arXiv:2002.07501v1 [stat.ML] 18 Feb 2020

A Wasserstein Minimum Velocity Approach to
Learning Unnormalized Models

Ziyu Wang Shuyu Cheng

Yueru Li

Jun Zhu Bo Zhang

Dept. of Comp. Sci. & Tech., BNRist Center, Institute for AI, THBI Lab, Tsinghua University

Abstract

Score matching provides an effective approach
to learning flexible unnormalized models, but
its scalability is limited by the need to evalu-
ate a second-order derivative. In this paper,
we present a scalable approximation to a gen-
eral family of learning objectives including
score matching, by observing a new connec-
tion between these objectives and Wasserstein
gradient flows. We present applications with
promise in learning neural density estima-
tors on manifolds, and training implicit varia-
tional and Wasserstein auto-encoders with a
manifold-valued prior.

1 INTRODUCTION

A flexible approach to density estimation is to param-
eterize an unnormalized density function, or energy
function. In particular, unnormalized models with en-
ergy parameterized by deep neural networks have been
successfully applied to density estimation (Wenliang
et al., 2019; Saremi et al., 2018) and learning implicit
auto-encoding models (Song et al., 2019).

Parameter estimation for such unnormalized models is
highly non-trivial: the maximum likelihood objective
is intractable, due to the presence of a normalization
term. Score matching (Hyvérinen, 2005) is a popular
alternative, yet applying score matching to complex
unnormalized models can be difficult, as the objec-
tive involves the second-order derivative of the energy,
rendering gradient-based optimization infeasible. In
practice, people turn to scalable approximations of
the score matching objective (Song et al., 2019; Hy-
varinen, 2007; Vincent, 2011; Raphan and Simoncelli,
2011), or other objectives such as the kernelized Stein
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discrepancy (KSD; Liu et al., 2016b; Liu and Wang,
2017). So far, approximations to these objectives are
developed on a case-by-case basis, leaving important
applications unaddressed; for example, there is a lack
of scalable learning methods for unnormalized models
on manifolds (Mardia et al., 2016).

In this work, we present a unifying perspective to this
problem, and derive scalable approximations for a va-
riety of learning objectives including score matching.
We start by interpreting these objectives as the ini-
tial velocity of certain distribution-space gradient flows,
which are simulated by common samplers. This novel
interpretation leads to a scalable approximation algo-
rithm for all such objectives, reminiscent to single-step
contrastive divergence (CD-1).

We refer to any objective with the above interpreta-
tion as above as a “minimum velocity learning objec-
tive”, a term coined in the unpublished work (Movellan,
2007). Movellan (2007) focused on the specific case of
score matching; in contrast, our formulation general-
izes theirs by lifting the concept of velocity from data
space to distribution space, thus applies to different
objectives as the choice of distribution space varies.
For example, our method applies to score matching
and Riemannian score matching when we choose the
2-Wasserstein space, and to KSD when we choose the
‘H-Wasserstein space (Liu, 2017); we can also derive
instances of the minimum velocity learning objective
when the distribution-space gradient flow corresponds
to less well-studied samplers, such as (Zhang et al.,
2018; Lu et al., 2019). Another gap we fill in is the de-
velopment of a practically applicable algorithm, which
we will discuss shortly.

Our algorithm is connected to previous work using CD-
1 to estimate the gradient of certain objectives (Hy-
varinen, 2007; Movellan, 2007; Liu and Wang, 2017);
however, there are important differences. From a the-
oretical perspective, we provide a unified derivation
for all such objectives, including those not considered
in previous work; our gradient-flow-based derivation
is also simpler, and leads to an improved understand-
ing of this approach. From an algorithmic perspec-
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tive, we directly approximate the objective function
instead of its gradient, enabling the use of regulariza-
tion like early-stopping. More importantly, we identify
an infinite-variance problem in the approximate score
matching objective, which has previously rendered the
approximation impractical (Hyvarinen, 2007; Saremi
et al., 2018); we further present a simple fix. As a
side product of our work, our fix also applies to de-
noising score matching (Raphan and Simoncelli, 2011;
Vincent, 2011), another score matching approximation
that suffers from this problem.

One important application of our method is in learn-
ing unnormalized models on manifolds, as our method
leads to a scalable approximation for the Riemannian
score matching objective. Density estimation on mani-
folds is needed in areas such as image analysis (Srivas-
tava et al., 2007), geology (Davis and Sampson, 1986)
and bioinformatics (Boomsma et al., 2008). Moreover,
our approximation leads to flexible inference schemes
for variational and Wasserstein auto-encoders with
manifold-valued latent variables, as it enables gradient
estimation for implicit variational distributions on man-
ifolds. Auto-encoders with a manifold-valued latent
space can capture the distribution of certain types of
data better. For example, a hyperbolic latent space
could be more suitable when the data has a hierarchical
structure (Mathieu et al., 2019; Ovinnikov, 2019), and
a hyper-spherical prior could be more suitable for di-
rectional data (Davidson et al., 2018). As we shall see
in experiments, our method improves the performance

of manifold-latent VAEs and WAEs.

The rest of this paper is organized as follows: Section 2
reviews the preliminary knowledge: manifolds, gradient
flows and their connection to common sampling algo-
rithms. We present our method in Section 3 and its
applications in Section 4. Section 5 contains a review
of the related work, and Section 6 contains experiments.
We provide our conclusions in Section 7.

2 PRELIMINARIES

2.1 Manifolds, Flows and the 2-Wasserstein
Space

We recall concepts from differential manifolds that will
be needed below.

A (differential) manifold M is a topological space lo-
cally diffeomorphic to an Euclidean or Hilbert space. A
manifold is covered by a set of charts, which enables the
use of coordinates locally, and specifies a set of basis
{9;} in the local tangent space. A Riemannian mani-
fold further possesses a Riemannian structure, which
assigns to each tangent space 7,,M an inner product
structure. The Riemannian structure can be described

using coordinates w.r.t. local charts.

