
Triple Generative Adversarial Nets

Chongxuan Li, Kun Xu, Jun Zhu∗, Bo Zhang
Dept. of Comp. Sci. & Tech., TNList Lab, State Key Lab of Intell. Tech. & Sys.,

Center for Bio-Inspired Computing Research, Tsinghua University, Beijing, 100084, China
{licx14, xu-k16}@mails.tsinghua.edu.cn, {dcszj, dcszb}@mail.tsinghua.edu.cn

Abstract

Generative Adversarial Nets (GANs) have shown promise in image generation
and semi-supervised learning (SSL). However, existing GANs in SSL have two
problems: (1) the generator and the discriminator (i.e. the classifier) may not
be optimal at the same time; and (2) the generator cannot control the semantics
of the generated samples. The problems essentially arise from the two-player
formulation, where a single discriminator shares incompatible roles of identifying
fake samples and predicting labels and it only estimates the data without considering
the labels. To address the problems, we present triple generative adversarial
net (Triple-GAN), which consists of three players—a generator, a discriminator
and a classifier. The generator and the classifier characterize the conditional
distributions between images and labels, and the discriminator solely focuses on
identifying fake image-label pairs. We design compatible utilities to ensure that
the distributions characterized by the classifier and the generator both converge to
the data distribution. Our results on various datasets demonstrate that Triple-GAN
as a unified model can simultaneously (1) achieve the state-of-the-art classification
results among deep generative models, and (2) disentangle the classes and styles
of the input and transfer smoothly in the data space via interpolation in the latent
space class-conditionally.

1 Introduction

Deep generative models (DGMs) can capture the underlying distributions of the data and synthesize
new samples. Recently, significant progress has been made on generating realistic images based on
Generative Adversarial Nets (GANs) [7, 3, 22]. GAN is formulated as a two-player game, where the
generator G takes a random noise z as input and produces a sample G(z) in the data space while the
discriminator D identifies whether a certain sample comes from the true data distribution p(x) or the
generator. Both G and D are parameterized as deep neural networks and the training procedure is to
solve a minimax problem:

min
G

max
D

U(D,G) = Ex∼p(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))],

where pz(z) is a simple distribution (e.g., uniform or normal) and U(·) denotes the utilities. Given a
generator and the defined distribution pg , the optimal discriminator is D(x) = p(x)/(pg(x) + p(x))
in the nonparametric setting, and the global equilibrium of this game is achieved if and only if
pg(x) = p(x) [7], which is desired in terms of image generation.

GANs and DGMs in general have also proven effective in semi-supervised learning (SSL) [11],
while retaining the generative capability. Under the same two-player game framework, Cat-GAN [26]
generalizes GANs with a categorical discriminative network and an objective function that minimizes
the conditional entropy of the predictions given the real data while maximizes the conditional entropy

∗J. Zhu is the corresponding author.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

ar
X

iv
:1

70
3.

02
29

1v
4

 [
cs

.L
G

]
 5

 N
ov

 2
01

7

𝑿𝒄, 𝒀𝒄
~𝒑𝒄(𝑿, 𝒀)

𝑿𝒍, 𝒀𝒍 ∼ 𝒑(𝑿, 𝒀)

𝑿𝒄 ∼ 𝒑(𝑿)

𝒁𝒈 ∼ 𝒑𝒛(𝒁)

𝑿𝒈, 𝒀𝒈
~𝒑𝒈(𝑿, 𝒀)

𝑿𝒍, 𝒀𝒍 ∼ 𝒑(𝑿, 𝒀)

GC

D

A/R A A/R

CE

CE
𝒀𝒈 ∼ 𝒑(𝒀)

Figure 1: An illustration of Triple-GAN (best view in color). The utilities of D, C and G are colored
in blue, green and yellow respectively, with “R” denoting rejection, “A” denoting acceptance and
“CE” denoting the cross entropy loss for supervised learning. “A”s and “R”s are the adversarial losses
and “CE”s are unbiased regularizations that ensure the consistency between pg , pc and p, which are
the distributions defined by the generator, classifier and true data generating process, respectively.

of the predictions given the generated samples. Odena [20] and Salimans et al. [25] augment the
categorical discriminator with one more class, corresponding to the fake data generated by the
generator. There are two main problems in existing GANs for SSL: (1) the generator and the
discriminator (i.e. the classifier) may not be optimal at the same time [25]; and (2) the generator
cannot control the semantics of the generated samples.

For the first problem, as an instance, Salimans et al. [25] propose two alternative training objectives
that work well for either classification or image generation in SSL, but not both. The objective of
feature matching works well in classification but fails to generate indistinguishable samples (See
Sec.5.2 for examples), while the other objective of minibatch discrimination is good at realistic image
generation but cannot predict labels accurately. The phenomena are not analyzed deeply in [25] and
here we argue that they essentially arise from the two-player formulation, where a single discriminator
has to play two incompatible roles—identifying fake samples and predicting labels. Specifically,
assume that G is optimal, i.e p(x) = pg(x), and consider a sample x ∼ pg(x). On one hand, as a
discriminator, the optimal D should identify x as a fake sample with non-zero probability (See [7] for
the proof). On the other hand, as a classifier, the optimal D should always predict the correct class
of x confidently since x ∼ p(x). It conflicts as D has two incompatible convergence points, which
indicates that G and D may not be optimal at the same time. Moreover, the issue remains even given
imperfect G, as long as pg(x) and p(x) overlaps as in most of the real cases. Given a sample form
the overlapped area, the two roles of D still compete by treating the sample differently, leading to
a poor classifier2. Namely, the learning capacity of existing two-player models is restricted, which
should be addressed to advance current SSL results.

