
Distributing the Stochastic Gradient Sampler for
Large-Scale LDA

Yuan Yang†‡, Jianfei Chen†, Jun Zhu†
∗

†Dept. of Comp. Sci. & Tech., State Key Lab. of Intell. Tech. & Sys., TNList Lab, Tsinghua University, Beijing, China
‡College of Software Engineering, Beihang University, Beijing 100191, China

mblackout@hotmail.com, chenjian14@mails.tsinghua.edu.cn, dcszj@tsinghua.edu.cn

ABSTRACT
Learning large-scale Latent Dirichlet Allocation (LDA) models
is beneficial for many applications that involve large collections
of documents.Recent work has been focusing on developing dis-
tributed algorithms in the batch setting, while leaving stochastic
methods behind, which can effectively explore statistical redun-
dancy in big data and thereby are complementary to distributed
computing.The distributed stochastic gradient Langevin dynam-
ics (DSGLD) represents one attempt to combine stochastic sam-
pling and distributed computing, but it suffers from drawbacks
such as excessive communications and sensitivity to partitioning
of datasets across nodes. DSGLD is typically limited to learn small
models that have about 103 topics and 103 vocabulary size.

In this paper, we present embarrassingly parallel SGLD (EPS-
GLD), a novel distributed stochastic gradient sampling method for
topic models. Our sampler is built upon a divide-and-conquer ar-
chitecture which enables us to produce robust and asymptotically
exact samples with less communication overhead than DSGLD. We
further propose several techniques to reduce the overhead in I/O
and memory usage. Experiments on Wikipedia and ClueWeb12
documents demonstrate that, EPSGLD can scale up to large mod-
els with 1010 parameters (i.e., 105 topics, 105 vocabulary size),
four orders of magnitude larger than DSGLD, and converge faster.

CCS Concepts
•Mathematics of computing → Probabilistic algorithms;
•Computing methodologies→ Distributed algorithms;

Keywords
large-scale LDA, stochastic gradient sampler, embarrassingly par-
allel MCMC

1. INTRODUCTION
Topic models are useful statistical tools for mining latent topic

representations in document data, with Latent Dirichlet Allocation
(LDA) [8] as one of the most popular examples. LDA has been

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16, August 13-17, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939821

used in various tasks, including text classification [27], informa-
tion retrieval [21], recommendation [10] and social network anal-
ysis [3, 5]. Since exact inference is intractable, various approx-
imate methods have been developed, with Markov Chain Monte
Carlo (MCMC) as a main workhorse. A MCMC method builds a
sampler that simulates samples from a proposal distribution and ac-
cepts each sample with a rate specified by its posterior probability
given observed data. A conventional MCMC method adopts batch
update, that is, the whole dataset is processed for a single iteration.
Apparently, the overhead for such batch methods increases signifi-
cantly as the model size and/or data size get larger.

There are two ways to scale up inference for topic models —
stochastic subsampling and distributed computing. Stochastic sub-
sampling reduces the per-iteration cost by randomly drawing a sub-
set (or mini-batch) of documents and constructing an (unbiased)
estimate of the data statistics (e.g., gradients). Such methods save
computation cost by effectively exploring the statistical redundancy
that is commonly observed in large-scale datasets. For topic mod-
els, representative work includes stochastic variational inference
(SVI) [9] and stochastic gradient MCMC, such as stochastic gra-
dient Riemannian Langevin dynamics (SGRLD) [17], an extension
of stochastic gradient Langevin dynamics (SGLD) [23] for LDA
(See [28] for an overview). Compared to SVI, which often relies
on some restricting mean-field assumption and has dense per-token
update for LDA, we focus on SGLD methods, which converge to
the target posterior distribution under certain scheme of annealing
the step sizes and has sparse per-token update, a desirable property
for learning a large number of topics.