The manifold structure enables us to differentiate a
function along curves. Specifically, consider a curve
¢:[0,T] = M, and a smooth function f : M — R.
At c(t) € M, a tangent vector % ; € Te(ryM describes
the velocity of ¢ passing c(t); the differential of the
function f at c(t), denoted as (df )., is a linear map

from 7. M to R, such that for all c
dc

() (dt ) = 2 flet)

A tangent vector field assigns to each p € M a tan-
gent vector V,, € T,M. It determines a flow, a set of
curves {¢,(t) : p € M} which all have V;, ;) as their
velocity. On Riemannian manifolds, the gradient of a
smooth function f is a tangent vector field p — grad,, f
such that (grad,f,v) = (df),(v) for all v € T,M. Tt
determines the gradient flow, which generalizes the
Euclidean-space notion dz = V. f(x)dt.

to to

We will work with two types of manifolds: the data
space X when we apply our method to manifold-valued
data, and the space of probability distributions over X'.
On the space of distributions, we are mostly interested
in the 2-Wasserstein space P(X), a Riemannian mani-
fold. The following properties of P(X) will be useful
for our purposes (Villani, 2008):

1. Its tangent space T,P(X) can be identified as a
subspace of the space of vector fields on X; the
Riemannian metric of P(X) is defined as

for all p € P(X), X, Y € T,P(X); the inner product
on the right hand side above is determined by the
Riemannian structure of X.

2. The gradient of the KL divergence functional
KLy (q) := KL(q|lp) in P(X) is

Ta Uu) = gra 0, M
(grad KL;)(u) = grad, 1 & () (2)

We will also consider a few other spaces of distributions,
including the Wasserstein-Fisher-Rao space (Lu et al.,
2019), and the H-Wasserstein space introduced in (Liu,
2017).

On the data space, we need to introduce the notion of
density, i.e. the Radon—-Nikodym derivative w.r.t. a
suitable base measure. The Hausdorff measure is one
such choice; it reduces to the Lebesgue measure when
X = R™. In most cases, distributions on manifolds
are specified using their density w.r.t. the Hausdorff
measure; e.g. ‘“uniform” distributions has constant
densities in this sense.
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Finally, the data space X will be embedded in R™; we re-
fer to real-valued functions on the space of distributions
as functionals; we denote the functional g — KL(q||p)
as KL,; we adopt the Einstein summation convention,
and omit the summation symbol when an index ap-
pears both as subscript and superscript on one side of
an equation, e.g. v*0; := > v*0;.

2.2 Posterior Sampling by Simulation of
Gradient Flows

Now we review the sampling algorithms considered
in this work. They include diffusion-based MCMC,
particle-based variational inference, and other stochas-
tic interacting particle systems.

Riemannian Langevin Dynamics Suppose our
target distribution has density p(z) w.r.t. the Haus-
dorff measure of X'. In a local chart U C X, let
G : U — R™*™ be the coordinate matrix of its Rieman-
nian metric. Then the Riemannian Langevin dynamics
corresponds to the following stochastic differential equa-
tion in the chart!:

dz =V (z)dt + /2G~(z)dB; (3)
where

_ log|G(x)|

Vi(x) =¢"0; (logp(x) 5 ) +8;97, (4)
and (g¥) is the coordinate of the matrix G=1. It is
known (Villani, 2008) that the Riemannian Langevin
dynamics is the gradient flow of the KL functional

KL,(q) := KL(¢||p) in the 2-Wasserstein space P(X).

Particle-based Samplers A range of samplers ap-
proximate the gradient flow of KL, in various spaces,
using deterministic or stochastic interacting particle sys-
tems.? For instance, Stein variational gradient descent
(SVGD; Liu and Wang, 2016) simulates the gradient
flow in the so-called H-Wasserstein space (Liu, 2017),
which replaces the Riemannian structure in P(X’) with
the RKHS inner product. Birth-death accelerated
Langevin dynamics (Lu et al., 2019) is a stochastic
interacting particle system that simulates to the gradi-
ent flow of KL, in the Wasserstein-Fisher-Rao space.
Finally, the stochastic particle-optimization sampler

L (3) differs from definitions in some works (e.g. Ma
et al., 2015). This is because we define p as the density
w.r.t. the Hausdorff measure of X, while they use the
Lebesgue measure. See also (Xifara et al., 2014; Hsu, 2008).

2 There are other particle-based samplers (Liu et al.,
2019b,a; Taghvaei and Mehta, 2019) corresponding to ac-
celerated gradient flows. However, as we will be interested
in the initial velocity of the flow, they do not lead to new
MVL objectives.

(SPOS; Zhang et al., 2018; Chen et al., 2018) combines
the dynamics of SVGD and Langevin dynamics; as we
will show in Appendix B.1, SPOS also has a gradient
flow structure.

3 WASSERSTEIN MINIMUM
VELOCITY LEARNING

In this section, we present our framework, which con-
cerns all learning objectives of the following form:

d
Lmvl(o) = aKL(ptHQO) ) (5)
t=0

where p; is defined as the gradient flow of KL, in
a suitable space of probability measures (e.g. the 2-
Wasserstein space). We refer to any such objective
as a “minimum velocity learning (MVL) objective”; as
we shall see below, L, equals the initial velocity of
the gradient flow ||gradeLq||2, in the corresponding
distribution space.

In the following subsections, we will first set up the
problem, and motivate the use of (5) by connecting
it to score matching; then we present our approxima-
tion to (5), and its variance-reduced version; we also
address the infinite-variance issue in two previous ap-
proximators for the score matching objective. Finally,
we briefly discuss other instances of the MVL objective
that our method can be applied to.

3.1 Score Matching and a Wasserstein Space
View

Consider parameter estimation in the unnormalized
model ¢(z;0) = %exp(—g(x;ﬁ)). Maximum like-
lihood estimation is intractable, due to the presence
of the normalizing constant Z(0) = [ exp(—&(z;6))dx.
Score matching circumvents this issue by minimizing
the Fisher divergence

1
Dr(plg) = 5Ep) [z logp(x) = Vs logg(:0)|]
(6)
which does not depend on the normalization con-

stant. While (6) involves the unknown V, logp(z)
term, Hyvérinen (2005) shows that it equals

1
Ep(a) Alogcz(w;ﬁ)+§IIV10gq(x;9)||2 . (7

plus a constant independent of #. Thus we can esti-
mate the Fisher divergence at the cost of introducing
a second-order derivative.

Unfortunately, optimization w.r.t. second-order deriva-
tives is prohibitively expensive when the energy is pa-
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rameterized by deep neural networks, and scalable ap-
proximation to the score matching objective must be
developed. Our work starts by observing

1
Dp(plg) = g\lgradequlz,

where the gradient and norm are defined in P(X), and
the manifold & inherits the Riemannian metric from
R™. This follows directly from (1)-(2).

Now let p; be the gradient flow of KL, i.e. %pt =
—grad,, KL;. Then

ngadeLq ||2 = d(KLq)p(gradeLq)

d
= — —KL(pt/[g0)

7 =Lnu(0). (8)

t=0

Therefore, score matching is a special case of the MVL
objective (5), when the space of distributions is chosen

as P(X).

