR** for structural regularization

ASR extend PR to DGMs and can:

- Efficiently amortized variational inference with interpretable latent variables.
- Embed human knowledge into DGMs through structural constraints.

Formally, ASR extend PR into the amortized version as follows:

$$\max_{\theta} \log I_Z p(X, Z; \theta) dZ - \Omega(p(Z|X; \theta))$$

$$\rightarrow \max_{\theta \in \Theta, \phi \in \Phi} \mathbb{E}_{q(Z|X; \phi)} \log \frac{p(X, Z; \theta)}{q(Z|X; \phi)} - R(q(Z|X; \phi)),$$

where $\Omega = \min_{q \in Q} KL(q(Z)||p(Z|X; \theta))$ and Q
is defined as $Q = \{q(Z)|R(q(Z)) \leq \mathbf{0}\}.$

Kun Xu, Chongxuan Li, Jun Zhu, Bo Zhang

Department of Computer Science, Tsinghua University

Figure: Example of non-overlapping regularization.

Structured generative models and its inference

• Generative model is defined as: $p(x, z, n; \theta) = p(z_{pres}^{n+1} = 0 | z^{\leq n}; \theta) \left(\lim_{t=1}^{n} p(z_{pres}^{t} = 0 | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z_{pres}^{t} = 0 | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z_{pres}^{t} = 0 | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z_{pres}^{t} = 0 | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z_{pres}^{t} = 0 | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z_{pres}^{t} = 0 | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z_{pres}^{t} = 0 | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z_{pres}^{t} = 0 | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z_{pres}^{t} = 0 | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z^{t}; \theta) | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z^{t}; \theta) | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z^{t}; \theta) | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z^{t}; \theta) | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z^{t}; \theta) | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z^{t}; \theta) | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z^{t}; \theta) | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z^{t}; \theta) | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z^{t}; \theta) | z^{\leq n}; \theta) \right) \left(\lim_{t=1}^{n} p(z^{t}; \theta) | z^{\leq n}; \theta) \right)$ • Inference model is defined as follows: $q(z, n | x; \phi) = q(z_{pres}^{n+1} = 0 | z^{\leq n}, x; \phi) \lim_{t=1}^{n} q(z_{pres}^{i} = 1 | z^{< t}, x; \phi) q(z^{t} | z^{< t}, x; \phi).$

ASR on the number of objects

Each image contains a certain number of objects. The valid set is defined as: $Q^{num} = \{q(Z|X) | \min_{q_i \in V} KL(q_i) | q(Z|X) \le 0, KL(q_{uni}(Z)) | \mathbb{E}_{p(X)}q(Z|X) \le 0\}$

(b) The reconstruction of AIR-pPrior-13. (c) The reconstruction of AIR-ASR-13. Figure: The reconstruction results of Multi-MNIST on 1 or 3 objects.

Methods	nELBO	ACC
AIR-13	404.41 ± 4.58	0.81 ± 0
AIR-pPrior-13	405.21 ± 1.17	0.48 ± 0
AIR-ASR-13	360.20 ± 19.67	0.96 ± 0

$$= 1|z^{$$

SE mIoU $0.23 \quad 31.94 \pm 4.68 \quad \mathbf{0.61} \pm 0.13$ $0.00 \quad 49.42 \pm 0.24 \quad 0.43 \pm 0.01$ $0.00 \ \mathbf{28.84} \pm 1.11 \ \mathbf{0.61} \pm 0.00$ Table: Results on regularization on the number of objects.

ASR on non-overlapping

(c) The reconstruction of AIR-ASR-3. Figure: The reconstruction results of Multi-MNIST on 3 objects. There is no overlapping among objects in the training data. ASR can successfully infer the underlying structures, and improve the reconstruction results.

Contact Information

• Source Code: https://github.com/taufikxu/MOG-ASR • Email: kunxu.thu@gmail.com