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Abstract
Link prediction is one of the most fundamental tasks in statistical network analysis, for
which latent feature models have been widely used. As large-scale networks are
available in various application domains, how to develop effective models and scalable
algorithms becomes a new challenge. In this paper, we provide a review of the recent
progress on latent feature models for the task of link prediction in large-scale networks,
including the nonparametric Bayesian models which can automatically infer the latent
social dimensions and the max-margin models which can learn strongly discriminative
latent features for highly accurate predictions as well as dealing with the imbalance
issue in large real networks. We also review the progress on scalable algorithms for
posterior inference in such models, including stochastic variational methods and
MCMC methods with data augmentation.
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Introduction
As the pervasiveness and scope of network data (e.g., social networks, biological gene
networks, document networks, citation networks, etc.) increase, statistical network anal-
ysis has attracted a great deal of attention. Those networks are typically represented
as a graph, whose vertices represent entities and edges represent links or relationships
between these entities. Given a network, it is very useful to answer the query that: which
new interactions among entities are likely to occur given some partially observed infor-
mation? This problem is known as link prediction [1]. Link prediction is of significant
importance in network analysis with extensive applications, where latent feature models
have been widely used. Compared with other methods, latent feature models can learn
expressive representations from network structures to achieve state-of-the-art prediction
performance. However, the link prediction problem meets a lot of challenges as the net-
works become larger, which have motivated the development on effective models and
scalable algorithms.

Large-scale networks

With the fast development of Internet and information science, there are more and more
large-scale networks to be analyzed. Table 1 shows the statistics of a diverse set of real net-
works that are often used for estimating the performance of methods in network analysis.
Each network has its own characteristics. For example,WebKB [2] is a hyperlink network,
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Table 1 Statistics of different networks, where positive links mean relationships between entities in a
network

Dataset Entities Positive links Sparsity rate

Kinship [42] 104 415 4.1 %

NIPS [43] 234 1196 2.2 %

WebKB [2] 877 1608 0.21 %

AstroPh [44] 17903 391462 0.12 %

CondMat [44] 21363 182684 0.040 %

Gowalla [3] 196591 1900654 0.0049 %

US Patent [4] 3774768 16522438 0.00012 %

whose entities represent webpages from the computer science departments of different
universities and the webpage contents provide rich information. So both the network
structure and the text contents can help with analysis. Gowalla [3] is a social network,
where the user locations of check-ins are collected. Combining the relationships between
users and the extra geographical information, we can analyze user movements and friend-
ships. US Patent [4] is a massive citation network, whose entities represent patents and
links represent citations between patents. There is not extra information for entities, so
the sparse network structure is the only thing we can use.
Several challenges exist when analyzing such large networks. First, a large number of

vertices and edges will lead to the increase of computational complexity, which asks for
efficient algorithms. Second, the relationships between entities will become more com-
plicated. If we represent each entity with a feature vector, we need a space with a higher
dimension. That is, both entities and relationships in large-scale networks are harder to
be depicted. Finally, in real networks the positive links are often much fewer than the neg-
ative ones, which leads to serious imbalance issues in supervised learning. As shown in
Table 1, positive links are much sparser with larger networks. Therefore, it is imperative
for improving models to adapt in large-scale network analysis.

Link prediction

Link prediction is one of the most fundamental problems in network analysis. For static
networks, it is often defined as predicting the missing links from a partially observed
network topology (and maybe some attributes as well), while for dynamic networks, it is
typically defined as predicting network structure at the next time t + 1 given the struc-
tures up to the current time t. Link prediction is of significant application value in many
areas (see [5] for a comprehensive survey). In social networking websites like Facebook
and LinkedIn, link prediction can be used to predict the existence of friendships between
pairs of users [6]. In citation networks, link prediction can be applied in suggesting the
most likely coauthorships in the near future [7]. In bioinformatics, link prediction offers a
cheaper way to predict if two proteins will interact than the laboratory experiments [8, 9].
Moreover, the link prediction approaches can be applied to user-item recommendation in
collaborative networks [10], and describe the link structure in document networks [11].
In the rest of the paper, we first survey some existing prominent approaches for link

prediction, followed by the recent progress in latent feature models for large-scale link
prediction with several experimental results. Finally, we conclude and discuss about
future work.
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Background
A wide range of models have been proposed for link prediction. In this section, we survey
some prominent approaches.