3.2 Approximating the MVL Objective

While the MVL objective has a closed-form expression,
it usually involves second-order derivatives. In this
subsection, we will derive an efficient approximation
scheme for the MVL objective. Our approximation will
only involve first-order derivatives, thus it can be easily
implemented using automatic differentiation softwares
(e.g. TensorFlow).

First, observe that (8) holds regardless of the cho-
sen space of distributions. Denote H[p] := E,logp,
Flp] == E,logqg = —E,€&, so KL, = H — F, then we
can transform the above into

(grad,H — grad,F, gradH — grad,F)
1
:||gradp7-l||2 -2 <g1raudp.7:7 grad,H — 2gradp]:>
=||grad, H|* — 2(grad, F, grad KL 1/2). 9)

As the first term in (9) is independent of 6, the MVL
objective is always equivalent to the second term. We
will approximate the second term by simulating a mod-
ified gradient flow: let p; be the distribution obtained
by running the sampler targeting ¢'/?. Then

(grad, F, —grad,KL,i/2) = (dF),(—grad,KL,/2)
_ iy Ei loggo — Eplog g
= lim .

e—0 €

(10)

(10) can be approximated by replacing the limit with a
fixed €, and running the corresponding sampler starting
from a mini-batch of training data. The approximation
becomes unbiased when € — 0.

3.2.1 A Control Variate

We have derived an estimator of (10) with vanishing
bias. However, the estimator will suffer from high
variance when the sampler used in the MVL objective
consists of It6 diffusion. Fortunately, we can solve this
problem with a control variate.

To illustrate the problem as well as our solution, sup-
pose {p; } corresponds to Langevin dynamics, and (with-
out loss of generality) we use a batch size of 1 in esti-
mation. Our estimator is then

po=2 [E(f) . <x+ RGN \/ZZ)] ,

€ 2

where zt is sampled from the training data, and Z ~
N(0,1). By Taylor expansion®, L./2 equals

%nvmaﬁ)n? V()7 — \/szvmg(gﬁ)
+ 0(1), (11)

and as e > 0, Var L, = © (6*1) — 00.

Now we can see the need for a control variate. In this
LD example, the control variate 1/2/eZ T V& (x ) will
remove the infinite-variance term; More generally, our
control variate is always the inner product of V,&(z™")
and the diffusion term in the sampler.

Wrapping up, our approximate MVL objective is cal-

culated as follows:

1. Sample a mini-batch of input {z;}2 ;.

2. Run a single step of the sampling algorithm on {z;}
targeting g /o oc exp(—E&(x;0)/2), with a step-size
of e. Denote the resulted state as {z; }.

3. Return & Zle(é’(xi) —&(z;)) plus the control vari-
ate.

The approximation becomes unbiased as ¢ — 0, and
has O(1) variance? regardless of e.

3.3 On CD-1 and Denoising Score Matching:
Pitfalls and Fixes

As a side product, we show that our variance analysis
explains the pitfall of two well-known approximations to
the score matching objective: CD-1 (Hyvarinen, 2007)
and denoising score matching (Vincent, 2011, DSM).

3We need to expand to the second order when the incre-
ment is a discretization of some It6 diffusion.

4 under mild assumptions controlling the growth of V3£
(e.g. bounded by a polynomial), so that the residual term
in (11) will have bounded variance when averaged over Z.
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Both approximations become unbiased as a step-size
hyper-parameter ¢ — 0, but did not match the perfor-
mance of exact score matching in practice, as witnessed
in Hyvarinen (2007); Saremi et al. (2018); Song et al.
(2019). We propose novel control variates for these
approximators. As we will show in Section 6.1, the
variance-reduced versions of the approximations have
comparable performance to the exact score matching
objective.

DSM DSM considers the objective

Lasm(8) = Epayn(zlo.0) |z + 0z — (z + 1o (x + 02)) |
(12)
The first two terms inside the norm represent a noise
corrupted sample, and 1y represents a “single-step de-
noising direction” (Raphan and Simoncelli, 2011). It
is proved that the optimal 1 satisfies ¢ = 02V logp,
where p is the density of the corrupted distribution
(Raphan and Simoncelli, 2011; Vincent, 2011).

Consider the stochastic estimator of (12). We assume
a batch size of 1, and denote the data sample as x.
To keep notations consistent, denote € = o2, ¥y(x) =
eV E(x;0). Then the estimator is

Lasm = || + Vez — eV E(x + Vez; 0) — |2

As is similar to Section 3.2.1, we can show by Taylor
expansion (see Appendix A) that

lim € 2ELgsm = 2Drisher (plq) + (const),  (13)
€E—>

lim e 2Var Lgm = 00; (14)
e—0

furthermore, the variance reduced objective

Lasm — (€] 2]|2 — 263/22TVE(x))
2

- (15)

is unbiased with finite variance.

CD-1 with Langevin Dynamics Proposed as an
approximation to the maximum likelihood estimate,
the K-step contrastive divergence (CD-K) learning
rule updates the model parameter with

Opi1 < 0+ v [Epagg - IEPK&;S] s (16)

where v is the learning rate, and px is obtained from
p by running K steps of MCMC. (16) does not define
a valid objective, since px also depends on 8; however,
Hyvarinen (2007) proved that when K = 1 and the
sampler is the Langevin dynamics, (16) recovers the
gradient of the score matching objective.

Using the same derivation as in Section 3.2.1, we can see
that as the step-size of the sampler approaches 0 (and
v is re-scaled appropriately), the gradient produced by

CD-1 also suffers from infinite variance, and this can
be fixed using the same control variate.

However, practical utility of CD-1 is still hindered by
the fact that it does not correspond to a valid learning
objective; consequently, it is impossible to monitor the
training process for CD-1, or introduce regularizations
such as early stopping®.

3.4 Instances of MVL Objectives

As the previous derivation is independent of the distri-
bution space of choice, we can derive approximations
to other learning objectives using samplers other than
LD. An important example is the Riemannian score
matching objective, which corresponds to Riemannian
LD; we will discuss it in detail in Section 4.1. Another
example is when we choose the sampler as SVGD. In
this case, we will obtain an approximation to the ker-
nelized Stein discrepancy, generalizing the derivation in
(Liu and Wang, 2017). When the sampling algorithm
is chosen as SPOS, the corresponding MVL objective
will be an interpolation between KSD and the Fisher
divergence. See Appendix B.2 for derivations. Finally,
the use of birth-death accelerated Langevin dynamics
leads to a novel learning objective.