Distributed methods parallelize the computation on the full
dataset over multiple compute nodes. Representative work for topic
models includes Yahoo!LDA [1], LightLDA [25] and many oth-
ers [4, 13, 12, 16], which follow a common pattern that the glob-
ally shared topic-word matrix is updated asynchronously over mul-
tiple workers, and workers constantly communicate with a master
node to keep the local copy of the topic-word matrix up-to-date
through some operations, e.g., a parameter server in Yahoo!LDA or
pull/push-ing a matrix block from/to the master node in LightLDA.
In either case the write operation is exclusive for any element in the
matrix, which means only one worker at a time can modify the ele-
ment (See Fig. 1(b) for an illustration of LightLDA). Various efforts
have been made on reducing the per-token sampling complexity for
better efficiency on learning large-scale LDA models [24, 11], with
the recent success on an O(1) sampler [25]. However, these meth-
ods rely heavily on the communications among compute nodes and
can have substantial latency in waiting to gain the lock of element,
which can seriously slow down the convergence.

Though fast per-token samplers have been extensively investi-
gated in a sophisticated distributed system, little work has been

done on investigating stochastic methods within a distributed
paradigm to jointly explore data redundancy and distributed com-
puting. One exception is distributed SGLD (DSGLD) [2]. In DS-
GLD, the dataset is split and stored locally on multiple compute
nodes, and each individual SGLD sampler moves from one node
to another after each iteration in order to visit the local corpus
there. This behavior forms a unique trajectory (or chain) for the
sampler across nodes. The distribution of computation is achieved
by running multiple chains at the same time, and exchanging them
among nodes after each iteration. Fig. 1(a) illustrates DSGLD,
where the topic-word distribution (a core part for LDA) must be
carried together with the model. There are two significant draw-
backs in DSGLD. First, since the model needs to be carried to
the next node after each iteration, the number of communications
grows linearly to the number of chains and the number of itera-
tions. For large-scale LDA, where the model size can be as large
as 1010 (e.g., K = 105 topics and V = 105 unique words), such
overhead is prohibitive. Hence, DSGLD is often limited to small-
scale applications (e.g., V = 103 and K = 103) [2]. Second,
DSGLD makes use of a chain coupling technique to average over
the samples drawn from individual samplers in order to aggregate
into global samples. This strategy can generally reduce the esti-
mation variance, however, since samples are drawn from different
subset posteriors (or sub-posteriors), such a vanilla averaging oper-
ation can lead to bad aggregation if subset posteriors differ signifi-
cantly. In other words, DSGLD is sensitive to noise or non-random
partitioning of the datasets, and this can eventually lead to a slow
convergence.

To address the above challenges, we present embarrassingly par-
allel SGLD (EPSGLD), a novel distributed version of SGLD sam-
plers for topic models. EPSGLD has less communication over-
head and at the same time overcomes all drawbacks in DSGLD
to achieve better scalability. We build our algorithm based on the
recent progress on divide-and-conquer (or embarrassingly parallel)
sampling methods, which allow worker nodes to draw samples only
from their sub-posteriors, and then approximate the full-data pos-
terior (true posterior) samples in master node using some aggrega-
tion methods, such as weighted average [15], kernel density esti-
mators [19], and posterior median [14] (See [28] for an overview).
One of the central feature for the embarrassingly parallel methods
is that individual workers need no/few communications when sam-
pling from sub-posteriors, which significantly reduces the network
I/O and latency. This feature is excellent for models that contain
too many parameters to be carried across compute nodes, and can
help to increase the scalability of distributed methods. In our im-
plementation, EPSGLD can scale up to V = 105, K = 105 (or
even larger), which is four orders of magnitude larger than DSGLD,
while the communication cost grows at O(I

1
3) rate, where I is the

number of iterations. On the other hand, the aggregation methods
produce asymptotically exact samples from the true posterior [15],
and are, therefore, less sensitive to noise in datasets, leading to a
significantly faster convergence than DSGLD.