For the second problem, disentangling meaningful physical factors like the object category from the
latent representations with limited supervision is of general interest [30, 2]. However, to our best
knowledge, none of the existing GANs can learn the disentangled representations in SSL, though
some work [22, 5, 21] can learn such representations given full labels. Again, we believe that the
problem is caused by their two-player formulation. Specifically, the discriminators in [26, 25] take
a single data instead of a data-label pair as input and the label information is totally ignored when
justifying whether a sample is real or fake. Therefore, the generators will not receive any learning
signal regarding the label information from the discriminators and hence such models cannot control
the semantics of the generated samples, which is not satisfactory.

To address these problems, we present Triple-GAN, a flexible game-theoretical framework for both
classification and class-conditional image generation in SSL, where we have a partially labeled
dataset. We introduce two conditional networks–a classifier and a generator to generate pseudo labels
given real data and pseudo data given real labels, respectively. To jointly justify the quality of the
samples from the conditional networks, we define a single discriminator network which has the sole
role of distinguishing whether a data-label pair is from the real labeled dataset or not. The resulting
model is called Triple-GAN because not only are there three networks, but we consider three joint
distributions, i.e. the true data-label distribution and the distributions defined by the conditional
networks (See Figure 1 for the illustration of Triple-GAN). Directly motivated by the desirable
equilibrium that both the classifier and the conditional generator are optimal, we carefully design

2The results of minibatch discrimination approach in [25] well support our analysis.

2

compatible utilities including adversarial losses and unbiased regularizations (See Sec. 3), which lead
to an effective solution to the challenging SSL task, justified both in theory and practice.

In particular, theoretically, instead of competing as stated in the first problem, a good classifier will
result in a good generator and vice versa in Triple-GAN (See Sec. 3.2 for the proof). Furthermore, the
discriminator can access the label information of the unlabeled data from the classifier and then force
the generator to generate correct image-label pairs, which addresses the second problem. Empirically,
we evaluate our model on the widely adopted MNIST [14], SVHN [19] and CIFAR10 [12] datasets.
The results (See Sec. 5) demonstrate that Triple-GAN can simultaneously learn a good classifier and
a conditional generator, which agrees with our motivation and theoretical results.

Overall, our main contributions are two folded: (1) we analyze the problems in existing SSL
GANs [26, 25] and propose a novel game-theoretical Triple-GAN framework to address them with
carefully designed compatible objectives; and (2) we show that on the three datasets with incomplete
labels, Triple-GAN can advance the state-of-the-art classification results of DGMs substantially and,
at the same time, disentangle classes and styles and perform class-conditional interpolation.

2 Related Work

Recently, various approaches have been developed to learn directed DGMs, including Variational
Autoencoders (VAEs) [10, 24], Generative Moment Matching Networks (GMMNs) [16, 6] and
Generative Adversarial Nets (GANs) [7]. These criteria are systematically compared in [28].

One primal goal of DGMs is to generate realistic samples, for which GANs have proven effective.
Specifically, LAP-GAN [3] leverages a series of GANs to upscale the generated samples to high
resolution images through the Laplacian pyramid framework [1]. DCGAN [22] adopts (fractionally)
strided convolution layers and batch normalization [8] in GANs and generates realistic natural images.

Recent work has introduced inference networks in GANs. For instance, InfoGAN [2] learns ex-
plainable latent codes from unlabeled data by regularizing the original GANs via variational mutual
information maximization. In ALI [5, 4], the inference network approximates the posterior distribu-
tion of latent variables given true data in unsupervised manner. Triple-GAN also has an inference
network (classifier) as in ALI but there exist two important differences in the global equilibria and
utilities between them: (1) Triple-GAN matches both the distributions defined by the generator
and classifier to true data distribution while ALI only ensures that the distributions defined by the
generator and inference network to be the same; (2) the discriminator will reject the samples from
the classifier in Triple-GAN while the discriminator will accept the samples from the inference
network in ALI, which leads to different update rules for the discriminator and inference network.
These differences naturally arise because Triple-GAN is proposed to solve the existing problems
in SSL GANs as stated in the introduction. Indeed, ALI [5] uses the same approach as [25] to deal
with partially labeled data and hence it still suffers from the problems. In addition, Triple-GAN
outperforms ALI significantly in the semi-supervised classification task (See comparison in Table. 1).

To handle partially labeled data, the conditional VAE [11] treats the missing labels as latent variables
and infer them for unlabeled data. ADGM [17] introduces auxiliary variables to build a more
expressive variational distribution and improve the predictive performance. The Ladder Network [23]
employs lateral connections between a variation of denoising autoencoders and obtains excellent SSL
results. Cat-GAN [26] generalizes GANs with a categorical discriminator and an objective function.
Salimans et al. [25] propose empirical techniques to stabilize the training of GANs and improve the
performance on SSL and image generation under incompatible learning criteria. Triple-GAN differs
significantly from these methods, as stated in the introduction.

3 Method

We consider learning DGMs in the semi-supervised setting,3 where we have a partially labeled dataset
with x denoting the input data and y denoting the output label. The goal is to predict the labels y
for unlabeled data as well as to generate new samples x conditioned on y. This is different from the
unsupervised setting for pure generation, where the only goal is to sample data x from a generator
to fool a discriminator; thus a two-player game is sufficient to describe the process as in GANs.

3Supervised learning is an extreme case, where the training set is fully labeled.

3

In our setting, as the label information y is incomplete (thus uncertain), our density model should
characterize the uncertainty of both x and y, therefore a joint distribution p(x, y) of input-label pairs.