In terms of applications, our work focuses on learning
neural energy-based models, and these objectives do
not improve over score matching in this aspect. How-
ever, these derivations are useful since they generalize
previous discussions, and establish new connections
between sampling algorithms and learning objectives.
It is also possible that these approximate objectives
could be useful in other scenarios, such as learning ker-
nel exponential family models (Sriperumbudur et al.,
2017), improving the training of GANs (Liu and Wang,
2017) or amortized variational inference methods (Ruiz
and Titsias, 2019).

4 APPLICATIONS

We now present applications of our work, including a
scalable learning algorithm for unnormalized models on
manifolds, as well as its application on learning implicit
auto-encoders with manifold-valued priors.

4.1 MVL on Riemannian Manifolds

Density estimation on manifolds is needed in many
application areas. While it is natural to consider unno-
ramlized models on manifolds, there has been a lack of

% In practice, the term E,& —E,, € is often used to tract
the training process of CD-K. It is not a proper loss; we
can see from (9) that when K =1 and e » 0, E,& —E,, &
is significantly different from the proper score matching
(MVL) loss, by a term of ||grad,F||.
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scalable learning methods. Here we address this issue,
by applying our method to obtain a scalable approx-
imation to the Riemannian score matching objective
(Mardia et al., 2016).

Given the data manifold X', we define an unnormal-
ized model on it by parameterizing the log density
w.r.t. the Hausdorff measure, and define the density as
q(x;0) x exp(—&(x;0)). The Riemannian score match-
ing objective will have the same form as (6); although
the norm in (6) is now determined by the metric on X,
and the base measure of the densities has changed.

It is easy to verify that the derivation in Section 3.1 still
applies in the manifold case. Thus, the Riemannian
score matching objective is a special case of the MVL
objective, in which the distribution space is still chosen
as P(X). The difference is that P(X") is now defined
with the non-trivial data-space metric, and the gra-
dient flow of KL, becomes the Riemannian Langevin
dynamics (3). We can approximate the objective by
doing a single step of Riemannian LD for small e:

2 .

Lmvl-rld - = (5(117, 0) - 5(yv 0) - @alg(y)zz ) .
€ N————
control variate

(17)

In (17), y is the local coordinates of a sampled data
point, G(y) is the Riemannian metric, and y~ is ob-
tained by running Riemannian Langevin dynamics®

targeting q /o:

i i id 8 ,0 +10 G i
(y™) :y+6<—g'78j (y;0) 2%‘ (y)|—|—3kgk>

+V2¢z, (18)
2~ N(0,G7 ().

4.2 Learning Implicit AEs with Manifold
Prior

Recently, there is a surge of interest in auto-encoding
models with manifold-valued priors. In this section,
we present a new training method for implicit auto-
encoders with manifold priors, based on the above
Riemannian score matching algorithm.

Formally, auto-encoders model the observed data by
marginalizing out a latent code variable, p(z;6) :=
[ p(z]z;0)p(z)dz. To enable tractable learning, they
define an additional “encoder” distribution q(z|x; ¢).
We will consider two types of auto-encoders:

6 While readers familiar with Riemannian Brownian
motion may notice that (18) is only defined before the
particle escapes the local chart, this is good enough for our
purpose: we are only concerned with infinitesimal time, and
escape probability approaches 0 as € — 0. See Appendix C.

1. VAEs with implicit encoder, which maximizes
;0 :
Ep(2)Eq(z)z:6) 108 %, the evidence lower
bound. ¢ is a reparameterized implicit distribution,
i.e. for fixed z, q(z|z; ¢) is defined as the pushfor-
ward measure of a simple distribution gy(€), by a

DNN that takes x and € as input.

2. Wasserstein auto-encoders (WAEs), which min-
imizes the 1-Wasserstein distance between the
model and data distributions by minimizing
Ep(x) [Eq(z|x;¢)C(G(Z; 0)7 (t)] +)\D((j(z),p(z)), where
G(z;0) is the deterministic decoder, i.e. p(z|z;0) =
0(x — G(2;0)); c is a user-specified reconstruction
error, §(z) := [ p(z)q(z|z)dx is the aggregated prior,
A is a hyperparamter, and D is an arbitrary diver-
gence. We use the exclusive KL divergence as D.

Both objectives are intractable, as they include the
entropy of a latent-space distribution with intractable
density: Hlg(z|z;¢)] for VAE, and H[G(z)] for WAE.
However, it is known that to obtain V4 H(q), it suffices
to estimate the score function V, log¢(z). Specifically,
let ¢(z; ¢) be the pushforward of p(e) by f4(€; ¢). Then

we have

VeHlq(2)] = —Ec [V.1ogq(2)Vg fo(es0)] . (19)

Score estimation can be done by fitting an unnormalized
model £(z) on the distribution ¢(z), and approximating
V. log q(z) above with —V,E(z). (For VAE, we will fit
a conditional unnormalized model to approximate the
conditional entropy.)

A variant of this idea is explored in Song et al. (2019),
and outperforms existing learning algorithms for im-
plicit AEs. As argued by (Shi et al., 2018; Li and
Turner, 2018), this method is advantageous as it di-
rectly estimates the score function of the latent-space
distribution, instead of obtaining gradient from density
(ratio) estimations; the latter could lead to arbitrary
variations in the gradient estimate.

When the latent variables are defined on an embedded
manifold (e.g. hyper-spheres), we can no longer use the
Euclidean score estimators to approximate the learning
objective, as the entropy of the latent-space distribu-
tion w.r.t. the Lebesgue measure is usually undefined.
However, we can still approximate the objective by
doing score estimation inside the manifold: let g(z) be
the density w.r.t. the Hausdorff measure, and H be the
corresponding relative entropy functional. Then (19)
will still hold; see Appendix D. We can estimate the
score function in (19) by with an unnormalized model
on manifold, learned with the objective (17).

Wrapping up, we obtain an efficient algorithm to train
auto-encoders with a manifold-valued prior.
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5 RELATED WORK

Our work concerns scalable learning algorithms for un-
normalized models. This is a longstanding problem in
literature, and some of the previous work is discussed
in Section 1. Other notable work includes noise con-
trastive estimation (Gutmann and Hyvérinen, 2010)
and Parzen score matching (Raphan and Simoncelli,
2011). However, to our knowledge, they have not been
applied to complex unnormalized models parameterized
by DNNs.

