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Abstract
Particle-based Variational Inference methods
(ParVIs), like Stein Variational Gradient Descent,
are nonparametric variational inference methods
that optimize a set of particles to best approximate
a target distribution. ParVIs have been proposed
as efficient approximate inference algorithms and
as potential alternatives to MCMC methods. How-
ever, to our knowledge, the quality of the posterior
approximation of particles from ParVIs has not
been examined before for large-scale Bayesian
inference problems. We conduct this analysis
and evaluate the sample quality of particles pro-
duced by ParVIs, and we find that existing ParVI
approaches using stochastic gradients converge
insufficiently fast under sample quality metrics.
We propose a novel variance reduction and quasi-
Newton preconditioning framework for ParVIs,
by leveraging the Riemannian structure of the
Wasserstein space and advanced Riemannian opti-
mization algorithms. Experimental results demon-
strate the accelerated convergence of variance re-
duction and quasi-Newton methods for ParVIs
for accurate posterior inference in large-scale and
ill-conditioned problems.

1. Introduction
A central problem in Bayesian inference is approximating an
intractable posterior distribution p and estimating intractable
expectations Ep [f(X)] =

∫
f(x)p(x) dx with respect to p.

MCMC methods (Brooks et al., 2011) are based on simu-
lating a Markov chain with limiting distribution p, drawing
samples x1, x2, . . . which represent p, and computing the
sample average 1

M

∑M
i=1 f(xi) which is an asymptotically
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exact estimator of Ep [f(X)] as M → ∞. Variational in-
ference (VI) methods (Wainwright et al., 2008; Blei et al.,
2017) recast the inference problem as a parametric opti-
mization problem and attempt to globally approximate the
posterior distribution p with a tractable distribution from
some variational family. MCMC methods are asymptoti-
cally exact but can be slow; VI methods can be fast but are
generally biased.

Particle-based Variational Inference methods (ParVIs) are
nonparametric variational inference methods that optimize a
set of particles {x1, x2, . . . , xM} to best represent p. Stein
variational gradient descent (SVGD) (Liu & Wang, 2016)
is a leading instance of ParVIs that has received an increas-
ing number of extensions (e.g., Zhuo et al. (2018); Chen
et al. (2018a;b); Wang et al. (2019)) and applications (e.g.,
Feng et al. (2017); Pu et al. (2017); Liu et al. (2017); Yoon
et al. (2018)). ParVIs have been proposed as efficient ap-
proximate inference algorithms potentially combining the
advantages of MCMC and VI for large-scale Bayesian infer-
ence problems. However, to our knowledge, an important
question has not yet been explored for large-scale Bayesian
inference problems: for a given posterior distribution p, how
well do the particles {x1, x2, . . . , xM} produced by ParVIs
represent p in practice, and how accurate is the estimator
1
M

∑M
i=1 f(xi) of Ep [f(X)] in practice?

We explore this question in the context of Bayesian linear re-
gression and logistic regression, two fundamental real-world
inference tasks. We conduct a careful empirical inspection
of the sample quality of particles produced by ParVIs under
various metrics, including mean squared error for estimating
posterior mean and covariance, maximum mean discrep-
ancy (Gretton et al., 2012), and kernel Stein discrepancy
(Chwialkowski et al., 2016; Liu et al., 2016). We find that
existing ParVI approaches using stochastic gradients con-
verge insufficiently fast under these sample quality metrics,
especially in large-scale and ill-conditioned scenarios.

For accurate posterior inference, highly accurate solutions to
the ParVI optimization problem are needed. In the context
of large-scale optimization, a popular method is stochastic
gradient descent (SGD) because of the fast per-iteration
computation time. While SGD can reach an approximate
solution relatively quickly, it has slow asymptotic conver-
gence due to the high variance from the random sampling
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of data points and the resulting need for decaying step sizes.
Variance reduction methods for stochastic gradient descent
(Roux et al., 2012; Johnson & Zhang, 2013; Defazio et al.,
2014) have been proven, in theory and in practice, to ac-
celerate convergence for strongly convex problems when
highly accurate solutions are needed.

For ill-conditioned problems, however, the convergence
speeds of first-order gradient methods can be slow. One gen-
eral solution is quasi-Newton methods (Nocedal & Wright,
2006), like L-BFGS, which use the history of gradients to
approximate the inverse Hessian of the objective function
and scale each step by the approximate inverse Hessian
to account for the curvature of the function. Extending
traditional, full-batch L-BFGS methods to the stochastic set-
ting (Byrd et al., 2016) is challenging since noisy Hessian
approximations combined with high-variance stochastic gra-
dients can be unstable. Combining variance reduction and
stochastic quasi-Newton methods (Moritz et al., 2016) leads
to stable Hessian approximations and low-variance stochas-
tic gradients and has been shown to accelerate convergence
when highly accurate solutions are needed.