Technically, we address two challenging problems to develop
EPSGLD for large-scale LDA. First, despite that the embarrass-
ingly parallel methods can work without communication, the syn-
chronization across local LDA models is still needed due to two
reasons: (1) the global variables (i.e., topic-word distribution) in
LDA depend on the assignments to all the local variables (i.e.,
topic assignments for all words in local datasets); and (2) in or-
der to draw samples for local variables, samplers need to access
the latest global variables that are usually generated using aggre-
gation methods and stored in the master node [1]. This synchro-
nization is important for distributed LDA models to converge to

the optimal solution, and Newman et al. suggested to synchro-
nize after each iteration of the local sampler [16]. For EPSGLD,
this practice can again lead to O(I) communication cost, and is
thus not suitable. To avoid frequent synchronizations, we investi-
gate the properties of embarrassing parallel methods, and find that
they can correct the sub-posteriors towards the true posterior as the
training proceeds, and this phenomenon can be characterized as an
Expectation-maximization (EM) process. In that case, EPSGLD
can converge to the optimal solution with significantly fewer syn-
chronizations. In the experiments, we conduct a series of carefully
designed tests to demonstrate the power of this property, and show
how the performance of EPSGLD can be influenced by the fre-
quency of synchronizations.

Second, though various methods have been proposed to increase
the scalability of the distributed batch samplers, such as fast sam-
pling algorithms [24, 11, 25] and model-parallelism [26, 25], such
work is still lacking for stochastic samplers. We fills up this re-
search void and discuss several memory and I/O strategies that can
improve the model scalability. For example, some embarrassingly
parallel methods such as Weierstrass sampler [19] require to store
all the global samples in each worker node in order to perform ag-
gregation, which lead to excessive usage of disk and memory as
the space complexity grows linearly. We propose to take advan-
tage of synchronization operation and only hold the latest copy
of the global samples in each worker node, resulting in an O(1)
space complexity in disk. We also note that the number of unique
words contained in each mini-batch is sufficiently smaller than the
vocabulary size, and we propose the matrix slicing technique—for
each iteration, we only load into memory those word-slices that will
be used by the SGLD sampler, saving a great amount of memory
space. Additionally, we also show how fast sampling algorithms
can be integrated into SGLD samplers. All these techniques help
EPSGLD to scale up to models with 1010 parameters.

To summarize, we propose EPSGLD, a novel distributed
stochastic gradient MCMC sampler, to learn large-scale LDA mod-
els. Built upon an embarrassingly parallel method, EPSGLD can
produce asymptotically exact samples with significantly fewer syn-
chronizations than DSGLD. We also propose strategies to reduce
communication overhead and memory usage to increase scalability.
The experiments demonstrate that EPSGLD can scale up to LDA
models with 1010 parameters, where the number of communica-
tions can be reduced to O(I

1
3). We also compare with LightLDA,

a state-of-the-art distributed batch method. Our results show that
EPSGLD converges faster at the beginning, and reaches a compara-
ble optimum with LightLDA at the scale of V = 105 andK = 105.

Outline: We first introduce the preliminaries about LDA, SGLD
and distributed sampling. Then we present EPSGLD and solutions
to the above two issues. Section 4 conducts a set of experiments to
evaluate our method and compare with state-of-the-art distributed
samplers such as DSGLD and LightLDA. Finally, we conclude.

2. PRELIMINARIES

2.1 Latent Dirichlet Allocation
LDA is a probabilistic generative model for topic discovery in

text documents. It describes how the words in documents are ex-
plained by a set of K topics, each of which is a V -dimensional
topic-word distribution ϕk, where V is the vocabulary size. The
topics are often assumed to follow a conjugate Dirichlet prior, that
is, ϕk ∼ Dir(β), with hyperparameter β. For each document wd

that contains Nd tokens, where each token in it is denoted as wdn,
a K-dimensional topic mixing distribution γd is sampled from a
Dirchlet prior Dir(α). Then, for each token, a topic assignment

(a) (b) (c)
Figure 1: Illustrations of (a) DSGLD: 3 chains are deployed into 3 workers; each chain randomly visits next worker after finishing
the current update; (b) LightLDA: it splits the topic-word counts matrix into multiple blocks, each worker pulls one block at a time
and updates it using its local data; and (c) EPSGLD: each worker updates its local model independently, then after certain steps, the
master collects the samples to aggregate them into global one and sends back to all workers.

zdn is sampled from a multinomial distribution zdn ∼ Multi(γd),
followed by sampling the token itself again from a multinomial dis-
tribution wdn ∼ Multi(ϕzdn). The matrix that contains all ϕk is
denoted as Φ, and the one that contains all γd is Γ.