Apart from the MVL formulation used in this work,
there exists other work on the connection between learn-
ing objectives of unnormalized model and infinitesimal
actions of sampling dynamics (or other processes):

e The minimum probability flow framework (Sohl-
Dickstein et al., 2011) studies the slightly different
objective lim,_,o 2KL(pol|pe), where {p;} is the tra-
jectory of the sampler. It recovers score matching as
a special instance, and leads to a tractable learning
objective for discrete models.

e Many of the objective functions we have considered
are also instances of the Stein discrepancy. This
interpretation is helpful in establishing theoretical
properties (Gorham et al., 2019) and deriving new
objectives (Barp et al., 2019).

e Lyu (2009) observes a different connection between
score matching and (derivative of) KL divergence;
specifically they showed Dp(plq) = %KL(pt|Qt)|t:0,
where {p:},{q:} are obtained by doing Brownian
motion starting from p or q.

As those formulations have different motivations com-
pared with ours, they do not lead to scalable learning
objectives for continuous models.

6 EVALUATION

6.1 Synthetic Experiments

To demonstrate the proposed estimators have small bias
and variance, we first evaluate them on low-dimensional
synthetic data. We will also verify that our control
variate in Section 3.3 improves the performance of CD-1
and DSM.

6.1.1 Approximations to Score Matching

In this section, we evaluate our MVL approximation
to the Euclidean score matching objective (7), as well
as the variance-reduced DSM objective. An experi-
ment evaluating the variance-reduced CD-1 objective
is presented in Appendix E.1.2.

We evaluate the bias and variance of our estimators
by comparing them to sliced score matching (SSM),
an unbiased estimator for (7). We choose the data
distribution p as the 2-D banana dataset from Wenliang
et al. (2018), and the model distribution gy as an EBM
trained on that dataset. We estimate the squared bias
with a stochastic upper bound using 5 x 10° samples;
see Appendix E.1.1 for details.

The results are shown in Figure 1. We can see that
for both estimators, the bias is negligible at ¢ < 1072.
We further use a z-test to compare the mean of the
two estimators (for e = 6 x 107°) with the mean of
SSM. The p value is 0.48 for our estimator and 0.19
for DSM, indicating there is no significant difference in
either case. The variance of the estimators, with and
without our control variate, are shown in Fig.1 right.
As expected, the variance grows unbounded in absence
of the control variate, and is approximately constant
when it is added. From the scale of the variance, we
can see that it is exactly this variance problem that
causes the failure of the original DSM estimator.
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Figure 1: Estimated squared bias (left) and variance
(right) of the approximate score matching objectives
with varying step-size.

6.1.2 Density Estimation on Manifolds

We now evaluate our approximation to the Riemannian
score matching objective, by learning neural energy-
based models on S! and S2. The target distributions
are mixtures of von-Mises-Fisher distributions. In Fig-
ure 2, we plot the log densities of the ground truth
distribution as well as the learned model on S'. We can
see the two functions matches closely, suggesting our
method is suitable for density estimation on manifolds.
Results on S? are similar and will be presented in E.1.3;
detailed setups are deferred to Appendix E.1.1.
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Figure 2: Density estimation on S': learned energy vs
ground truth in polar coordinates.
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6.2 Implicit AEs with Manifold Prior

We now apply our method to train implicit auto-
encoding models with manifold-valued prior. Exper-
iment setups mainly follow Song et al. (2019); see
Appendix E.2.

Note that there is an important difference from Song
et al. (2019) in our implementation: for (conditional)
score estimation, we parameterize an scalar energy
function &(z) and use V,E(z) as the score estimate,
while Song et al. (2019) directly parameterize a vector-
value network 1y (z). Since directly using a feed-forward
network (FFN) for £ does not work well in practice, we
parameterize the energy function as & (z) := 2z "y (2),
where 1 is parameterized in the same way as Song et al.
(2019). This can be seen as correcting an initial score
approximation 1 to make it conservative. In addition
to being conceptually desirable (as score functions are
conservative fields), this approach leads to significant
improvements in the WAE experiments.

6.2.1 Implicit VAEs

We apply our method to train hyperspherical VAEs
(Davidson et al., 2018) with implicit encoders on the
MNIST dataset. Our encoder and decoder architecture
follows Song et al. (2019), with the exception that we
normalize z so it lies on S8™.

We consider n, € {8,32}. Baseline methods include hy-
perspherical VAE with explicit encoders and Euclidean
VAEs. We report the test log likelihood estimated with
annealed importance sampling (Wu et al., 2016; Neal,
2001), as well as its standard deviation across 10 runs.

n, = 8 Ny = 32
Euc. Sph. Euc. Sph.

Exp. 96.45+0.10 95.47+0.08 90.28+0.37 91.32+0.07
Imp. 95.84+0.19 94.72+0.16 90.33+0.26 88.81+0.14

Table 1: Negative log likelihood in the MNIST experi-
ment. Boldface indicates the best result.

The results are summarized in Table 1. We can see
that the implicit hyperspherical VAE trained with our
method outperforms all other baselines. Interestingly,
the explicit hyperspherical VAE could not match the
performance of Euclidean VAE in higher dimensions.
This is also observed in Davidson et al. (2018), who
(incorrectly) conjectured that the hyperspherical prior
is unsuitable in higher dimensions. From our results, we
can see that the problem actually lies in the flexibility
of variational posteriors. Our method thus unleashes
the potential of VAEs with manifold-valued priors, and
might lead to improvements in downstream tasks.

6.2.2 Hyperspherical WAEs

We first evaluate our method on MNIST. We use the
uniform distribution as p(z), and choose cross entropy
as the reconstruction error. We choose n, = 8. We
use the encoder and decoder architecture in Song et al.
(2019); the architecture of the energy network is also
similar to their work. We report the Frechet Inception
Distance (FID; Heusel et al., 2017).

As the choice of divergence measure in the WAE ob-
jective is arbitrary, there are several methods to train
WAEs with manifold latent space: using the Jensen-
Shannon divergence approximated with a GAN-like dis-
criminator (WAE-GAN), and using the maximum mean
discrepancy (MMD) divergence. We choose WAE-GAN
as the baseline method, as it outperforms WAE-MMD
in Tolstikhin et al. (2017). To demonstrate the utility
of hyperspherical priors, we also compare with models
using normal priors.

Method Euc. Sph.
WAE-GAN  24.59+1.16 19.81+1.13
Ours 23.80+1.06 18.36+0.73

Table 2: FID for WAEs on MNIST.