We propose a novel variance reduction and quasi-Newton
preconditioning framework for ParVIs. We follow the gra-
dient flow perspective of ParVIs as optimization methods
for the KL divergence on the Wasserstein space, a manifold
of probability distributions (Chen et al., 2018a; Liu et al.,
2019). We develop our framework for ParVIs by leverag-
ing the Riemannian structure of the Wasserstein space and
Riemannian variance reduction (Zhang et al., 2016; Zhou
et al., 2019) and quasi-Newton methods (Roychowdhury &
Parthasarathy, 2017; Kasai et al., 2018) that enjoy proven
acceleration. Our approach is more principled than intu-
itively applying optimization techniques to the update rule
of each particle, as the ParVI optimization problem is not
defined on the support space. In handling the Riemannian
structure of the Wasserstein space, we trade-off the accuracy
and computational cost of geometric approximation and get
stable and practical algorithms. Moreover, as the Wasser-
stein optimization perspective is general for ParVIs, our
framework is applicable to various ParVI instances. Under
the same experimental setup, our proposed methods greatly
improve the convergence rate.

2. Related work
Variance reduction Dubey et al. (2016) develop variance
reduction techniques for Stochastic Gradient Langevin Dy-
namics (SGLD), and Chatterji et al. (2018) prove sharp
theoretical bounds showing that variance reduction methods
for SGLD converge faster when highly accurate solutions
are needed. Li et al. (2019) develop variance reduction
for Hamiltonian Monte Carlo. Zhang et al. (2018b) pro-
pose variance reduction techniques for SPOS (Zhang et al.,

2018a), an algorithm combining SGLD and SVGD. Their
VR-SPOS algorithm, however, is limited to SPOS since they
rely on a convergence analysis only applicable to SPOS.

ParVIs and second-order information The Stein varia-
tional Newton method (Detommaso et al., 2018) uses an
approximate Newton-like update based on a computable ap-
proximation to a functional Newton direction. Their method
explicitly computes the Hessian of the log-density, so it is
not a quasi-Newton method. Wang et al. (2019) present
a generalization of SVGD with matrix-valued kernels and
propose using preconditioning matrices, such as the Hessian
and Fisher information matrix, to incorporate geometric
information into SVGD updates. They propose a practical
algorithm based on a weighted average of Hessians at an-
chor points, which is an intuitive approximation. As the
Hessian is a local property, distant anchor points do not
necessarily hold useful and consistent information for the
Hessian at the current position. Our method is based on L-
BFGS, where the assumption on the Hessian approximator
is clear (i.e., the matrix satisfying secant equation that is
the closest to the previous approximator). L-BFGS variants
also have convergence bound guarantees (e.g., Kasai et al.
(2018)). Moreover, the two methods above are developed
on the PH manifold (probability space that has RKHS as its
tangent space) (Liu, 2017), which may not be well-defined
(Liu et al., 2019) and only benefits the particular ParVI
of SVGD. Another higher-order method is the Riemannian
SVGD method (Liu & Zhu, 2018), which generalizes SVGD
to Riemannian support space (i.e., sample/particle space).
Riemannian SVGD also requires the exact Hessian, so it
is not quasi-Newton. While Riemannian SVGD requires a
properly conceived metric, our method directly utilizes the
geometry of the Wasserstein objective and is more flexible.

3. Preliminaries
Our variance reduction and quasi-Newton framework for
ParVIs is developed in the context of Riemannian geometry,
where we utilize the Riemannian structure of the Wasser-
stein space. We first introduce these related concepts.

3.1. Riemannian Manifold

A manifoldM is a topological space that locally behaves
like a Euclidean space (i.e., locally homeomorphic to an
Euclidean open subset; see e.g., Do Carmo (1992); Abra-
ham et al. (2012)). A manifold releases linear structures
and generalizes linear space to allow curvature, while still
coming with handy structures. To begin with, a tangent
vector at x ∈M admits a general definition as a directional
derivative operator at x, and all such vectors form a linear
space regarded as the tangent space TxM at x. When every
tangent space is endowed with an inner product 〈·, ·〉TxM,
the manifold is called a Riemannian manifold, which in-
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duces more structures. The gradient of a function f at x
is the unique tangent vector such that for any v ∈ TxM,
〈grad f(x), v〉TxM is the directional derivative of f along
v. As the same in the linear case, it is the steepest ascending
direction for f at x, thus being the foundation of Rieman-
nian optimization methods. The length of a smooth curve
γ : [a, b]→M can be defined as the integral over velocity:∫ b
a
‖γ̇t‖TxM dt where γ̇t denotes the tangent vector along

the curve at γt, and the curve with minimal length between
any adjacent point pair on it is called a geodesic1. The ex-
ponential map Expx(v) is used as the counterpart of vector
addition to update points in optimization methods. It trans-
ports a point x to another by walking along the geodesic
tangent to v ∈ TxM at x for length ‖v‖TxM. The parallel
transport Γyx(v) links tangent vectors at different points. It
moves a tangent vector v at x to one at y along the geodesic
from x to y, in a certain way that is regarded as parallel.