Proximity basedmodels

The early work on link prediction has been focused on designing good proximity (or simi-
larity) measures between nodes, using features related to certain topological properties of
the graph. For instance, graph-basedmodels [1] compute a measure for each pair of nodes
and rank the unobserved links in a descending order. Popular measures include common
neighbors, Jaccard’s coefficient [12], Adamic/Adar [13], Katz [14], etc. These methods are
unsupervised and depend heavily on the manually designed proximity measure.

Well-conceived feature models

Supervised learning methods have also been popular for link prediction [15, 16]. These
methods learn predictive models on labeled training data with a set of manually designed
features that capture the statistics of the network. For example, Hasanand et al. [15]
and Lichtenwalter et al. [17] identify a set of features and cast the link prediction prob-
lem as a classification task. Backstrom and Leskovec [6] use random walks to combine
the information from the network structure with node and edge attributes. Although we
can design effective domain-specific features from the graph topology as well as node
attributes, this process can be too time demanding and only restrictive to some particular
application domains.

Latent class models

Latent class models assume that there is a number of clusters (or classes) underlying the
observed entities and each entity belongs to certain clusters. The observed link between
two entities is determined by their cluster assignments (or social roles). The early work of
stochastic block models [18] is a representative work that places a probability distribution
over the clusters and reveals a soft clustering of the entities by posterior inference. Later
advancements are with nonparametric techniques, such as the infinite relational model
[19] and the infinite hidden relational model [20], which allow a potentially infinite num-
ber of clusters. The mixed membership stochastic block model (MMSB) [21] increases
the expressiveness of latent class models by allowing entities to be members of multiple
communities. But the number of latent communities is required to be externally speci-
fied. The nonparametric extension of MMSB is a hierarchical Dirichlet process relational
model (HDPR) [22], which allows mixed membership in an unbounded number of latent
communities.

Latent feature models for link prediction
Latent feature models (LFM) are powerful to link prediction, in which each entity
is assumed to be associated with a feature vector which is unobserved (thus latent).
Then the probability of a link is determined by the interactions among such latent
features. Latent feature models have been popular due to three reasons: (1) they can
model the social phenomena in the real world; (2) they can discover the underly-
ing structures of the relations between entities and sometimes correlated with extra
known attributes; (3) they can make accurate predictions of the link structures using
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automatically learned latent features and have been shown to give state-of-the-art
performance.
Formally, in a network withN entities, latent feature models represent each entity i by a

K-dimensional feature vector Zi ∈ R
K , which is a point in a latent feature space. In some

cases, we have extra known attributes Xij ∈ R
D to help with prediction. Let Y denote the

N × N binary link indicator matrix, while yij = ±1 indicates the positive link or negative
link from entity i to entity j. Then, themodel’s score for a link (i, j) can be generally defined
as:

f
(
(i, j);Zi,Zj,Xij

) = �
(
ψ(Zi,Zj) + β�Xij + b

)
, (1)

where ψ(Zi,Zj) is a function that measures the similarity of entity i and entity j in the
latent space, β�Xij is the score that considers the influence of known attributes, β is the
real-valued weight, and b is an offset. �(·) is a link function and the common choices of
�(·) include the sigmoid function, the probit function and so on.
Link prediction problem in dynamic networks is typically defined to predict the evolu-

tions of the network structure. We focus on static networks, where we can only observe a
part of links, containing positive links and negative links. Some links are unobserved to be
predicted. It is similarly formulated as predicting missing (unobserved) entries in a par-
tially observed link matrix Y. The formulation in Eq. (1) covers various interesting latent
feature models. The latent distance model [23] measures the similarity of two entities
using a distance function d(·) in the latent feature space as ψ(Zi,Zj) = −d(Zi,Zj). The
latent eigenmodel [24], which based on the idea of the eigenvalue decomposition, defines
ψ(Zi,Zj) = Z�

i DZj, where D is a diagonal matrix that is estimated from observed data.
As the latent feature vectors form a latent feature matrix Z = [