The inference problem for LDA is to determine the posterior dis-
tribution P (z,Φ,Γ|w), where w and z denote all the tokens and
their corresponding topic assignments in the whole dataset respec-
tively. However, the exact inference is intractable. The solution to
this is to use approximate inference methods such as Gibbs sam-
pling which is a special case of MCMC simulation [7]. By ex-
ploring the conjugacy, we can do collapsed Gibbs sampling [6]
by integrating out Φ and Γ. Namely, we have the collapsed pos-
terior P (z|w) ∝ P (z|α)P (w|z, β), where the terms are eval-
uated as P (w|z, β) =

∫
P (w|z,Φ)P (Φ|β)dΦ and P (z|α) =∫

P (z|Γ)P (Γ|α)dΓ. Then, a collapsed Gibbs sampler iterates
over all the tokens and draws the topic assignment for each token
wdn from the local conditional distribution P (zdn|rest,w), where
rest denotes the rest topic assignments excluding zdn. By some al-
gebra, we can show that the local conditional distribution is:

P (zdn = k|rest) ∝
(α+ n

−zdn
dk)(β + n

−zdn
kw)∑

k β + n
−zdn
kw

, (1)

where ndk denotes the number of times that topic k is assigned
to document d, nkw denotes the number of times that topic k is
assigned to word w, superscript −zdn denotes the counts matrix
without zdn, and we omit the condition w for simplicity. Note that
token wdn is different from word w: different tokens can refer to
the same word, but the word w is unique and the number of unique
words is V . In this process, one updates the counts matrices ndk
and nkw according to the sampling results, and after a sufficiently
large number of iterations, we can normalize the counts matrices
by row to obtain the Γ and Φ.

2.2 Fast per-token sampling algorithms
In the standard form, Eq. (1) takes O(K) time to sample a new

topic zdn for token wdn. A variety of methods have been proposed
to reduce this per-token sampling complexity. Here we briefly in-
troduce three of them. SparseLDA [24] decomposes Eq. (1) into
three terms:

P (zdn = k|rest) ∝ αβ∑
k β + n

−zdn
kw

+
n
−zdn
dk β∑

k β + n
−zdn
kw

+
(α+ n

−zdn
dk)n

−zdn
kw∑

k β + n
−zdn
kw

.

When sampling, one first uniformly chooses one of the three prob-
ability buckets, and then samples the topic from that bucket. If the
second or third term is chosen, it takes O(Kd) or O(Kw) time to
sample zdn, where Kd is the number of different topics that doc-
ument d has, and Kw is the number of different topics to which
word w is assigned. Since LDA is often sparse, the complexity
O(Kd +Kw) is much lower than O(K). AliasLDA [11] presents
another way to decompose Eq. (1):

P (zdn = k|rest) ∝ α(β + nkw)∑
k β + nkw

+
n
−zdn
dk (β + n

−zdn
kw)∑

k β + n
−zdn
kw

,

where the second term is sparse and can be sampled with O(Kd)
time, and the first term uses a stale copy of nkw, out of which one
can build an alias table and sample from it with O(1) time. Since
the sampler draws topic from a stale copy, an extra Metropolis pro-
cess is used to correct the bias in the samples. Recently, LightLDA
reduces the complexity to O(1). It decomposes Eq. (1) as:

P (zdn = k|rest) ∝ (α+ n
−zdn
dk)× (β + nkw)∑

k β + nkw
.

Instead of choosing the bucket, it samples topic from either the first
term or the second term at one time, and chooses the other term
the next time. While the second term is sampled through an alias
table, the first term can also be sampled withO(1) time as long as it
keeps track of the topic assignments list zd = {zd1, · · · , zdNd} for
document d (as it is often the case in practice), reaching the O(1)
overall complexity.