3.2. The Wasserstein Space

The (2-)Wasserstein space P2 is the set of distributions
on a support space (i.e., sample/particle space) with finite
second-order moments. It is very inclusive and cannot be
expressed with parametric form. Nevertheless, the structure
of its tangent space makes it convenient to express its el-
ements by samples. Here we consider Euclidean support
space Rm, and treat the corresponding P2 as an infinite
dimensional manifold. Let q be a point on P2, which is a
distribution on Rm, and let {x(i)}Mi=1 be a set of samples,
also called particles, of q. Consider updating the particles
with a vector field V on Rm (V (x) ∈ Rm,∀x ∈ Rm) for
an infinitesimal ε > 0: {x(i) + εV (x(i))}Mi=1, and denote
the distribution that this new set of particles obeys as qε.
Taking the continuous limit ε→ 0 and repeatedly applying
this procedure, the vector field V induces a smooth curve of
distributions (qt)t on P2 around q. Such a vector field V is
not unique for inducing a given distribution curve around
q, but all these vector fields form an equivalent class under
the equivalent relation: U ' V if ∇ · (qU − qV ) = 0
where “∇ · V ” denotes the divergence of vector field V .
In each equivalent class, the vector field with the mini-
mum L2

q-norm
√
Eq[V · V ] can be taken as the representor

of the class, where “·” denotes the conventional vector in-
ner product. All such representors form a linear subspace

{∇ϕ | ϕ ∈ C∞c }
L2

q of L2
q := {V | Eq[V ·V ] <∞}, where

C∞c is the set of compactly supported scalar-valued smooth
functions, and the overline means closure. It is the orthonor-
mal complement of the equivalent class in L2

q (Erbar et al.,
2010). It is shown that for any smooth curve on P2 passing
q, there a.e.-uniquely exists a vector field in the above sub-

1It has a more basic definition as an auto-parallel curve un-
der an affine connection. A Riemannian structure determines an
affine connection, and the two definitions coincide on complete
Riemannian manifolds.

space such that it induces the curve around q (Villani (2008),
Thm. 13.8; Ambrosio et al. (2008), Thm. 8.3.1, Prop. 8.4.5).
So we can take the above subspace as the tangent space
TqP2, and the unique vector field in it (a representor) as
the tangent vector of the curve at q (Ambrosio et al. (2008),
Def. 8.4.1). Recalling the construction, once we have the
tangent vector V at a point q on a curve, we can simulate
the curve locally around q up to first order by updating the
particles of q with V in its vector field form (Ambrosio et al.
(2008), Prop. 8.4.6). A Riemannian structure can be defined
by endowing the tangent space TqP2 with the inner product
of L2

q: 〈U, V 〉TqP2
:= Eq[U · V ] (Otto, 2001; Benamou &

Brenier, 2000). It is consistent with the well-known Wasser-
stein distance as it induces the same distance (Benamou &
Brenier, 2000).

4. Variance Reduction for Particle-Based
Variational Inference Methods (ParVIs)

4.1. Variance Reduction Framework for ParVIs

Particle-based variational inference methods (ParVIs) ap-
proximate the posterior distribution p by driving the vari-
ational distribution q (i.e., the approximator) to p, which
is typically done by minimizing the KL divergence to p.
To do this, ParVIs optimize KLp(q) := Eq[log q/p] on the
Wasserstein space P2 by simulating its gradient flow, which
is the set of curves that are tangent to the gradient of KLp
everywhere on P2.

Given a dataset of N data points, let p0(x) be the prior,
and let pn(x) := p(Dn|x) be the likelihood term for data
point Dn. The KL divergence can be decomposed as a
summation:

KLp(q) = Eq[log q]− Eq[log p0]−
N∑
n=1

Eq[log pn] + c,

where c := logZ is the logarithm of the intractable nor-
malization constant. With the above mentioned Rieman-
nian structure of the Wasserstein space P2, the gradient of
the KL divergence on P2 can be expressed (Villani (2008),
Thm. 23.18; Ambrosio et al. (2008), Example 11.1.2) as the
following Rm vector field:

− grad KLp(q) =

U(q)︷ ︸︸ ︷
∇ log p0 −∇ log q+

V (q)︷ ︸︸ ︷
N∑
n=1

∇ log pn︸ ︷︷ ︸
Vn(q)

.

The gradient flow simulation can be done by successively
updating particles using an estimate of this vector field.

For SGD, the stochastic gradient at iteration k is given by
U(qk) +NVnk

(qk) for a uniformly randomly chosen data
point nk ∈ {1, · · · , N}. This stochastic gradient has high
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Algorithm 1 Stochastic Variance Reduced Gradient (SVRG) for ParVIs

Require: Initial particles {x(j)0 }Mj=1, target distribution p0(x)
∏N
n=1 pn(x), update period Ts, learning rate ε.

Require: Vector field estimators Û({x(j)}j)(i) and V̂n({x(j)}j)(i), parallel transport estimator Γ̂
{y(j)}j
{x(j)}j

(
{V (j)}j

)(i)
.

1: Initialize x̃(i) ← x
(i)
0 for i = 1, · · · ,M .

2: for s = 1, 2, 3, · · · do
3: Let x(i)0 ← x̃(i) for i = 1, · · · ,M .
4: Let Ṽ (i) ←

∑N
n=1 V̂n({x̃(j)}j)(i) for i = 1, · · · ,M .

5: for k = 0, · · · , Ts − 1 do
6: Uniformly randomly draw a data point nk ∈ {1, · · · , N}.

7: Let W (i)
k ← Û({x(j)k }j)(i) + NV̂nk

({x(j)k }j)(i) − Γ̂
{x(j)

k }j
{x̃(j)}j

({
NV̂nk

({x̃(j′)}j′)(j) − Ṽ (j)
}
j

)(i)

for i =

1, · · · ,M .
8: Let x(i)k+1 ← x

(i)
k + εW

(i)
k for i = 1, · · · ,M .