Z�
1 ; . . . ;Z�

N
]
, the matrix

factorization approach [25] can be seen as a kind of latent feature models, which defines
ψ(Zi,Zj) = Z�

i �Zj.
However, there are still some challenges in link prediction problems that the above

models can not deal with. 1)Model complexity. The dimensionality of the latent feature
space K is assumed to be known a priori. However, this assumption is often unreal-
istic for data analysis, especially when dealing with large networks. A typical way is
using model selection (e.g., cross-validation or likelihood ratio test), which may be com-
putationally prohibitive by comparing many candidate models. 2) Imbalance Issue.
As we mentioned before, the real networks are often very sparse, where the positive
links are much fewer than the negative ones. That leads to serious imbalance issues in
supervised learning. 3) Performance. It is challenging to think about how to improve
the models and design inference algorithm to obtain better prediction performance. 2)
Scalability. In the real world, there are more and more large-scale networks to be ana-
lyzed, which needs scalable models. But most previous proposed latent feature models
can not meet the requirements. In this section, we will review nonparametric latent fea-
ture relational models (LFRM) [7], and two extended models (i.e., MedLFRM [26] and
DLFRM [27]). We can see how these models can meet the above four challenges. Because
of the distributed representation, LFMs are more flexible than latent class models.
Figure 1 shows the connections of latent class models and latent feature models that we
introduce.
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Fig. 1 Models diagram. The diagram shows the connections of latent class models and latent feature models

Nonparametric latent feature relational model

Bayesian nonparametric techniques have shown promise in bypassing model selection
and automatically resolving the model complexity from empirical data by imposing an
appropriate stochastic process prior on a rich class of models, such as the mixture models
with an infinite number of components [28], or the latent factor models with an infi-
nite number of features [29]. For link prediction, the recently developed nonparametric
latent feature relational models (LFRM) [7] leverage the advance of Bayesian nonpara-
metric methods to automatically resolve the unknown dimensionality of the feature space
by applying a flexible nonparametric prior. It assumes that each entity i has an infinite
number of binary features, that is Zi ∈ {0, 1}∞, then Z = [

Z�
1 ; . . . ;Z�

N
]
is a latent feature

matrix with N rows and an unbounded number of columns. So each column of Z corre-
sponds to a feature and zik = 1 if entity i has feature k, zik = 0 otherwise. Indian Buffet
Process (IBP) [29] prior is used as a prior of Z to produce sparse latent feature vector for
each entity, which defines a stochastic process that generates sparse binary matrices of an
unbounded number of columns. According to Eq. (1), the prediction function of LFRM
can be defined as:

f
(
(i, j);Zi,Zj,Xij,W ,β

) = �
(
Z�
i WZj + β�Xij

)
, (2)

where W is a real-valued weight matrix. Each entry wkk′ in W denotes the weight of the
feature pair k and k′. That is, if entity i has feature k and entity j has feature k′, then the
value wkk′ will be added to the link score. Note that wkk′ can be negative, which means
the mutual exclusion of these two features. So Z�

i WZj is the score that considers the
interaction patterns among the latent features. Although the dimension of Zi is infinite,
we only take the finite number of K non-zero columns to represent entities, while K is
determined automatically during learning. A demonstration of LFRM for link prediction
is shown in Fig. 2.