A straightforward application of the two-player GAN is infeasible because of the missing values on
y. Unlike the previous work [26, 25], which is restricted to the two-player framework and can lead
to incompatible objectives, we build our game-theoretic objective based on the insight that the joint
distribution can be factorized in two ways, namely, p(x, y) = p(x)p(y|x) and p(x, y) = p(y)p(x|y),
and that the conditional distributions p(y|x) and p(x|y) are of interest for classification and class-
conditional generation, respectively. To jointly estimate these conditional distributions, which are
characterized by a classifier network and a class-conditional generator network, we define a single
discriminator network which has the sole role of distinguishing whether a sample is from the true data
distribution or the models. Hence, we naturally extend GANs to Triple-GAN, a three-player game to
characterize the process of classification and class-conditional generation in SSL, as detailed below.

3.1 A Game with Three Players

Triple-GAN consists of three components: (1) a classifier C that (approximately) characterizes the
conditional distribution pc(y|x) ≈ p(y|x); (2) a class-conditional generator G that (approximately)
characterizes the conditional distribution in the other direction pg(x|y) ≈ p(x|y); and (3) a discrim-
inator D that distinguishes whether a pair of data (x, y) comes from the true distribution p(x, y).
All the components are parameterized as neural networks. Our desired equilibrium is that the joint
distributions defined by the classifier and the generator both converge to the true data distribution. To
this end, we design a game with compatible utilities for the three players as follows.

We make the mild assumption that the samples from both p(x) and p(y) can be easily obtained.4
In the game, after a sample x is drawn from p(x), C produces a pseudo label y given x following
the conditional distribution pc(y|x). Hence, the pseudo input-label pair is a sample from the joint
distribution pc(x, y) = p(x)pc(y|x). Similarly, a pseudo input-label pair can be sampled from
G by first drawing y ∼ p(y) and then drawing x|y ∼ pg(x|y); hence from the joint distribution
pg(x, y) = p(y)pg(x|y). For pg(x|y), we assume that x is transformed by the latent style variables z
given the label y, namely, x = G(y, z), z ∼ pz(z), where pz(z) is a simple distribution (e.g., uniform
or standard normal). Then, the pseudo input-label pairs (x, y) generated by both C and G are sent to
the single discriminator D for judgement. D can also access the input-label pairs from the true data
distribution as positive samples. We refer the utilities in the process as adversarial losses, which can
be formulated as a minimax game:

min
C,G

max
D

U(C,G,D) =E(x,y)∼p(x,y)[logD(x, y)] + αE(x,y)∼pc(x,y)[log(1−D(x, y))]

+(1− α)E(x,y)∼pg(x,y)[log(1−D(G(y, z), y))], (1)

where α ∈ (0, 1) is a constant that controls the relative importance of generation and classification
and we focus on the balance case by fixing it as 1/2 throughout the paper.

The game defined in Eqn. (1) achieves its equilibrium if and only if p(x, y) = (1 − α)pg(x, y) +
αpc(x, y) (See details in Sec. 3.2). The equilibrium indicates that if one of C and G tends to the
data distribution, the other will also go towards the data distribution, which addresses the competing
problem. However, unfortunately, it cannot guarantee that p(x, y) = pg(x, y) = pc(x, y) is the unique
global optimum, which is not desirable. To address this problem, we introduce the standard supervised
loss (i.e., cross-entropy loss) to C, RL = E(x,y)∼p(x,y)[− log pc(y|x)], which is equivalent to the
KL-divergence between pc(x, y) and p(x, y). Consequently, we define the game as:

min
C,G

max
D

Ũ(C,G,D) =E(x,y)∼p(x,y)[logD(x, y)] + αE(x,y)∼pc(x,y)[log(1−D(x, y))]

+(1− α)E(x,y)∼pg(x,y)[log(1−D(G(y, z), y))] +RL. (2)

It will be proven that the game with utilities Ũ has the unique global optimum for C and G.

3.2 Theoretical Analysis and Pseudo Discriminative Loss

4In semi-supervised learning, p(x) is the empirical distribution of inputs and p(y) is assumed same to the
distribution of labels on labeled data, which is uniform in our experiment.

4

Algorithm 1 Minibatch stochastic gradient descent training of Triple-GAN in SSL.
for number of training iterations do
• Sample a batch of pairs (xg, yg) ∼ pg(x, y) of size mg, a batch of pairs (xc, yc) ∼ pc(x, y)
of size mc and a batch of labeled data (xd, yd) ∼ p(x, y) of size md.
• Update D by ascending along its stochastic gradient:

∇θd

 1

md
(
∑

(xd,yd)

logD(xd, yd))+
α

mc

∑
(xc,yc)

log(1−D(xc, yc))+
1− α
mg

∑
(xg,yg)

log(1−D(xg, yg))

 .
• Compute the unbiased estimators R̃L and R̃P ofRL andRP respectively.
• Update C by descending along its stochastic gradient:

∇θc

 α

mc

∑
(xc,yc)

pc(yc|xc) log(1−D(xc, yc)) + R̃L + αPR̃P

 .
• Update G by descending along its stochastic gradient:

∇θg

1− α
mg

∑
(xg,yg)

log(1−D(xg, yg))

 .
end for

We now provide a formal theoretical analysis of Triple-GAN under nonparametric assumptions and
introduce the pseudo discriminative loss, which is an unbiased regularization motivated by the global
equilibrium. For clarity of the main text, we defer the proof details to Appendix A.

First, we can show that the optimal D balances between the true data distribution and the mixture
distribution defined by C and G, as summarized in Lemma 3.1.
Lemma 3.1. For any fixed C and G, the optimal D of the game defined by the utility function
U(C,G,D) is:

D∗C,G(x, y) =
p(x, y)

p(x, y) + pα(x, y)
, (3)

where pα(x, y) := (1− α)pg(x, y) + αpc(x, y) is a mixture distribution for α ∈ (0, 1).