2.3 Stochastic gradient Langevin dynamics
As the data size gets extremely large, the time for running one

iteration in batch methods can be unacceptable. One approach to
scaling up the inference process is to use stochastic subsampling.
Due to the statistical redundancy in big data, the idea has proven
to be effective in various SGLD samplers [23, 17]. However, the
vanilla SGLD cannot be readily applied to LDA due to two rea-
sons [17]: (1) the probability simplex that defines LDA has its
own boundary, such that a gradient step can get outside of the sim-
plex; and (2) the distribution for LDA can be very skewed, and the
vanilla SGLD is likely to be insufficient in exploring the probabil-
ity space. To address the problems, the stochastic gradient Rie-
mannian Langevin dynamics (SGRLD) [17] sampler for LDA was
proposed. Here we briefly introduce SGRLD, and for simplicity,
we do not distinguish between SGLD and SGRLD in the sequel.

Let w(s) denote the mini-batch sampled from w at the sth itera-
tion, and the numbers of documents in w(s) and w are denoted as

D(s) andD respectively. The inference in SGRLD is performed on
the unnormalized topic-word matrix T , where we compute the gra-
dient and update T with it in each iteration. In T , the distribution of
topic k and its probability mass of each wordw is denoted as tk and
tkw (Correspondingly, we also have ϕk and ϕkw). The prior of T
(topic k and word w) is given as P (tkw) = Gamma(1, 1). Thus
the normalized distribution ϕk is obtained from ϕk = tk∑

w tkw
. At

each iteration s, T is updated as follows:

t
(s+1)
kw ← |t(s)kw +

ε(s)

2
(β − t(s)kw +

D

D(s)

∑
d: wd∈w(s)

Ezdn|rest,Φ[ndkw − ϕkwndk]) + (t
(s)
kw)

1
2 ηkw|,

(2)

where ε(s) denotes the step size at the sth iteration and ndkw de-
notes the number of times topic k is assigned to w in document
d. ηkw is obtained from ηkw ∼ N (0, ε(s)) and d : wd ∈
w(s) denotes each document in the mini-batch. The expecta-
tion Ezdn|rest,Φ is not analytically tractable, but can be esti-
mated by performing the collapsed Gibbs sampling on distribution
P (zdn|rest,Φ) over the mini-batch data

P (zdn = k|rest,Φ) ∝ (α+ n
−zdn
dk)ϕkw.

In this case, two temporary counts matrices ndk and nkw are cre-
ated to record the updates in topic assignments. Then these two
matrices are used in Eq. (2) to compute the expectation. In
other words, SGLD still uses collapsed Gibbs sampling, but with
a smaller size of documents, which helps to reduce the computa-
tion cost. Therefore, SGLD is compatible with the alias table tech-
nique used in AliasLDA and LightLDA, which means SGLD can
also draw samples with O(1) complexity.

2.4 Distributed LDA and embarrassingly par-
allel

The other approach to increasing the scalability is distributed
computing. The distributed systems for batch samplers have been
extensively studied in order to learn large-scale LDA models [1, 25,
4, 13, 12, 16]. Despite of different techniques and implementations
proposed in each method, the overall process is similar. In Ya-
hoo!LDA, the global counts matrix nkw is stored in a master node;
each worker node i maintains a local copy of it ñkw,i and its own
local counts matrix nkw,i. We note that the local copy ñkw,i can be
different from that in the master node (i.e., nkw). This is referred
to as the delayed update technique, where the worker can delay
the synchronization of nkw with the master for a certain number
of iterations in order to reduce communications. For each worker,
it updates nkw,i with Eq. (1); and the master synchronizes and
updates the global matrtix nkw using

nkw ← nkw +
∑
i

(ñkw,i − nkw,i). (3)

Another similar method is proposed in LightLDA. As shown in
Fig.1(b), the global matrix is split into multiple blocks along the
word-axis. For every worker, it pulls a block from master, updates
it with its local data and sends it back to the master node. During
this process, the block in master is locked until it is returned by the
worker, so that these blocks can be updated asynchronously without
conflicts. Hence, LightLDA is referred to as a model-parallelism
method, where it partitions the model and storing a part of the
model on each node; then, partial updates are carried out on each
node [28]. In these methods, synchronizations play a central role in
counts matrix update, and they expect equality between the global
matrix and its per-machine copies after a complete synchronization.