9: end for
10: Let x̃(i) ← x

(i)
Ts

for i = 1, · · · ,M .
11: end for
12: return {x̃(i)}Mi=1.

variance since SGD or mini-batch SGD approximates the
full gradient using a single or small mini-batch of examples.

We propose applying Riemannian SVRG (Zhang et al.,
2016) to reduce the variance of SGD. The main idea of
SVRG is to maintain a reference snapshot position and a
corresponding reference snapshot full-gradient. In every
iteration, the stochastic gradient at the snapshot position
minus the snapshot full-gradient is used in the update rule
as a variance reduction term. The reference snapshot posi-
tion and full-gradient are periodically updated at the start of
every outer loop and subsequently used in every iteration in
the inner loop.

We now consider the derivation of SVRG for ParVIs. Ac-
cording to Riemannian SVRG (Zhang et al., 2016), at the
start of every outer loop, the current position is recorded as
a reference snapshot position q̃, and the corresponding full-
summation over the entire dataset is computed and stored:
Ṽ := V (q̃). In each subsequent iteration k, the stochas-
tic gradient at the current position qk is combined with
the stochastic gradient at the snapshot position q̃ and the
stored full gradient Ṽ to get the variance-reduced gradi-
ent. Concretely, in a usual update step k, for a uniformly
randomly chosen data point nk ∈ {1, · · · , N}, the update
direction is calculated by Wk := U(qk) + NVnk

(qk) −
Γqkq̃

(
NVnk

(q̃)− Ṽ
)

, which is then used to update the po-
sition: qk+1 := Expqk(εWk). Compared to SGD, we pro-

pose adding the term −Γqkq̃

(
NVnk

(q̃)− Ṽ
)

to the update
rule, which leads to a reduction in variance.

Let {x̃(i)}Mi=1 and {x(i)k }Mi=1 be the sets of samples (par-
ticles) of q̃ and qk, respectively. Then in step k, with

nk chosen, calculate W (i)
k := Wk(x

(i)
k ) = U(qk)(x

(i)
k ) +

NVnk
(qk)(x

(i)
k )− Γqkq̃

(
NVnk

(q̃)− Ṽ
)

(x
(i)
k ) and update

the particles: x(i)k+1 = x
(i)
k + εW

(i)
k .

To implement the algorithm, we estimate U and V
by ParVIs, which provide various implementations
of Û({x(j)}j)(i) and V̂n({x(j)}j)(i) that approximate
U(q)(x(i)) and Vn(q)(x(i)) respectively ({x(j)}j is a set of
particles of q). Let r be another distribution with particles
{y(j)}Mj=1, then the parallel transport Γrq (V ) (y(i)) (here V
is a general tangent vector at q acting as the operand of the
parallel transport) can also be estimated by the particles,

and we write the estimator as Γ̂
{y(j)}j
{x(j)}j

(
{V (j)}j

)(i)
, where

V (j) := V (x(j)). The SVRG for ParVIs algorithm is pre-
sented in Algorithm 1, where the estimators Û({x(j)}j)(i),
V̂n({x(j)}j)(i) for the vector field and Γ̂

{y(j)}j
{x(j)}j

(
{V (j)}j

)(i)
for the parallel transport are detailed below.

4.2. Estimators for the Vector Field

Since ParVI methods are derived for a particle-based numer-
ical approximation of the Wasserstein gradient grad KLp(q)
in the vector field form, we leverage these different ways of
approximation to derive respective estimators for our vector
fields U and Vn.

SVGD (Liu & Wang, 2016). According to Liu et al. (2019),
SVGD approximates a vector field (element of TqP2 ⊂ L2

q)
by its projection onto the vector-valued reproducing kernel
Hilbert space (RKHS) Hm of a kernel K. Adopting this



Variance Reduction and Quasi-Newton for Particle-Based Variational Inference

notion, we get the vector field estimators based on SVGD:

V̂n({x(j)}j)(i) = max · argmax
W∈Hm,‖W‖Hm=1

〈Vn(q),W 〉L2
q

=
1

M

∑
j

K̂ij∇ log pn(x(j)),

Û({x(j)}j)(i) = max · argmax
W∈Hm,‖W‖Hm=1

〈U(q),W 〉L2
q

=
1

M

∑
j

(
K̂ij∇ log p0(x(j)) +∇x(j)K̂ij

)
,

where K̂ij := K(x(i), x(j)), and “max · argmax” scalar-
multiplies the maximizer with the maximum. The kernel
averaged gradient of the log density drives the particles
towards high probability regions of p, while the other term
is a repulsive force between the particles; these two forces
balance each other so that the particles approximate p.

Blob (Chen et al., 2018a). The Blob method uses
a variational formulation of the gradient, by refor-
mulating −∇ log q as ∇(− δ

δqEq[log q]), and approxi-
mates q with a smoothed density q̃ := q̂ ∗ K,
where q̂ denotes the empirical distribution of the par-
ticles and “∗” denotes convolution. The estimators
are V̂n({x(j)})(i) = ∇ log pn(x(i)), Û({x(j)})(i) =

∇ log p0(x(i))−
∑

k∇x(i)K̂ik∑
j K̂ij

−
∑
k

∇
x(i)K̂ik∑
j K̂jk

.

GFSD (Liu et al., 2019). GFSD directly approximates q
in −∇ log q with the smoothed density q̃. The estimators
are V̂n({x(j)})(i) = ∇ log pn(x(i)) and Û({x(j)})(i) =

∇ log p0(x(i))−
∑

k∇x(i)K̂ik∑
j K̂ij

.