GivenD∗C,G, we can omitD and reformulate the minimax game with value functionU as: V (C,G) =

maxD U(C,G,D), whose optimal point is summarized as in Lemma 3.2.
Lemma 3.2. The global minimum of V (C,G) is achieved if and only if p(x, y) = pα(x, y).

We can further show that C and G can at least capture the marginal distributions of data, especially
for pg(x), even there may exist multiple global equilibria, as summarized in Corollary 3.2.1.
Corollary 3.2.1. Given p(x, y) = pα(x, y), the marginal distributions are the same for p, pc and pg ,
i.e. p(x) = pg(x) = pc(x) and p(y) = pg(y) = pc(y).

Given the above result that p(x, y) = pα(x, y), C and G do not compete as in the two-player based
formulation and it is easy to verify that p(x, y) = pc(x, y) = pg(x, y) is a global equilibrium
point. However, it may not be unique and we should minimize an additional objective to ensure the
uniqueness. In fact, this is true for the utility function Ũ(C,G,D) in problem (2), as stated below.

Theorem 3.3. The equilibrium of Ũ(C,G,D) is achieved if and only if p(x, y) = pg(x, y) =
pc(x, y).

The conclusion essentially motivates our design of Triple-GAN, as we can ensure that both C and G
will converge to the true data distribution if the model has been trained to achieve the optimum.

We can further show another nice property of Ũ , which allows us to regularize our model for stable
and better convergence in practice without bias, as summarized below.
Corollary 3.3.1. Adding any divergence (e.g. the KL divergence) between any two of the joint
distributions or the conditional distributions or the marginal distributions, to Ũ as the additional
regularization to be minimized, will not change the global equilibrium of Ũ .

5

Because label information is extremely insufficient in SSL, we propose pseudo discriminative loss
RP = Epg [− log pc(y|x)], which optimizes C on the samples generated by G in the supervised
manner. Intuitively, a good G can provide meaningful labeled data beyond the training set as
extra side information for C, which will boost the predictive performance (See Sec. 5.1 for the
empirical evidence). Indeed, minimizing pseudo discriminative loss with respect to C is equivalent to
minimizing DKL(pg(x, y)||pc(x, y)) (See Appendix A for proof) and hence the global equilibrium
remains following Corollary 3.3.1. Also note that directly minimizing DKL(pg(x, y)||pc(x, y)) is
infeasible since its computation involves the unknown likelihood ratio pg(x, y)/pc(x, y). The pseudo
discriminative loss is weighted by a hyperparameter αP . See Algorithm 1 for the whole training
procedure, where θc, θd and θg are trainable parameters in C, D and G respectively.

4 Practical Techniques

In this section we introduce several practical techniques used in the implementation of Triple-GAN,
which may lead to a biased solution theoretically but work well for challenging SSL tasks empirically.

One crucial problem of SSL is the small size of the labeled data. In Triple-GAN, D may memorize
the empirical distribution of the labeled data, and reject other types of samples from the true data
distribution. Consequently, G may collapse to these modes. To this end, we generate pseudo labels
through C for some unlabeled data and use these pairs as positive samples of D. The cost is on
introducing some bias to the target distribution of D, which is a mixture of pc and p instead of the
pure p. However, this is acceptable as C converges quickly and pc and p are close (See results in
Sec.5).

Since properly leveraging the unlabeled data is key to success in SSL, it is necessary to regularize
C heuristically as in many existing methods [23, 26, 13, 15] to make more accurate predictions.
We consider two alternative losses on the unlabeled data. The confidence loss [26] minimizes
the conditional entropy of pc(y|x) and the cross entropy between p(y) and pc(y), weighted by
a hyperparameter αB, as RU = Hpc(y|x) + αBEp

[
− log pc(y)

]
, which encourages C to make

predictions confidently and be balanced on the unlabeled data. The consistency loss [13] penalizes
the network if it predicts the same unlabeled data inconsistently given different noise ε, e.g., dropout
masks, asRU = Ex∼p(x)||pc(y|x, ε)− pc(y|x, ε′)||2, where || · ||2 is the square of the l2-norm. We
use the confidence loss by default except on the CIFAR10 dataset (See details in Sec. 5).

Another consideration is to compute the gradients of Ex∼p(x),y∼pc(y|x)[log(1 − D(x, y))] with
respect to the parameters θc in C, which involves summation over the discrete random variable
y, i.e. the class label. On one hand, integrating out the class label is time consuming. On the
other hand, directly sampling one label to approximate the expectation via the Monte Carlo method
makes the feedback of the discriminator not differentiable with respect to θc. As the REINFORCE
algorithm [29] can deal with such cases with discrete variables, we use a variant of it for the end-
to-end training of our classifier. The gradients in the original REINFORCE algorithm should be
Ex∼p(x)Ey∼pc(y|x)[∇θc log pc(y|x) log(1−D(x, y))]. In our experiment, we find the best strategy
is to use most probable y instead of sampling one to approximate the expectation over y. The bias is
small as the prediction of C is rather confident typically.

5 Experiments

We now present results on the widely adopted MNIST [14], SVHN [19], and CIFAR10 [12] datasets.
MNIST consists of 50,000 training samples, 10,000 validation samples and 10,000 testing samples of
handwritten digits of size 28 × 28. SVHN consists of 73,257 training samples and 26,032 testing
samples and each is a colored image of size 32× 32, containing a sequence of digits with various
backgrounds. CIFAR10 consists of colored images distributed across 10 general classes—airplane,
automobile, bird, cat, deer, dog, frog, horse, ship and truck. There are 50,000 training samples and
10,000 testing samples of size 32 × 32 in CIFAR10. We split 5,000 training data of SVHN and
CIFAR10 for validation if needed. On CIFAR10, we follow [13] to perform ZCA for the input of C
but still generate and estimate the raw images using G and D.