Another parallel design is the embarrassingly parallel method,
which assumes that there is a generative process that leads to diver-
gent copies of the same random variables in each node [1]. This

method follows several criteria: (1) each node only has access to
its local data; (2) each node performs MCMC independently, with-
out communication; and (3) samples from each worker are aggre-
gated using approximate methods which yield asymptotically exact
samples from the full-data posterior [15]. Formally, if we develop
embarrassingly parallel method based on the SGRLD sampler, the
sub-posterior samples for LDA should be Tis (local unnormalized
topic-word matrices); then the global unnormalized topic-word ma-
trix which is aggregated from those Tis is denoted as Θ and the
true (full-data) posterior is therefore denoted as P (Θ|w). Suppose
there are n workers and we split our data w into {w1, · · · ,wn}.
Then, we have

P (Θ|w) ∝
∏
i

P (Θ|wi), (4)

where wi is the subset at node i and each term P (Θ|wi) is a sub-
posterior [15]. Note that we neglect the local variables z and Γ
since they are documents-related and are unnecessary to aggregate
globally. Eq. (4) suggests that the posterior of full data can be
represented by the product of sub-posteriors. Sampling from this
product of posteriors remains the main difficulty in the embarrass-
ingly parallel design [19]. To do this, various approximate meth-
ods have been proposed [15, 14, 19], such as weighted average and
kernel density estimators. These methods are excellent for models
with a large amount of parameters, since they allow the update on
model to be performed without communication. But just like the
case for SGLD and SGRLD, these frameworks are not readily ap-
plicable to LDA—two problems need to be addressed, and Section
3 is dedicated to solving these problems.

3. EMBARRASSINGLY PARALLEL SGLD
We now present how to combine the SGRLD sampler with an

embarrassingly parallel method to explore data redundancy and dis-
tributed computing for better scalability. For simplicity, we develop
our distributed method based upon the Weierstrass sampler [19]
(Note that the following discussion is also applicable to other em-
barrassingly parallel methods, such as [15, 14], since they follow a
similar distributed design).

For x ∈ Rq , the Weierstrass transform [22] of a function f(x)
is

f(x) = lim
h→0

∫ ∞
−∞

Kh(x,y)f(y)dy,

where the multivariate kernel function Kh(x,y) is defined as:

Kh(x,y) =
1√

(2π)q|H|
e−

1
2

(x−y)TH−1(x−y), (5)

in which H is a q-by-q diagonal matrix, where the elements on its
diagonal are the same and defined as the tuning parameter h. We
denote θk as the distribution of the topic with integer label k in
Θ. Under the common independent prior P0(Θ) =

∏
k P0(θk),

we have the factorization form of each sub-posterior P (Θ|wi) =∏
k P (θk|wi) in Eq. (4). Therefore, we can deal with each θk sep-

arately. Formally, according to Eq. (4) and the factorization form of
each sub-posterior as above, we have P (θk|w) ∝

∏
i P (θk|wi).