GFSF (Liu et al., 2019). GFSF identifies −∇ log q as the
solution of an optimization problem, and then defines an
estimator as the solution of a modified problem by taking
q as q̂ and using an RKHS as the optimization domain.
The estimators are V̂n({x(j)})(i) = ∇ log pn(x(i)) and
Û({x(j)})(i) = ∇ log p0(x(i)) +

∑
k K̂
−1
ik

∑
j ∇x(j)K̂jk.

4.3. Estimators for the Parallel Transport

Schild’s ladder estimator. The Schild’s ladder
method (Ehlers et al., 1972; Kheyfets et al., 2000)
constructs a first order approximation to the par-
allel transport using the exponential map and

its inverse on the manifold: Γrq(V ) ≈ Exp−1r

(
Expq

(
2 Exp−1q

(
ExpExpq(V )

(
1
2 Exp−1Expq(V )(r)

))))
. It

is known (Villani (2008), Coro. 7.22; Ambrosio et al.
(2008), Prop. 8.4.6; Erbar et al. (2010), Prop. 2.1) that
Expq(V ) = (id +V )#q for absolutely continuous q,
which means that if {x(i)}i is a set of samples of q, then
{x(i) + V (x(i))}i is a set of samples of Expq(V ). The

inverse exponential map Exp−1q (r) (with q absolutely
continuous) can be expressed by the optimal transport map
T rq from q to r: Exp−1q (r) = T rq − id (Ambrosio et al.
(2008), Prop. 8.4.6). In practice, T rq can be estimated by
the discrete optimal transport map from the samples {x(i)}i
of q to the samples {y(i)}i of r, which can be done by exact
methods (e.g., Pele & Werman (2009)) or faster approxi-
mate methods like the Sinkhorn methods (Cuturi, 2013; Xie
et al., 2018). Applying these operations on samples, we get

an implementation of Γ̂
{y(j)}j
{x(j)}j

(
{V (j)}j

)(i)
.

Pairwise-close estimator. Liu et al. (2019)
consider the case where {x(j)}j and {y(j)}j
are pairwise close, i.e., d(x(i), y(i)) �
min

{
minj 6=i d(x(i), x(j)),minj 6=i d(y(i), y(j))

}
. Un-

der this condition, the discrete optimal transport map can
be approximated by T rq (x(i)) ≈ y(i) − x(i), and the above
parallel transport estimator simplifies to:

Γ̂
{y(j)}j
{x(j)}j

(
{V (j)}j

)(i)
= V (i).

In our experiments, we use the pairwise-close estimator,
which we observed works well empirically. The pairwise-
close version simplifies the algorithm and computation.

4.4. SPIDER for ParVIs

We propose applying Riemannian SPIDER (Stochastic Path
Integrated Differential Estimator) (Zhou et al., 2019) as an-
other variance reduction method for ParVIs. SPIDER for
ParVIs uses a recursive equation to estimate the full gradi-
ent along the trajectory and employs normalized gradient
updates. In contrast to SVRG, SPIDER only relies on the
previous position instead of a reference snapshot position
for variance reduction. Instead of using a reference snapshot
full-gradient, SPIDER uses the estimate of the full gradient
at the previous position.

At the start of every outer loop, we first compute a full
gradient {W (j)

0 }Mj=1 over the entire dataset and then ap-
ply normalized gradient ascent. In each of the subsequent
iterations k ≥ 1, the stochastic gradient at the current
particle position {x(j)k }j is combined with the stochas-
tic gradient at the previous particle position {x(j)k−1}j and

the previous estimate of the full gradient {W (j)
k−1}j to get

the new estimate of the full gradient {W (j)
k }j . The parti-

cle positions are updated with normalized gradient ascent
using the formula x(i)k+1 ← x

(i)
k + εW

(i)
k /‖Wk‖, where

‖Wk‖2 = 1
M

∑M
j=1 ‖W

(j)
k ‖2 is the discretization of the L2

q

norm. For space reasons, the SPIDER for ParVIs algorithm
is presented in the supplement.

4.5. Stochastic Quasi-Newton with Variance Reduction
(SQN-VR) for ParVIs
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Algorithm 2 Stochastic Quasi-Newton with Variance Reduction (SQN-VR) for ParVIs (simplified under pairwise-close
approximation)

Require: Initial particles {x(j)0 }Mj=1, target distribution p0(x)
∏N
n=1 pn(x), number of epochs S, update period Ts, learning

rates ε1, ε2, L-BFGS memory size.
Require: Vector field estimators Û({x(j)}j)(i) and V̂n({x(j)}j)(i).

1: Initialize x̃(i)1 ← x
(i)
0 for i = 1, · · · ,M .

2: Let Ṽ (i)
1 ←

∑N
n=1 V̂n({x̃(j)1 }j)(i) for i = 1, · · · ,M .

3: for s = 1, 2, 3, · · · , S do
4: Let x(i)0 ← x̃

(i)
s for i = 1, · · · ,M .

5: for k = 0, · · · , Ts − 1 do
6: Sample a data point nk ∈ {1, · · · , N}.
7: Let W (i)

k = Û({x(j)k }j)(i) +NV̂nk
({x(j)k }j)(i) −

(
NV̂nk

({x̃(j
′)

s }j′)(i) − Ṽ (i)
s

)
for i = 1, · · · ,M .