6

Table 1: Error rates (%) on partially labeled MNIST, SHVN and CIFAR10 datasets, averaged by 10
runs. The results with † are trained with more than 500,000 extra unlabeled data on SVHN.

Algorithm MNIST n = 100 SVHN n = 1000 CIFAR10 n = 4000

M1+M2 [11] 3.33 (±0.14) 36.02 (±0.10)
VAT [18] 2.33 24.63
Ladder [23] 1.06 (±0.37) 20.40 (±0.47)
Conv-Ladder [23] 0.89 (±0.50)
ADGM [17] 0.96 (±0.02) 22.86 †

SDGM [17] 1.32 (±0.07) 16.61(±0.24)†

MMCVA [15] 1.24 (±0.54) 4.95 (±0.18) †

CatGAN [26] 1.39 (±0.28) 19.58 (±0.58)
Improved-GAN [25] 0.93 (±0.07) 8.11 (±1.3) 18.63 (±2.32)
ALI [5] 7.3 18.3
Triple-GAN (ours) 0.91 (±0.58) 5.77(±0.17) 16.99 (±0.36)

Table 2: Error rates (%) on MNIST with different number of labels, averaged by 10 runs.

Algorithm n = 20 n = 50 n = 200

Improved-GAN [25] 16.77 (±4.52) 2.21 (±1.36) 0.90 (±0.04)
Triple-GAN (ours) 4.81 (±4.95) 1.56 (±0.72) 0.67 (±0.16)

We implement our method based on Theano [27] and here we briefly summarize our experimental
settings.5 Though we have an additional network, the generator and classifier of Triple-GAN have
comparable architectures to those of the baselines [26, 25] (See details in Appendix F). The pseudo
discriminative loss is not applied until the number of epochs reach a threshold that the generator could
generate meaningful data. We only search the threshold in {200, 300}, αP in {0.1, 0.03} and the
global learning rate in {0.0003, 0.001} based on the validation performance on each dataset. All of
the other hyperparameters including relative weights and parameters in Adam [9] are fixed according
to [25, 15] across all of the experiments. Further, in our experiments, we find that the training
techniques for the original two-player GANs [3, 25] are sufficient to stabilize the optimization of
Triple-GAN.

5.1 Classification
For fair comparison, all the results of the baselines are from the corresponding papers and we average
Triple-GAN over 10 runs with different random initialization and splits of the training data and report
the mean error rates with the standard deviations following [25].

Firstly, we compare our method with a large body of approaches in the widely used settings on MNIST,
SVHN and CIFAR10 datasets given 100, 1,000 and 4,000 labels6, respectively. Table 1 summarizes
the quantitative results. On all of the three datasets, Triple-GAN achieves the state-of-the-art results
consistently and it substantially outperforms the strongest competitors (e.g., Improved-GAN) on more
challenging SVHN and CIFAR10 datasets, which demonstrate the benefit of compatible learning
objectives proposed in Triple-GAN. Note that for a fair comparison with previous GANs, we do not
leverage the extra unlabeled data on SVHN, while some baselines [17, 15] do.

Secondly, we evaluate our method with 20, 50 and 200 labeled samples on MNIST for a systematical
comparison with our main baseline Improved-GAN [25], as shown in Table 2. Triple-GAN consis-
tently outperforms Improved-GAN with a substantial margin, which again demonstrates the benefit
of Triple-GAN. Besides, we can see that Triple-GAN achieves more significant improvement as the
number of labeled data decreases, suggesting the effectiveness of the pseudo discriminative loss.

Finally, we investigate the reasons for the outstanding performance of Triple-GAN. We train a single
C without G and D on SVHN as the baseline and get more than 10% error rate, which shows that G
is important for SSL even though C can leverage unlabeled data directly. On CIFAR10, the baseline
(a simple version of Π model [13]) achieves 17.7% error rate. The smaller improvement is reasonable
as CIFAR10 is more complex and hence G is not as good as in SVHN. In addition, we evaluate

5Our source code is available at https://github.com/zhenxuan00/triple-gan
6We use these amounts of labels as default settings throughout the paper if not specified.

7

(a) Feature Matching (b) Triple-GAN (c) Automobile (d) Horse

Figure 2: (a-b) Comparison between samples from Improved-GAN trained with feature matching
and Triple-GAN on SVHN. (c-d) Samples of Triple-GAN in specific classes on CIFAR10.

(a) SVHN data (b) SVHN samples (c) CIFAR10 data (d) CIFAR10 samples

Figure 3: (a) and (c) are randomly selected labeled data. (b) and (d) are samples from Triple-GAN,
where each row shares the same label and each column shares the same latent variables.

(a) SVHN (b) CIFAR10
Figure 4: Class-conditional latent space interpolation. We first sample two random vectors in the
latent space and interpolate linearly from one to another. Then, we map these vectors to the data
level given a fixed label for each class. Totally, 20 images are shown for each class. We select two
endpoints with clear semantics on CIFAR10 for better illustration.

Triple-GAN without the pseudo discriminative loss on SVHN and it achieves about 7.8% error rate,
which shows the advantages of compatible objectives (better than the 8.11% error rate of Improved-
GAN) and the importance of the pseudo discriminative loss (worse than the complete Triple-GAN by
2%). Furthermore, Triple-GAN has a comparable convergence speed with Improved-GAN [25], as
shown in Appendix E.

5.2 Generation
We demonstrate that Triple-GAN can learn good G and C simultaneously by generating samples in
various ways with the exact models used in Sec. 5.1. For fair comparison, the generative model and
the number of labels are the same to the previous method [25].