The FID scores are reported in Table 2. We can see
that hyperspherical prior leads to better sample qual-
ity compared with Euclidean prior, and our method
improves the training of WAEs.

To demonstrate our method scales to higher dimensions,
we also train hyperspherical WAEs on CIFAR-10 and
CelebA, with larger n,. We find that our method is
comparable or better than WAE-GAN and WAE-MMD;
see Appendix E.2.1.

7 CONCLUSION

We present a scalable approximation to a general family
of learning objectives for unnormalized models, based
on a new connection between these objectives and
gradient flows. Our method can be applied to manifold
density estimation and training implicit auto-encoders
with manifold priors.
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Supplementary Material

A Derivation of (13)-(15)

Denote 7 := x + +/ez.

Lasm = ||z + Vez — eVE(x + Vez) — |2 (20)
= e|z])> + €| VE@)|]* — 2¢*%(z, VE(&)) (21)
= €|z]* + EIVE@)|]* — 26%/2(2, VE(x) + (VZE(w))(Vez) + O(e)) (22)
=¢? (||V€(§c)||2 - QzT(VZE(x))z) + ||| — 26322 TVE(z) +o(€?), (23)

A B

Notice

E.(2"V2E(2)2) = A&(2)
which is known as the Hutchinson’s trick (Hutchinson, 1990), so lim._,¢ E_Q]EA(A) is two times the Fisher divergence
Dr(plg). But Var(B) = O(e?), so as € — 0, the rescaled estimator ¢~2Lgg, becomes unbiased with infinite
variance; and subtracting (B) from (A) results in a finite-variance estimator.

B On SPOS and MVL

Notations In this section, let the parameter space be d-dimensional, and define Ly(pX — R%) as the space of
d-dimensional functions {f : E, | f(z)||* < co}.

While in the main text, we identified the tangent space of P(X) as a subspace of Ly(pX — R?) for clarity, here
we use the equivalent definition 7,(P(X)) := {s € La(pX — R) : E,s = 0} following (Otto, 2001). The two
definition are connected by the transform s = —V - (pp) for p € Ly(pX — R%). Using the new definition, the

differential of the KL divergence functional is then (dKLg),(s) := [ s(x)log p%z)dl‘.

B.1 SPOS as Gradient Flow

In this section, we give a formal derivation of SPOS as the gradient flow of the KL divergence functional, with
respect to a new metric.

Recall the SPOS sampler targeting distribution (with density) ¢ corresponds to the following density evolution:

Ope = =V - (pe(x) (), 4(7) + 'V og(¢/p)))

v (x)

where v > 0 is a hyperparameter, and
Dp,.0(®) =Ep,(2)(Sp @ k) (2", 2) 1= Ep, (2)[(Var log §(a") k(2 ) + Vork(a', )]
is the SVGD update direction (Liu and Wang, 2016; Liu, 2017). Fix p, define the integral operator
Ko[fl(x) = Epn k@', ) f (2),

and define the tensor product operator K?d : L2(X = RY) — L%(X — RY) accordingly. Then the SVGD update
direction satisfies

¢ 5 = K&V log(¢/p)], (24)

which we will derive at the end of this subsection for completeness. Following (24) we have

vi(z) = (ald + KJ)[Vlog(¢/p)]. (25)
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The rest of our derivation follows (Otto, 2001; Liu, 2017): consider the function space H, o := {(ald+K$%)[Vh]},
where h : X — R is any square integrable and differentiable function. It connects to the tangent space of P(X) if
we consider s = =V - (pp) for any p € H, o. Define on H, , the inner product

(£, = (F (01d + KF) 7 [9) 1 (. (26)
It then determines a Riemannian metric on the function space. For p € H, o, and s = —V - (pp), by (25) we have
_ - ¢ -
W, D), 0 = Ep,(a) (V1og(0/ pr) (x), p(2)) = —/10g E(V - (Pp))dz = —(dKLg)(s),

i.e. with respect to the metric (26), SPOS is the gradient flow minimizing the KL divergence functional.

Derivation of (24) let (A;, ;)32 be its eigendecomposition (i.e. the Mercer representation). For j € [d] let

i, := 1he; where {e;}9_, is the coordlnate basis in R, so {\; 1/2 i ;} becomes an orthonormal basis in H®9.
Now we calculate the coordinate of ¢7 ; in this basis.

(D760 Vi i) La(p) = Eo(@)Ep(a) ((Var log ¢(2")) k(2 x) + Vaurk(2', 2), 95 j (2
=E, oy [(Var log ("), (Kp[thi j]) (@) + V - (K, [ 4])(2"))]
By [So (K[ 5]) (2)]. (27)

S¢ is known to satisfy the Stein’s identity

E,S,(g) =0

for all g € H. Thus, we can subtract E,S,(K,[t; ;]) from the right hand side of (27) without changing its value,
and it becomes

E (o) [ (K [V i) (2')] = Ep(ar) [So (Ko [thi,5]) ()]

By [(Torto S0 s D) )|

= ME ) [< o log ﬁg:)),wi,j(az’)ﬂ .

As the equality holds for all 4, k, we completed the derivation of (24).

B.2 MVL Objective Derived from SPOS

By (25) and (26), the MVL objective derived from SPOS is

lgrad KLy |13, . = (V1og(¢/ps), (ald + K=*)V 10g(¢/pt)) Ly (px—me)-

In the right hand side above, the first term in the summation is the Fisher divergence, and the second is the
kernelized Stein discrepancy (Liu et al., 2016b, Definition 3.2).

We note that a similar result for SVGD has been derived in (Liu and Wang, 2017), and our derivations connect
to the observation that Langevin dynamics can be viewed as SVGD with a Dirac function kernel (thus SPOS also
corresponds to SVGD with generalized-function-valued kernels).

C Justification of the Use of Local Coordinates in (17)

In this section, we prove in Proposition C.1 that the local coordinate representation lead to valid approximation
to the MVL objective in the compact case. We also argue in Remark C.2 that the use of local coordinate does
not lead to numerical instability.

Remark C.1. While a result more general than Proposition C.1 is likely attainable (e.g. by replacing compactness
of X with quadratic growth of the energy), this is out of the scope of our work; for our purpose, it is sufficient
to note that the proposition covers manifolds like S™, and the local coordinate issue will not exist in manifolds
possessing a global chart, such as H™.
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Lemma C.1. (Theorem 3.6.1 in (Hsu, 2002)) For any manifold M, x € M, and a normal neighborhood
B of x, there exists constant C' > 0 such that the first exit time T from B, of the Riemannian Brownian motion

starting from x, satisfies
C
Plr<=)<et/?
(r=%)=r
for any L > 1.