8: if s > 2 then
9: Compute the quasi-Newton update [Z

(j)
k ]Mj=1 from [W

(j)
k ]Mj=1 by L-BFGS two-loop recursion.

10: Let x(i)k+1 ← x
(i)
k − ε2Z

(i)
k for i = 1, · · · ,M .

11: else
12: Let x(i)k+1 ← x

(i)
k + ε1W

(i)
k for i = 1, · · · ,M .

13: end if
14: end for
15: Let x̃(i)s+1 ← x

(i)
Ts

for i = 1, · · · ,M .

16: Let Ṽ (i)
s+1 ←

∑N
n=1 V̂n({x̃(j)s+1}j)(i) for i = 1, · · · ,M .

17: Let S(i)
s+1 ← x̃

(i)
s+1 − x̃

(i)
s for i = 1, · · · ,M .

18: Let Y (i)
s+1 ← Û({x̃(j)s+1}j)(i) + Ṽ

(i)
s+1 − Û({x̃(j)s }j)(i) − Ṽ (i)

s for i = 1, · · · ,M .
19: Store the L-BFGS pair ([S

(j)
s+1]Mj=1, [Y

(j)
s+1]Mj=1), and discard the oldest pair if the memory size is exceeded.

20: end for
21: return {x̃(i)S }Mi=1.

To address ill-conditioned Bayesian inference problems,
we further incorporate quasi-Newton preconditioning tech-
niques. Ill-conditioned problems are typically identified by
an ill-conditioned Hessian of the objective, which makes
the function landscape distorted along a certain direction.
(Quasi-)Newton preconditioning works by stretching the
optimization space to make the landscape more isotropic,
resulting in longer-sighted updating direction. In the context
of Bayesian inference, we depict the ill-conditionedness ac-
cordingly by the Hessian of the KL divergence on P2, which
is now a quadratic form in the tangent space that general-
izes the matrix form to the infinite-dimensional manifold.
According to Example 15.9 of Villani (2008), the Hessian
operator takes the form

(
Hess KLp(q)

)
[V ] =

Eq(x)
[
‖∇V (x)‖2F − V (x)>

(
∇∇> log p(x)

)
V (x)

]
(1)

for Euclidean support space, so its ill-conditionedness is
related to that of the Hessian matrix∇∇> log p(x).

We propose applying Riemannian Stochastic Quasi-Newton
with Variance Reduction (SQN-VR) (Kasai et al., 2018) to
ParVIs. SQN-VR builds on SVRG by leveraging curva-
ture information to speed up convergence on ill-conditioned
problems. Like SVRG, SQN-VR computes the variance-

reduced stochastic gradient at every iteration. In SQN-VR,
an approximation to the inverse Hessian is computed and
applied to the variance-reduced stochastic gradient to get
the final update direction.

We present the SQN-VR for ParVIs algorithm in Algorithm
2 under the pairwise-close assumption. Similarly to SVRG,
SQN-VR updates the snapshot position and the correspond-
ing full-gradient once in every outer loop. In addition, the
curvature pair of the QN method is updated once in every
outer loop, using the difference between the current and
previous snapshot positions and the difference between their
corresponding full gradients computed for VR.

In the first two outer loops of SQN-VR, before two curvature
pairs have been collected, the SQN-VR update rule each
iteration is the same as the SVRG update rule. After two
curvature pairs are collected, we apply a quasi-Newton up-
date every iteration instead of directly applying the variance
reduced gradient. Specifically, we use the L-BFGS two-loop
recursion (Nocedal & Wright, 2006; Kasai et al., 2018) with
the previous L curvature pairs to apply the inverse Hessian
approximation operator to the variance reduced gradient to
get our quasi-Newton update direction.
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5. Experimental results
We present experimental results on Bayesian linear regres-
sion and logistic regression. We first describe the experi-
mental setup that we use. For the choice of ParVI, we use
SVGD with the linear kernel k(x,x′) = 1

d+1 (xTx′ + 1),
where d is the dimension and with mean centering of the
particles, which has been proven to yield exact estimation
of the mean and covariance for Gaussian target distributions
(Liu & Wang, 2018). We use 100 particles and a batch size
of 10 in all of our experiments. We initialize the particles
from a standard Gaussian, corresponding to the prior.

We compare the following optimization algorithms: Ada-
Grad with momentum, SGD, SVRG, SPIDER, and SQN-
VR. We note that AdaGrad is not a principled Riemmanian
optimization algorithm, but we include the Euclidean ver-
sion of AdaGrad as an empirical algorithm because Ada-
Grad has been used in several SVGD papers. For every
optimizer, we tune the learning rate by running a grid search
over

⋃2
k=−1{

10k

N , 3×10
k

N } where N is the number of data
points. For AdaGrad, we additionally tune the learning rate
in
⋃5
k=3{

10k

N , 3×10
k

N }, α ∈ {0.9, 0.95, 0.99, 0.999} and the
fudge factor ε ∈

⋃8
k=4{10−k}. For SGD, we decay the

learning rate after each epoch according to the formula
εt = a/(t + b)β where the power β ∈ {0.55, 0.75, 0.95}
and the constants a and b are chosen so that the total
learning rate decay over the total number of epochs is in
{1, 3, 10, 30, 100, 300, 1000}. For SVRG and SPIDER, we
use a constant learning rate for the first half of the run
and decay the learning rate in the second half by a fac-
tor in {1, 3, 10, 30, 100, 300, 1000}. For SQN-VR, we use
a constant learning rate in