In Fig. 2 (a-b), we first compare the quality of images generated by Triple-GAN on SVHN and the
Improved-GAN with feature matching [25],7 which works well for semi-supervised classification.
We can see that Triple-GAN outperforms the baseline by generating fewer meaningless samples and
clearer digits. Further, the baseline generates the same strange sample four times, labeled with red
rectangles in Fig. 2 . The comparison on MNIST and CIFAR10 is presented in Appendix B. We

7Though the Improved-GAN trained with minibatch discrimination [25] can generate good samples, it fails
to predict labels accurately.

8

also evaluate the samples on CIFAR10 quantitatively via the inception score following [25]. The
value of Triple-GAN is 5.08 ± 0.09 while that of the Improved-GAN trained without minibatch
discrimination [25] is 3.87 ± 0.03, which agrees with the visual comparison. We then illustrate
images generated from two specific classes on CIFAR10 in Fig. 2 (c-d) and see more in Appendix C.
In most cases, Triple-GAN is able to generate meaningful images with correct semantics.

Further, we show the ability of Triple-GAN to disentangle classes and styles in Fig. 3. It can be
seen that Triple-GAN can generate realistic data in a specific class and the latent factors encode
meaningful physical factors like: scale, intensity, orientation, color and so on. Some GANs [22, 5, 21]
can generate data class-conditionally given full labels, while Triple-GAN can do similar thing given
much less label information.

Finally, we demonstrate the generalization capability of our Triple-GAN on class-conditional latent
space interpolation as in Fig. 4. Triple-GAN can transit smoothly from one sample to another with
totally different visual factors without losing label semantics, which proves that Triple-GANs can
learn meaningful latent spaces class-conditionally instead of overfitting to the training data, especially
labeled data. See these results on MNIST in Appendix D.

Overall, these results confirm that Triple-GAN avoid the competition between C and G and can lead
to a situation where both the generation and classification are good in semi-supervised learning.

6 Conclusions

We present triple generative adversarial networks (Triple-GAN), a unified game-theoretical framework
with three players—a generator, a discriminator and a classifier, to do semi-supervised learning with
compatible utilities. With such utilities, Triple-GAN addresses two main problems of existing
methods [26, 25]. Specifically, Triple-GAN ensures that both the classifier and the generator can
achieve their own optima respectively in the perspective of game theory and enable the generator
to sample data in a specific class. Our empirical results on MNIST, SVHN and CIFAR10 datasets
demonstrate that as a unified model, Triple-GAN can simultaneously achieve the state-of-the-art
classification results among deep generative models and disentangle styles and classes and transfer
smoothly on the data level via interpolation in the latent space.

Acknowledgments

The work is supported by the National NSF of China (Nos. 61620106010, 61621136008, 61332007),
the MIIT Grant of Int. Man. Comp. Stan. and New Bus. Pat. “Int. Man. Eval. In. Stan. R. & V.”, the
Youth Top-notch Talent Support Program, Tsinghua Tiangong Institute for Intelligent Computing, the
NVIDIA NVAIL Program and a Project from Siemens.

References
[1] Peter Burt and Edward Adelson. The Laplacian pyramid as a compact image code. IEEE

Transactions on communications, 1983.

[2] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Info-
GAN: Interpretable representation learning by information maximizing generative adversarial
nets. In NIPS, 2016.

[3] Emily L Denton, Soumith Chintala, and Rob Fergus. Deep generative image models using a
Laplacian pyramid of adversarial networks. In NIPS, 2015.

[4] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. arXiv
preprint arXiv:1605.09782, 2016.

[5] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Martin Arjovsky, Olivier
Mastropietro, and Aaron Courville. Adversarially learned inference. arXiv preprint
arXiv:1606.00704, 2016.

[6] Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training generative neural
networks via maximum mean discrepancy optimization. arXiv preprint arXiv:1505.03906,
2015.

9

[7] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, 2014.

[8] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[9] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[10] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. arXiv preprint
arXiv:1312.6114, 2013.

[11] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-
supervised learning with deep generative models. In NIPS, 2014.

[12] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Citeseer, 2009.

[13] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv preprint
arXiv:1610.02242, 2016.

[14] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[15] Chongxuan Li, Jun Zhu, and Bo Zhang. Max-margin deep generative models for (semi-)
supervised learning. arXiv preprint arXiv:1611.07119, 2016.

[16] Yujia Li, Kevin Swersky, and Richard S Zemel. Generative moment matching networks. In
ICML, 2015.

[17] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Auxiliary deep
generative models. arXiv preprint arXiv:1602.05473, 2016.

[18] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii. Distributional
smoothing with virtual adversarial training. arXiv preprint arXiv:1507.00677, 2015.

[19] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, 2011.

[20] Augustus Odena. Semi-supervised learning with generative adversarial networks. arXiv preprint
arXiv:1606.01583, 2016.

[21] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with
auxiliary classifier gans. arXiv preprint arXiv:1610.09585, 2016.

[22] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[23] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-
supervised learning with ladder networks. In NIPS, 2015.

[24] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. arXiv preprint arXiv:1401.4082, 2014.

[25] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training GANs. In NIPS, 2016.

[26] Jost Tobias Springenberg. Unsupervised and semi-supervised learning with categorical genera-
tive adversarial networks. arXiv preprint arXiv:1511.06390, 2015.

[27] Theano Development Team. Theano: A Python framework for fast computation of mathematical
expressions. arXiv e-prints, abs/1605.02688, May 2016. URL http://arxiv.org/abs/1605.
02688.

10

http://arxiv.org/abs/1605.02688
http://arxiv.org/abs/1605.02688

[28] Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

[29] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

[30] Jimei Yang, Scott E Reed, Ming-Hsuan Yang, and Honglak Lee. Weakly-supervised disentan-
gling with recurrent transformations for 3d view synthesis. In NIPS, 2015.