If we substitute P (θk|wi) with f(x), and y with tk,i (tk in node
i), we have
P (θk|w) ∝

∏
i

P (θk|wi)

≈
∫ ∏

i

Kh(θk, tk,i)P (tk,i|wi)dtk,1 · · · dtk,n.
(6)

Note that we use approximation to replace the limit h → 0, as
long as we set h to a small enough value (A recommended value
of h is around

√
nσ2 [19], where σ is the posterior variance). Note

that P (tk,i|wi) now represents the sub-posterior in node i. The
integration in Eq. (6) is in fact a marginalization performed on
joint probability distribution

P (θk, tk,1 · · · , tk,n|w) ∝
∏
i

Kh(θk, tk,i)P (tk,i|wi). (7)

It marginalizes all samples from sub-posteriors and gives the pre-
dictive distribution of θk. Hence this intergation can be estimated
by a standard block-wise Gibbs sampler:

P (tk,i|θk,wi) ∝Kh(θk, tk,i)P (tk,i|wi)

P (θk|tk,1, · · · , tk,n) ∝N (t̄k, H0) ,
(8)

where H0 is the diagonal matrix with all its diagonal elements
equal 1

nh−2 , and t̄k = 1
n

∑
i tk,i. The first part of Eq. (8) in-

dicates how the samples are drawn from each sub-posterior: The
sub-posterior is multiplied with a kernel term which penalizes the
samples that are far from the true posterior mode; in such way the
sub-posteriors are corrected towards the true posterior. The second
part of Eq. (8) suggests that the global samples are obtained by
sampling from a Gaussian distribution. This process is usually per-
formed by a master node which collects local tk,is from workers
asynchronously. The inference of the corrected local sub-posterior
P (tk,i|θk,wi) is performed in each worker node, and can be im-
plemented by the SGRLD sampler. Formally, we take the derivative
of P (tk,i|θk,wi), and re-arrange it into the SGRLD update equa-
tion, where we obtain the corrected version (one parameter case)

t
(s+1)
kw,i ← |t

(s)
kw,i+

ε(s)

2
(−h(t

(s)
kw,i − θ

(s)
kw)+

β − t(s)kw,i + E) + (t
(s)
kw,i)

1
2 ηkw|.

(9)

Note we use E as the abbreviation of the expectation term in Eq.
(2). The kernel term −hi(t(s)kw,i − θ

(s)
kw) shifts the gradient towards

the true posterior mode by an amount which is governed by h. As
the training proceeds, h shall decrease and finally vanish [19].

3.1 The EM process in EPSGLD
Embarrassing parallel methods can produce samples without

communication. However, as we discussed above, synchroniza-
tions are important for distributed LDA methods to converge to
the optimal state. This property also holds in our method. As we
inspect Eq. (8), the sampling of P (tk,i|θk,wi) depends on the
global matrix Θ; and the sampling of P (θk|tk,1, · · · , tk,n) in turn
depends on the local Tis. Therefore, Θ has a similar role as the
counts matrix ñkw,i in Yahoo!LDA, and should be synchronized
across all nodes. Formally, EPSGLD can be categorized as a data-
parallelism method, where the whole dataset is partitioned across
machines and computations are performed on each node given a
local copy of the globally share model [28]. Other examples of this
type include approximate distributed LDA (AD-LDA) [16] and Ya-
hoo!LDA. In [16], Newman et al. did an extensive analysis on the
role of synchronization in data-parallelism methods: when sam-
pling independently, the topics (with the same integer label) in each
worker can drift apart, so that topic k on one worker may diverge
from topic k in another worker. Through synchronization, matrices
in each node are updated to be consistent, leading to the equivalent
predictive power as their non-distributed counterparts. However, if
the synchronization interval increases, it is likely for this type of
methods to converge to a suboptimal solution, since topics in each
node can drift far apart. They concluded that there are two ways
to prevent data-parallelism methods from failing: (1) increase the
number of workers; and (2) apply frequent synchronizations.

Though the first method is easy to follow for all distributed al-
gorithms, the second advice is not suitable in our method, since the
number of iterations required for the stochastic sampler to converge
to a stationary state can be in the order of thousands and an O(I)
communication overhead is unacceptable. In order to avoid fre-
quent synchronizations without imposing too much accuracy loss,
we seek solutions by investigating the properties of Eq. (8). We

know that the main function of synchronization is to prevent top-
ics in each node to drift apart, so if we are able to constrain local
samplers so that they tend to draw samples with similar statisti-
cal meaning, we can then safely reduce the frequency of synchro-
nizations. Therefore, we can propose the third way to ensure the
validity of the data-parallelism methods, that is to correct the sub-
posterior towards the true posterior, so that topics are not likely to
drift apart even though they are sampled independently.