Zhu and Chen Big Data Analytics  (2017) 2:3 Page 6 of 11

Fig. 2 Demonstration of latent feature relational models for link prediction. A network contains entities and
the relationships between entities. LFRMs learn the binary latent feature vectors for entities and the weights
for features. Then the link scores can be obtained by considering both latent features and known attributes

Discriminative latent feature relational model

Discriminative nonparametric latent feature relational models (DLFRM) [27], an exten-
sion of LFRM, employ regularized Bayesian inference (RegBayes) [30] to handle the
imbalance issue in the real networks and learn discriminative latent features. With the
prediction function in Eq. (2), the link likelihood can be defined as the product over all
pairs of entities p(Y |Z,X,W ,β) = ∏

i,j∈I �
(
Z�
i WZj + β�Xij

)
, where I is the set of train-

ing links (observed links). For fully Bayesian inference, the feature matrix Z follows IBP,
and the weight matrix W and β are also treated as random and assumed to be isotropic
Gaussian distribution. Once Z,W and β are given, the predictions can be made using the
sign rule, ŷij = sign

(
Z�
i WZj + β�Xij

)
, and the error is measured on the training data. As

the nonparametric prior IBP is employed, the latent dimensionK can be determined auto-
matically. Figure 3 shows the average K on AstroPh dataset, where stoDLFRM is DLFRM
with stochastic algorithm and diagDLFRM is with diagonalW.
As there are not conjugate priors on W and β , exact posterior inference is intractable.

DLFRM exploits the ideas of data augmentation with simpler Gibbs sampling [31, 32]
under the regularized Bayesian inference (RegBayes) framework [30]. RegBayes treats
inferring the posterior distribution as solving an optimization problem with a non-
negative regularization parameter c. The parameter c balances the prior part and the

Fig. 3 Latent dimension K on the AstroPh dataset. DLFRM is for the method without stochastic inference,
stoDLFRM is with stochastic inference and diagDLFRM is the method with diagonal weight matrix
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posterior regularization part. c can be controlled to deal with the imbalance issue in real
networks. For example, we can choose a larger c value for the fewer positive links and a rel-
atively smaller c for the larger negative links. The sensitivity of c+/c− on AstroPh dataset
is shown in Fig. 4, which demonstrates the effectiveness of dealing with the imbalance
issue. Data augmentation technique introduces auxiliary variables λ, so that the likelihood
can be represented as the marginal of a higher dimensional distribution that includes λ.
With the proper design of likelihood, we can directly obtain posterior distributions as
a mixture of Gaussian components and develop efficient Gibbs sampling algorithms. In
order to make DLFRM scalable, stochastic gradient Langevin dynamics [33] is employed
to get the approximate sampler of W, so that DLFRM can handle large networks with
hundreds of thousands of entities and millions of links.

MED latent feature relational model

In [34], maximum entropy discrimination latent feature relational model (MedL-
FRM) unites the ideas of max-margin learning and Bayesian nonparametrics, which
directly minimizes the hinge loss that measures the quality of link prediction. An
averaging classifier is defined as making the predictions using the sign rule, ŷij =
sign

(
Eq

[
Z�
i WZj + β�Xij

])
. In learning, it adopts the hinge-loss as a surrogate to the

training error. MedLFRM is defined as solving the problem:

min
p(Z,W ,β)∈P

KL(p(Z,W ,β)||p0(Z,W ,β)) + cR�(p(Z,W ,β)), (3)

where P denotes the space of normalized distribution, R�(p(Z,W ,β)) = ∑
(i,j)∈I

max
(
0, � − yijEq

[
Z�
i WZj + β�Xij

])
is the hinge-loss, and c is the regularization param-

eter that can be controlled for handling the imbalance issue as DLFRM.
For IBP prior, there is an equivalent augmented stick-breaking construction [35]. With

the stick-breaking representation of IBP and the truncated mean-field assumption, a vari-
ational algorithm is presented for posterior inference. Although variational methods are
approximate, they are usually more efficient and also have an objective to monitor the
convergence behavior. For the AstroPh dataset in Table 1, 90 % of the positive links are