Proposition C.1. Assume the data manifold X is compact, and for all 6, £(-;0) is in C1. Let val_rld be
defined as in (17), X; following the true Riemannian Langevin dynamics targeting q'/2. Then

| E— d
5 E%E(Lmvl_rld) = %E(S(Xf))

3

t=0

i.e. (17) recovers true WMVL objective.

Proof. By the tower property of conditional expectation, it suffices to prove the result when P(Xy = z) =1 for
some z. Choose a normal neighborhood B centered at x such that B is contained by our current chart, and has
distance from the boundary of the chart bounded by some § > 0. Let C, 7T be defined as in Lemma C.1. Recall
the Riemannian LD is the sum of a drift and the Riemannian BM. Since X is compact and &€ is in C*, the drift
term in the SDE will have norm bounded by some finite C. Thus the first exit time of the Riemannian LD is
greater than min(7,§/C) =: 7.

Let X; follow the true Riemannian LD, X; = X; when ¢ < 7, and be such that £(X;) = 0 afterwards.” By Hsu
(2008), until 7, X; follows the local coordinate representation of Riemannian LD (3), thus on the event {e < 7},
X, would correspond to y~ in (18). As X is compact, the continuous energy function & is bounded by |£(-)] < A
for some finite A. Then for sufficiently small e,

1oz _E(E(Xe) — E(X0) _ E(E(Xe) —E(Xo)) | E(E(Xe) — E(Xo))
iE(Lmvlirld) - - +
€ € €
— E(“:(XG) — E(XO)) + E(_g(Xe)l{'rge})
€ € '
In the above the first term converges to %E(S(Xt))‘tzo as € — 0, and ]E(fg(Xl)l“Se}) < AP(:SG) = AP(:SE) <
Ae”“/* ) when € — 0. Hence the proof is complete. O

Remark C.2. It is arqued that simulating diffusion-based MCMC in local coordinates leads to numeric instabilities
(Byrne and Girolami, 2013; Liu et al., 2016a). We stress that in our setting of approzimating MVL objectives,
this is not the case. The reason is that we only need to do a single step of MCMC, with arbitrarily small step-size.
Therefore, we could use different step-size for each sample, based on the magnitude of g and log q in their locations.
We can also choose different local charts for each sample, which is justified by the proposition above.

D Derivation of (19) in the Manifold Case

In this section we derive (19), when the latent-space distribution g4(z) is defined on a p-dimensional manifold
embedded in some Euclidean space, and H[gg(z)] is the relative entropy w.r.t. the Hausdorff measure. The
derivation is largely similar to the Euclidean case, and we only include it here for completeness.

(19) holds because

K2

VoH [g4(2)] = =VeEp(e) [loggp (f (€, 0))]
= _Ep(e) [V(Zﬁ IOg qd¢ (f(€’ (b))]

= _Ep(e) |:V¢> 1Og q¢(2)|zzf(g7¢) + Vf logq (f(67 (b)) V¢f(6, ¢):|

@ —Epe) [Vz1ogqs(2) Ve f(e, )],

7 This is conceptually similar to the standard augmentation used in stochastic process texts; from a algorithmic
perspective it can be implemented by modifying the algorithm so that in the very unlikely event when y~ escapes the
chart, we return 0 as the corresponding energy. We note that this is unnecessary for manifolds like S", since the charts
can be extended to R? and hence 7 = oo.

—~
=
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where (i) follows from Theorem 2.10.10 in Federer (2014), and (ii) follows from the same theorem as well as the
fact that Eq, (.)[Vglogge(2)] = Vg [ q4(2)dz = 0.

E Experiment Details and Additional Results

Code will be available at https://github.com/thu-ml/wmvl.

E.1 Synthetic Experiments
E.1.1 Experiment Details

Experiment Details in Section 6.1.1 The (squared) bias is estimated as follows: denote the SSM estimator
and ours as Ep, ;) nrejo,1) [LE™ (25 €)] and Epzyar(ejo,1) [L2¥Y(2; €)], respectively. One could verify that both methods

) . 2
estimate (7). Our estimate for the squared bias is now % 22{:1 (ﬁ Z;V;(L?In(%(k)? )y — Lol (z(®); 6(1))))

where x(k) ~ p(x),e%) ~ N(0,1) are i.i.d. draws. The expectation of this estimate upper bounds the true
squared bias by Cauchy’s inequality, and the bias — 0 as K, M — 0. We choose K = 100, M = 50000 and plot
the confidence interval. We also use these samples to estimate the variance of our estimator.

For the model distribution ¢, we choose an EBM as stated in the main text. The energy of the model is
parameterized as follows: we parameterize a d-dimensional vector ¥ (z;0) using a feed-forward network, then
return ' 1(x;0) as the energy function. This is inspired by the “score network” parameterization in (Song et al.,
2019); we note that this choice has little influence on the synthetic experiments (and is merely chosen here for
consistency), but leads to improved performance in the AE experiments. Finally, ¢ (z;6) is parameterized with
2 hidden layers and Swish activation (Ramachandran et al., 2017), and each layer has 100 units. We apply
spectral normalization (Miyato et al., 2018) to the intermediate layers. We train the EBM for 400 iterations with
our approximation to the score matching objective, using a batch size of 200 and a learning rate of 4 x 1073.
The choice of training objective is arbitrary; changing it to sliced score matching does not lead to any notable
difference, as is expected from this experiment.

The same procedure is applied to the denoising score matching estimator.

Experiment Details in Section 6.1.2 For this experiment, the data distribution is chosen as
p(z) = 0.7pyar (2](0,1),2) + 0.3pyar(z](0.5,—0.5), 3),

where p, s is the von Mises density

port (|, o) oc €77 1),
For the model distribution, the energy function is parameterized with a feed-forward network, using the same
score-network-inspired parameterization as in the last experiment. The network uses tanh activation and has 2
hidden layers, each layer with 100 units.

We generate 50,000 samples from p(z) for training. We use full batch training and train for 6,000 iterations, using
a learning rate of 5 x 10™%. The step-size hyperparameter in the MVL approximation is set to 1075,

E.1.2 On the Variance Problem in CD-1

To verify our control variate also solves the variance issue in CD-1, we train EBMs using CD-1 with varying
step-size, with and without our control variate, and compare the score matching loss to EBMs trained with our
method as well as sliced score matching. We use a separate experiment for CD-1 since it only estimates the
gradient of the score matching loss.