⋃0
k=−5{10k, 3 × 10k} for the

quasi-Newton updates and a memory size of 10. For all of
the variance reduction methods, we update the full gradient
over the entire dataset after each epoch, and we first run
10 epochs of SGD. The grid search for each optimizer con-
sists of all combinations of learning rates and any additional
optimizer-specific hyperparameters. To ensure a fair com-
parison in all of our results, the x-axis in our figures is the
number of passes over the dataset, specifically the number
of data point gradient evaluations for all of the particles
divided by the dataset size N . For each dataset, we ensure
that every algorithm is initialized with the same starting
positions for the particles and uses the same sequence of
training examples throughout.

To evaluate how well the particles approximate the posterior,
we consider several metrics related to sample quality. For
each of the Bayesian linear regression and logistic regres-
sion problems, we first obtain a ground truth set of 40,000
MCMC samples from a long run of No U-Turn Sampler
(NUTS) (Hoffman & Gelman, 2014). Specifically, we use
the implementation of NUTS in PyStan (Carpenter et al.,
2017) with a dense mass matrix, and we run 16 chains of

NUTS with 500 burn-in iterations and 2,500 estimation it-
erations each. Given this reference set of samples, our first
metric is Maximum Mean Discrepancy (MMD) (Gretton
et al., 2012) between the 100 ParVI particles and the 40,000
MCMC samples. We use an RBF kernel for MMD with the
kernel bandwidth equal to the median of the pairwise dis-
tances between the MCMC samples. From the ground-truth
MCMC samples, we can calculate a ground truth posterior
mean vector µ and covariance matrix Σ. For a ParVI al-
gorithm, let µ̂t be the sample mean and Σ̂t be the sample
covariance of the set of particles at iteration t. We define
the mean squared error (MSE) for a ParVI with respect to
µ as 1

d‖µ̂t − µ‖
2
2 and with respect to Σ as 1

d2 ‖Σ̂t − Σ‖2F .
Finally, our last metric is kernel Stein discrepancy (KSD)
(Chwialkowski et al., 2016; Liu et al., 2016) for the 100
ParVI particles with respect to the posterior distribution
p specified by ∇ log p. We evaluate KSD using the IMQ
kernel proposed by Gorham & Mackey (2017), which has
been proven to detect convergence and non-convergence of
a sequence of samples for certain target distributions.

For each optimizer, we run a grid search over all of the
optimizer hyperparameters and choose the hyperparameters
that achieve the minimum MMD at the end of the run as the
best-performing hyperparameters to show in our results.

For each of the datasets, we report the number of data points
N , the dimensionality D, and the condition number of the
posterior covariance matrix Σ, cond(Σ). Note that cond(Σ)
is a computable, heuristic approximation of the Hessian
of the KL on the Wasserstein space. Equation (1) gives
an explicit relationship between the Hessian of the KL on
the Wasserstein space and the Hessian of the log-density
of the target posterior. For Bayesian linear regression, the
posterior is Gaussian, so the Hessian of the log-posterior
is the negative inverse posterior covariance matrix, which
has the same condition number as the posterior covariance
matrix that we report. For Bayesian logistic regression, the
posterior can be approximated well by a Gaussian.

Bayesian linear regression We first consider a Bayesian
linear regression model where the prior on the regression
coefficients is standard Gaussian. We run experiments on
8 UCI regression datasets (Dua & Graff, 2019). For space
reasons, we show results for 3 of the datasets in Fig. 1 and
present all of the results in the supplement.

In Fig. 1(a), we show results for the noise dataset, which is a
small dataset with 1,503 examples, a low dimensionality of
6, and a low posterior covariance matrix condition number
of 12. After running 100 epochs of each optimizer with
extensive tuning, we see that the best-performing Adagrad
and SGD optimizers achieve a MMD of around 10−0.85. In
contrast, all of the variance reduction algorithms achieve
a MMD of 10−1.38 to 10−1.63. The variance reduction al-
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Figure 1. Experimental results for Bayesian linear regression, from top to bottom: (a) noise (b) parkinson (c) toms.

gorithms also achieve a much lower MSE than AdaGrad
and SGD for estimating µ (10−5.76 to 10−6.70 compared
to 10−4.06 to 10−4.67) and Σ (10−8.66 to 10−9.43 compared
to 10−5.95 to 10−6.79), resulting in much more accurate
posterior mean and covariance estimates. The KSD metric
provides further evidence that the variance reduction algo-
rithms produce particles with much higher sample quality.