Fig. 4 Sensitivity of c+/c− on the AstroPh dataset. The sensitivity is obtained by DLFRM with diagonal
weight matrix and logistic log-loss
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randomly selected for training and the number of negative training links is 10 times the
number of positive training links. The testing set contains the remaining positive links and
the same number of negative links. The AUC scores are shown in Fig. 5, where aMMSB
is assortative MMSB [21], aHDPR is assortative HDP Relational model [22], stoDLFRMl

is DLFRM with stochastic algorithm and logistic log-loss, and stoDLFRMh is with hinge-
loss. For MedLFRM, the truncated K should be set beforehand. We can observe that
DLFRM and MedLFRM outperform all the baselines, that demonstrates the superior
performance of the two models.
Moreover, an efficient stochastic variational inference [36] algorithm was proposed to

scale MedLFRM up to large-scale networks with millions of entities and tens of millions
of positive links [26]. As far as we know, none of the previous Bayesian latent feature
models can handle the two largest networks in Table 1. The results on US Patent dataset
are shown in Table 2. In the experiments, 21,796,734 links are extracted, containing all
the positive links and randomly sampled negative links. Then 17,437,387 links are uni-
formly chosen for training. Three proximity based methods are used as baselines. We can
observe that MedLFRM achieve significantly better performance.
Overall, DLFRM and MedLFRM can meet the four challenges as mentioned before.

They present discriminative models to achieve state-of-the-art performance, deal with
the imbalance issue via RegBayes, handle large-scale networks using stochastic algo-
rithms, and at the same time employ nonparametric techniques to determine the latent
dimension automatically.

Discussions and conclusions
We firstly discuss the large-scale networks analysis and the challenges they meet, along
with the importance and usefulness of the link prediction problem. In order to tackle
the challenges in large-scale link prediction, progresses have been made in latent feature
models. We review the latent feature models, especially LFRM, which impose IBP prior to
solve the unknown dimension problem. Then two recently improved model DLFRM and
MedLFRM are introduced under RegBayes with their efficient inference using stochas-
tic algorithm. The experimental results demonstrate that these improved latent feature

Fig. 5 Test AUC on the AstroPh dataset. All the baselines are cited from [22]. The results of DLFRM are cited
from [27] and MedLFRM are from [26]
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Table 2 Results on the US Patent dataset

Method Test AUC Running time (s)

CN 0.619 ± − 87.00 ± 2.58

Jaccard 0.618 ± − 52.15 ± 2.46

Katz 0.639 ± − 21975 ± 259

MedLFRM (K=15) 0.653 ± 0.0033 2787 ± 132

MedLFRM (K=30) 0.670 ± 0.0029 10342 ± 648

MedLFRM (K=50) 0.685 ± 0.0035 37860 ± 1224

models not only have effective and elegant model structures, but also have efficient
inference algorithm that can obtain state-of-the-art performances.
There are several future directions to be discussed. The LFRM and its extended models

we introduce in the paper belong to Bayesian methods, which represent one important
class of statistic methods for machine learning. As Bayesianmethods can get good perfor-
mance in network analysis, improving them to scale up to large-scale networks is of great
importance. Recently, many advances are in big learning with Bayesian methods (see [37]
for a survey). Besides those techniques we mentioned in the paper, there are many other
methods, such as scalable algorithms and distributed computing. Taking full advantage of
big Bayesian learning, we can improve our methods effectively.
Besides Bayesian methods, deep learning is another powerful technique for learning

latent features. Deep learning has been widely used in computer vision (e.g. deep convo-
lutional neural network [38]) and natural language processing (e.g. word embedding [39]).
Recently, a novel approach, DeepWalk [40], was proposed in network analysis, which
incorporated random walk with deep learning to learn latent representations for entities
in networks. How to take advantage of deep learning to solve the problem in network
analysis, such as link prediction and community detection, is very worth studying.
Moreover, learning latent features in dynamic networks is more complicated, as both

the networks and the features change over time. The dynamic relational infinite feature
model (DRIFT) [41] is the dynamic extension of LFRM for link prediction, where the
latent features for each entity in the network evolve according to a Markov process. It is
significant but also challenging to enrich and scale up these kinds of latent feature models
for dynamic network analysis.
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