The score matching loss is calculated using SSM on training set, and averaged over 3 separate runs. We use the
cosine dataset in (Wenliang et al., 2018); the energy parameterization is the same as in Section 6.1.1. The results
are shown in Figure 3. We can see that with the introduction of the control variate, CD-1 performs as well as
other score matching methods.
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Figure 4: Mollweide projections of the ground truth (left) and learnt (right) energy functions on S2.

E.1.3 Learning EBMs on 52

As a slightly more involved test case for our Riemannian score matching approximation, we consider learning
EBMs on S2. The target distribution is a mixture of 4 von-Mises-Fisher distributions. The ground truth and
learnt energy functions are plotted in Figure 4; we can see that our method leads to a good fit.

E.2 Auto-Encoder Experiments

In all auto-encoder experiments, setup follows from (Song et al., 2019) whenever possible. The only difference is
that for score estimation, we parameterize the energy function, and use its gradient as the score estimate, as
opposed to directly parameterizing the score function as done in (Song et al., 2019). This modification makes
our method applicable; essentially, it corrects the score estimation in (Song et al., 2019) so that it constitute a
conservative field, which is a desirable property since score functions should be conservative.

For this reason, we re-implement all experiments for Euclidean-prior auto-encoders to ensure a fair comparison.
The results are slightly worse than (Song et al., 2019) for the VAE experiment, but significantly better for WAE
experiments. It should be also noted that in the VAE experiment, our implicit hyperspherical VAE result is still
better than the implicit Euclidean VAE result reported in (Song et al., 2019).

VAE Experiment The (conditional) energy function in this experiment is parameterized using the score-net-
inspired method described in Appendix E.1.1, with a feed-forward network. The network has 2 hidden layers,
each with 256 hidden units. We use tanh activation for the network, and do not apply spectral normalization.
When training the energy network, we add a L2 regularization term for the energy scale, with coefficient 1074
The coefficient is determined by grid search on {1073,107%,107°}, using AIS-estimated likelihood on a heldout
set created from the training set. The step-size of the MVL approximation is set to 1073; we note that the
performance is relatively insensitive w.r.t. the step-size inside the range of [107%,1072], as suggested by the
synthetic experiment. Qutside this range, using a smaller step-size makes the result worse, presumably due to
floating point errors.

For implicit models, the test likelihood is computed with annealed importance sampling, using 1,000 intermediate
distributions, following (Song et al., 2019). The transition operator in AIS is HMC for Euclidean-space latents,
and Riemannian LD for hyperspherical latents.

The training setup follows from (Song et al., 2019): for all methods, we train for 100,000 iterations using RMSProp
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use a batch size of 128, and a learning rate of 1073.

WAE Experiment on MNIST For our method, the energy network is parameterized in the same way as in
the VAE experiments. When training the energy network, we use a step-size of 1072, and apply L2 regularization
on the energy scale with coefficient 10~5. For the WAE-GAN baseline, we parameterize the GAN discriminator
as a feed-forward network with 2 hidden layers, each with 256 units. We use tanh activation, and apply L2
regularization with coefficient 10~°. All models are trained for 200,000 iterations using RMSProp, using a batch
size of 128, and a learning rate of 10~3. The Lagrange multiplier hyperparameter \ in the WAE objective is fixed
at 10. FID scores are calculated using the implementation in (Heusel et al., 2017).

Sampled Generations in the Auto-encoder Experiments See Figure 7 - 9.

E.2.1 WAE Experiments in Higher Dimensions

In this section, we present results of hyperspherical WAEs on CIFAR-10 and CelebA, with larger n,.

For CelebA we follow the setup in Song et al. (2019): n, = 32, RMSProp, learning rate 10~%, train for 100,000
iterations. In addition, we apply spectral normalization and L2 regularization with coefficient 10~4. The step-size
in the MVL approximation is set to 10~%. The FID scores, averaged over 5 runs, are 50.82 & 0.50 for our method
and 51.20 + 0.59 for WAE-GAN.

k., —}— Ours e —— Ours

A —| - WAE-GAN 110 4 N —|- WAE-GAN
-+- WAE-MMD > SN - WAE-MMD
100 :

FID

90

80 4
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Figure 5: FID on CIFAR-10, with varying n.. Left: after 10° iterations; right: after 2 x 10° iterations.

For CIFAR-10, we modify the auto-encoder architecture and remove one scaling block to account for its lower
resolution. We do not use spectral normalization which leads to slightly worse results. The FID scores for varying
n, are presented in Figure 5, where we can see our method compares favorably to all baselines.



Jun Zhu, Bo Zhang

Ziyu Wang, Shuyu Cheng, Yueru Li,

ONN~ MY T-O N
DM —0O0 Mo
CH T -~
BNONWNAPO~-~O K
Y2ty
INtaolOsmD e
QU ONRorndm~
WSO o e d i) X
Q- NPT o
NOra SOV O w0 oo

~r~wl MO0 ™
MO ANYONITONY ¢
RN TV o ™Y N
TAMNMORDOMON
Aoerd OPV o -
TANQ QN m e oy Dy W

0 qﬂ;ﬁlgdgﬂjgﬂf

PRI = YO
Mo~y Ny TP IPpo
NN o Cw

O 0N A QDA™ Y
SI VAo 9
VN e N TN VNG
R R N R N L N
QO -~A™~NMind

> dRNPONONEI N
NN DPOQEN~D
SCrROAmIevnin
O o ) e s NN
< SRR R ELE - RO R
O T oo To N
w00~ QG &) <8 D)~
e = HQSADT S
— D)) W00
(ORI SIE ) T U/ 7o W v

E, Hyperspherical Prior, n, =8

A

)

b

Fo e PJoea T
LSRR L B TN B S o P oy
SR B A SLURE e T i ol ¢ o
DG =@ 0 N
Nrd e Qo lw

(a) VAE, Euclidean Prior, n., = 8

(d) VAE, Hyperspherical Prior, n, = 32
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Figure 6: Sampled generations of implicit VAEs.
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(d) VAE, Hyperspherical Prior, n, = 32

(c) VAE, Euclidean Prior, n, = 32

Figure 7: Sampled generations of explicit VAEs.
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(d) WAE-MVL, Hyperspherical Prior

Figure 8: Sampled generations in the WAE experiment on MNIST.

(¢) WAE-MVL, Euclidean Prior
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Figure 9: Sampled generations in the WAE experiment on CelebA.
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