A Detailed Theoretical Analysis

Lemma 3.1. For any fixed C and G, the optimal discriminator D of the game defined by the utility
function U(C,G,D) is

D∗C,G(x, y) =
p(x, y)

p(x, y) + pα(x, y)
, (4)

where pα(x, y) := (1− α)pg(x, y) + αpc(x, y) is a mixture distribution for α ∈ (0, 1).

Proof. Given the classifier and generator, the utility function can be rewritten as

U(C,G,D) =

∫∫
p(x, y) logD(x, y)dydx+ (1− α)

∫∫
p(y)pz(z) log(1−D(G(z, y), y))dydz

+α

∫∫
p(x)pc(y|x) log(1−D(x, y))dydx

=

∫∫
p(x, y) logD(x, y)dydx+

∫∫
pα(x, y) log(1−D(x, y))dydx = f(D(x, y)).

Note that the function f(D(x, y)) achieves the maximum at p(x,y)
p(x,y)+pα(x,y)

.

Lemma 3.2. The global minimum of V (C,G) is achieved if and only if p(x, y) = pα(x, y).

Proof. Given D∗C,G, we can reformulate the minimax game with value function U as:

V (C,G) =

∫∫
p(x, y) log

p(x, y)

p(x, y) + pα(x, y)
dydx+

∫∫
pα(x, y) log

pα(x, y)

p(x, y) + pα(x, y)
dydx.

Following the proof in GAN, the V (C,G) can be rewritten as

V (C,G) = − log 4 + 2JSD(p(x, y)||pα(x, y)), (5)

where JSD is the Jensen-Shannon divergence, which is always non-negative and the unique optimum
is achieved if and only if p(x, y) = pα(x, y) = (1− α)pg(x, y) + αpc(x, y).

Corollary 3.2.1. Given p(x, y) = pα(x, y), the marginal distributions are the same for p, pc and pg ,
i.e. p(x) = pg(x) = pc(x) and p(y) = pg(y) = pc(y).

Proof. Remember that pg(x, y) = p(y)pg(x|y) and pc(x, y) = p(x)pc(y|x). Take integral with
respect to x on both sides of p(x, y) = pα(x, y) to get∫

p(x, y)dx = (1− α)

∫
pg(x, y)dx+ α

∫
pc(x, y)dx,

which indicates that

p(y) = (1− α)p(y) + αpc(y), i.e. pc(y) = p(y) = pg(y).

Similarly, it can be shown that pg(x) = p(x) = pc(x) by taking integral with respect to y.

Theorem 3.3. The equilibrium of Ũ(C,G,D) is achieved if and only if p(x, y) = pg(x, y) =
pc(x, y).

11

(a) Feature Matching (b) Triple-GAN (c) Feature Matching (d) Triple-GAN

Figure 5: (a) and (c): Samples generated from Improved-GAN trained with feature matching on
MNIST and CIFAR10 datasets. Strange patterns repeat on CIFAR10. (b) and (d): Samples generated
from Triple-GAN.

Proof. According to the definition, Ũ(C,G,D) = U(C,G,D) +RL, where

RL = Ep[− log pc(y|x)],

which can be rewritten as:
DKL(p(x, y)||pc(x, y)) +Hp(y|x).

Namely, minimizingRL is equivalent to minimizing DKL(p(x, y)||pc(x, y)), which is always non-
negative and zero if and only if p(x, y) = pc(x, y). Besides, the previous lemmas can also be applied
to Ũ(C,G,D), which indicates that p(x, y) = pα(x, y) at the global equilibrium, concluding the
proof.

Corollary 3.3.1. Adding any divergence (e.g. the KL divergence) between any two of the joint
distributions or the conditional distributions or the marginal distributions, to Ũ as the additional
regularization to be minimized, will not change the global equilibrium of Ũ .

Proof. This conclusion is straightforward derived by the global equilibrium point of Ũ and the
definition of the divergence between distributions.

Pseudo discriminative loss We prove the equivalence of the pseudo discriminative loss in the main
text and KL-divergence DKL(pg(x, y)||pc(x, y)) as follows:

DKL(pg(x, y)||pc(x, y)) +Hpg (y|x)−DKL(pg(x)||p(x))

=

∫∫
pg(x, y) log

pg(x, y)

pc(x, y)
+ pg(x, y) log

1

pg(y|x)
dxdy −

∫
pg(x) log

pg(x)

p(x)
dx

=

∫∫
pg(x, y) log

pg(x, y)

pc(x, y)pg(y|x)
dxdy −

∫∫
pg(x, y) log

pg(x)

p(x)
dxdy

=

∫∫
pg(x, y) log

pg(x, y)p(x)

pc(x, y)pg(y|x)pg(x)
dxdy

=Epg [− log pc(y|x)].

Note that the last equality holds as pc(x) = p(x) and Hpg (y|x)−DKL(pg(x)||p(x)) is a constant
with respective to θc. Therefore, if we only optimize C, these two losses are equivalent.

B Unconditional Generation

We compare the samples generated from Triple-GAN and Improved-GAN on the MNIST and
CIFAR10 datasets as in Fig. 5, where Triple-GAN shares the same architecture of generator and
number of labeled data with the baseline. It can be seen that Triple-GAN outperforms the GANs that
are trained with the feature matching criterion on generating indistinguishable samples.

12

(a) Airplane (b) Bird (c) Cat (d) Deer

(e) Dog (f) Frog (g) Ship (h) Truck

Figure 6: Samples from Triple-GAN given certain class on CIFAR10.

(a) Data (b) Samples (c) Linear Interpolation

Figure 7: (a): randomly sampled MNIST data; (b) disentanglement of class and style; (c) class-
conditional interpolation for Triple-GAN on MNIST.