In Figs. 1(b) and 1(c), we consider two more challenging
datasets with significantly higher posterior covariance ma-
trix condition numbers. In Fig. 1(b), for the parkinson
dataset with N = 5875, D = 21, cond(Σ)=65697, we see
that SQN-VR performs the best after 100 epochs with a
MMD of 10−1.56; Adagrad, SGD, and SPIDER achieve a
MMD of around 10−1.3, and SVRG achieves a MMD of
around 10−1.06. Thus, we see that variance reduction alone
might not improve over well-tuned SGD for ill-conditioned
problems. If we compare Adagrad, SGD, and SPIDER in
terms of MSE for µ and Σ, we notice that SPIDER performs
the best for estimating µ and the worst for estimating Σ,
Adagrad performs the best at estimating Σ and the worst for
estimating µ, and SGD is in between. While these 3 meth-
ods produce particles with similar MMD, the distributions
of the particles are very different, reflected in the differing
estimates for µ and Σ. Interestingly, the KSD metric sug-
gests that the particles from SGD and Adagrad have worse
quality than the particles from SPIDER and SVRG; this

might be due to the less stable optimization procedure. In
Fig. 1(c), we present results for the toms dataset which has
28,179 data points, a high dimensionality of 97, and a high
posterior covariance matrix condition number of 45,923.
After 500 epochs, the best-performing SQN-VR achieves
a MMD of 10−1.34, Adagrad achieves a MMD of 10−0.52,
and the other optimizers achieve a MMD no better than
10−0.18. For this ill-conditioned problem, we see that SQN-
VR is essential for fast convergence and accurate posterior
inference.

Bayesian logistic regression We consider a Bayesian lo-
gistic regression model for binary classification where the
prior on the regression coefficients is standard Gaussian. We
run 8 Bayesian logistic regression experiments. For space
reasons, we show results for MNIST and covtype in Fig. 2
and present all of the results in the supplement.

Our MNIST (LeCun et al., 1998) binary classification prob-
lem is classifying digits 7 vs. 9 after applying PCA to reduce
the dimension of the image to 50, similar to Korattikara et al.
(2014). The MNIST dataset has 12,214 training examples
and a low posterior covariance matrix condition number
of 58. In Fig. 2(a), we see that all of the variance reduc-
tion algorithms perform well, achieving a MMD of around
10−1.85. In contrast, the best-performing AdaGrad achieves
a MMD of 10−0.81 and SGD achieves a MMD of 10−1.01.
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Figure 2. Experimental results for Bayesian logistic regression, from top to bottom: (a) mnist (b) covtype.

The covtype dataset has 464,809 examples (using a 80%
training split), 55 dimensions, and a high posterior covari-
ance matrix condition number of 341,266. In Fig. 2(b), we
see that SQN-VR and SPIDER perform the best, achiev-
ing a MMD of around 10−1.7, with SVRG following close
behind with a MMD of around 10−1.64. Without variance
reduction, the best-performing SGD achieves a MMD of
10−1.19 and AdaGrad achieves a MMD of 10−0.19. Look-
ing at the other metrics, we observe that the particles from
SGD approximate Σ well but approximate µ poorly and
are also worse in terms of KSD. Thus, we see that variance
reduction techniques can greatly accelerate the convergence
of ParVIs for real-world datasets of varying size.

6. Discussion
Our experimental results on Bayesian linear regression
and logistic regression demonstrate that existing ParVI ap-
proaches using stochastic gradients converge insufficiently
fast and that variance reduction and quasi-Newton methods
can greatly accelerate the convergence of ParVIs for accu-
rate posterior inference in large-scale and ill-conditioned
problems. While using variance reduction techniques alone
sped up convergence in many large-scale problems, com-
bining variance reduction and quasi-Newton techniques led
to significantly faster convergence in several cases and the
best performance on every dataset we considered. Our al-
gorithms are applicable to general ParVIs and are based on
principled Riemannian optimization algorithms.

From the perspective of posterior inference, our new meth-
ods produced a set of particles with significantly better sam-
ple quality, as measured by MMD and KSD, and better
estimates of posterior expectations, such as mean and co-
variance. Accurate posterior inference requires solving the

ParVI optimization problem to a high degree of accuracy, so
leveraging Riemannian optimization methods with fast con-
vergence and high accuracy is very important. While we did
a large grid search to tune the hyperparameters, additional
tuning of the hyperparameters and other techniques, such as
adaptive learning rates and mini-batch sizes, could further
improve the performance of the optimization algorithms.

In our experiments, we assumed the pairwise close condi-
tion, which we observed works well empirically. Under
this assumption, our methods are simple, easy to use, fast
in terms of running time, and work well in practice. In
our experiments, we observed that the running times of our
methods are generally comparable to or slightly faster than
SGD and AdaGrad given the same number of gradient eval-
uations. The relative order of running times was generally
SVRG ≤ SPIDER ≤ SQN-VR ≤ SGD ≤ AdaGrad. For
example, on an Intel Xeon E5-2640v3, 100 epochs on the
covtype dataset took 20 minutes for SVRG and SPIDER,
22 for SQN-VR, 24 for SGD, and 28 for AdaGrad.

We focused our experiments on Bayesian linear regression
and logistic regression, running SVGD with a linear ker-
nel, which works well for Gaussian-like posteriors. In this
setting, we observed that ParVI methods can be highly ac-
curate for estimating posterior expectations and producing
a small set of particles which represent the posterior while
being fast in terms of running time. As an example, on
the challenging covtype dataset, our ParVI implementation
took 22 minutes while 500 burn-in iterations of NUTS took
4.5 hours. Using a subset of 100 NUTS samples also gives
a very poor representation of the posterior. Future work
involves studying how well various ParVI methods approx-
imate various posterior distributions under sample quality
metrics to further improve ParVI methods for real-world
Bayesian inference problems.
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