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theoretical framework of regularized Bayesian learning and its extensions in structured learning, latent
structure learning, max-margin learning, sparse learning in high dimensions, multi-modal data analysis,
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low-rank matrix factorization, link prediction, etc. We also develop fast and accurate learning algorithms.
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o BLES ST TR £ 5 2 3 R 18 503043 B More than 30 papers at major machine learning SEES
conferences and journals, including ICML, NIPS, UAI, JMLR, PAMI, etc.;
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invited to give research talks at CMU, Stanford, UC Berkeley, Princeton, etc.;
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3 Thesis “Maximum Entropy Discrimination Markov Networks: Theory and Applications”
won the China Computer Federation (CCF) distinguished Ph.D. thesis award in 2009.
Website: http://www.ml-thu.net/~jun/research.htmi
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