C Class-conditional Generation on CIFAR10

We show more class-conditional generation results on CIFAR10 in Fig. 6. Again, we can see that
Triple-GAN can generate meaningful images in specific classes.

D Disentanglement and Interpolation on the MNIST dataset

We present the disentanglement of class and style and class-conditional interpolation on the MNIST
dataset as in Fig. 7. We have the same conclusion as in main text that Triple-GAN is able to transfer
smoothly on the data level with clear semantics.

E Convergence Speed

Though Triple-GAN has one more network, its convergence speed is at least comparable with
Improved-GAN, as presented in Fig. 8. Both the models are trained on SVHN dataset with default
settings and Triple-GAN can get good results in tens of epochs. The reason that the learning curve of
Triple-GAN is oscillatory may be the larger variance of the gradients due to the presence of discrete

13

0 100 200 300 400 500 600 700 800 900
Epoch Number

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

E
rr

or
 R

at
e

on
 T

es
t D

at
a

Improved GAN.
Triple GAN.

Figure 8: Convergence speed of Improved GAN and Triple-GAN on SVHN.

variables. Also note that we apply pseudo discriminative loss at epoch 200 and then the test error is
reduced significantly in 100 epochs.

F Detailed Architectures

We list the detailed architectures of Triple-GAN on MNIST, SVHN and CIFAR10 datasets in Table 3,
Table 4 and Table 5, respectively.

Table 3: MNIST

Classifier C Discriminator D Generator G

Input 28×28 Gray Image Input 28×28 Gray Image, Ont-hot Class representation Input Class y, Noise z

5×5 conv. 32 ReLU MLP 1000 units, lReLU, gaussian noise, weight norm MLP 500 units,
2×2 max-pooling, 0.5 dropout MLP 500 units, lReLU, gaussian noise, weight norm softplus, batch norm

3×3 conv. 64 ReLU MLP 250 units, lReLU, gaussian noise, weight norm
3×3 conv. 64 ReLU MLP 250 units, lReLU, gaussian noise, weight norm MLP 500 units,

2×2 max-pooling, 0.5 dropout MLP 250 units, lReLU, gaussian noise, weight norm softplus, batch norm
3×3 conv. 128 ReLU MLP 1 unit, sigmoid, gaussian noise, weight norm
3×3 conv. 128 ReLU MLP 784 units, sigmoid

Global pool
10-class Softmax

Table 4: SVHN

Classifier C Discriminator D Generator G

Input: 32×32 Colored Image Input: 32×32 colored image, class y Input: Class y, Noise z

0.2 dropout 0.2 dropout MP 8192 units,
3×3 conv. 128 lReLU, batch norm 3×3 conv. 32, lReLU, weight norm ReLU, batch norm
3×3 conv. 128 lReLU, batch norm 3×3 conv. 32, lReLU, weight norm, stride 2 Reshape 512×4×4
3×3 conv. 128 lReLU, batch norm 5×5 deconv. 256. stride 2,

2×2 max-pooling, 0.5 dropout 0.2 dropout ReLU, batch norm

3×3 conv. 256 lReLU, batch norm 3×3 conv. 64, lReLU, weight norm
3×3 conv. 256 lReLU, batch norm 3×3 conv. 64, lReLU, weight norm, stride 2
3×3 conv. 256 lReLU, batch norm 5×5 deconv. 128. stride 2,

2×2 max-pooling, 0.5 dropout 0.2 dropout ReLU, batch norm

3×3 conv. 512 lReLU, batch norm 3×3 conv. 128, lReLU, weight norm
NIN, 256 lReLU, batch norm 3×3 conv. 128, lReLU, weight norm
NIN, 128 lReLU, batch norm

Global pool Global pool 5×5 deconv. 3. stride 2,
10-class Softmax, batch norm MLP 1 unit, sigmoid sigmoid, weight norm

14

Table 5: CIFAR10

Classifier C Discriminator D Generator G

Input: 32×32 Colored Image Input: 32×32 colored image, class y Input: Class y, Noise z

Gaussian noise 0.2 dropout MLP 8192 units,
3×3 conv. 128 lReLU, weight norm 3×3 conv. 32, lReLU, weight norm ReLU, batch norm
3×3 conv. 128 lReLU, weight norm 3×3 conv. 32, lReLU, weight norm, stride 2 Reshape 512×4×4
3×3 conv. 128 lReLU, weight norm 5×5 deconv. 256.stride 2

2×2 max-pooling, 0.5 dropout 0.2 dropout ReLU, batch norm

3×3 conv. 256 lReLU, weight norm 3×3 conv. 64, lReLU, weight norm
3×3 conv. 256 lReLU, weight norm 3×3 conv. 64, lReLU, weight norm, stride 2
3×3 conv. 256 lReLU, weight norm 5×5 deconv. 128. stride 2

2×2 max-pooling, 0.5 dropout 0.2 dropout ReLU, batch norm

3×3 conv. 512 lReLU, weight norm 3,×3 conv. 128 lReLU, weight norm
NIN, 256 lReLU, weight norm 3×3 conv. 128, lReLU, weight norm
NIN, 128 lReLU, weight norm

Global pool Global pool 5×5 deconv. 3. stride 2
10-class Softmax wieh weight norm MLP 1 unit, sigmoid, weight norm tanh, weight norm

15

	1 Introduction
	2 Related Work
	3 Method
	3.1 A Game with Three Players
	3.2 Theoretical Analysis and Pseudo Discriminative Loss

	4 Practical Techniques
	5 Experiments
	5.1 Classification
	5.2 Generation

	6 Conclusions
	A Detailed Theoretical Analysis
	B Unconditional Generation
	C Class-conditional Generation on CIFAR10
	D Disentanglement and Interpolation on the MNIST dataset
	E Convergence Speed
	F Detailed Architectures