Fortunately, such mechanism indeed exists in Eq. (8). As we
inspect Eq. (8), we find that the sub-posterior is multiplied with a
kernel term which makes the distribution biased towards the global
matrix Θ. And Θ is sampled from P (θk|tk,1, · · · , tk,n) in order
to estimate the unknown true posterior. As the training proceeds,
this approximation becomes accurate and results in the local Tis
being biased towards the true posterior. Hence, we find that the
third solution is already contained in our method, and functions as
an EM-style process, where in the E-step we aggregate Θ as an
approximation of the true posterior; and in the M-step we correct
sub-posteriors towards Θ so that samples in Tis tend to have similar
statistically meaning. By iteratively applying these two steps, the
sub-posteriors are then biased towards the true posterior.

We use a toy example to illustrate this process. Suppose we are to
aggregate 3 Tis from workers 1, 2 and 3. As shown in Fig.2, for the
second topic, t2,1 and t2,3 have the same statistical property, while
topic t2,2 in T2 diverges form them. In E step, we average over
Tis and use Eq.(8) to obtain Θ and send it to workers. In M step,
the worker 2 updates T2. In sampling each topic, Eq. (9) is biased
towards Θ so that the SGRLD sampler updates the t2,2 towards
θ2. Then for the next EM step, the aggregated second topic θ2

should be more similar to those in T1 and T3, which in turn makes
t2,2 to be more similar to t2,1 and t2,3. Given enough number of
such steps, the topics will not drift apart even with less frequent
synchronizations. We note that this process is essentially differ-
ent from what is applied in DSGLD, where it also produces global
samples by averaging the Tis using chain coupling technique. As
we have discussed, the EM process holds only if the sub-posteriors
are biased towards Θ. In DSGLD, such mechanism is missing, thus
increasing the synchronization interval (or trajectory length in DS-
GLD) can significantly influence the convergence.

To demonstrate the effectiveness of the EM process, we run a
modest scale inference task (K = 102,V = 105) with 3 dis-
tributed settings: EPSGLD with synchronization after each itera-
tion, EPSGLD with synchronization after 5 iterations, and EPS-
GLD with synchronization after 5 iterations but the kernel term in
Eq. (9) is removed (which is a similar setting to that of the DS-
GLD). The result is shown in Fig.2(c). The “EPSGLD Sync=1”
curve sets up the lower bound for approximation error. The “EPS-
GLD Sync=5” curve has a similar performance when compared to
the lower bound, while the EPSGLD without correction converges
to a suboptimal state. This suggests that the EM process can sig-
nificantly reduce the accuracy loss caused by the decrease of syn-
chronization frequency.

3.2 Communication scheduling
We have shown that the EM process contained in EPSGLD can

enable the method to work with less frequent synchronizations. But
as we notice, the decrease of synchronizations not only influences
the convergence of our method, but also the effectiveness of how
the kernel term can correct the sub-posterior in Eq. (8). It sug-
gests that if one updates Ti and Θ rigorously according to Eq. (8),
then worker nodes will need to acquire the latest Θ to compute
the kernel term after each iteration. We note that this property is
resulted from the design of Weierstrass sampler itself, and differs

(a) (b) (c)
Figure 2: The graph uses a toy example to illustrate the EM process: (a) 3 Tis are aggregated into Θ. The second topic t2,2 in T2

diverges from those in T1 and T3; (b) worker updates T2 using Eq. (9). Since the sub-posterior is biased towards Θ, the second
topic changes towards θ2; (c) perplexity of stochastic samplers under 3 settings: EPSGLD with synchronization after each iteration,
denoted by “Sync=1”, EPSGLD with synchronization after 5 iterations and EPSGLD with synchronization after 5 iterations but the
kernel term in Eq. (9) is removed. (Best viewed in color).

from the need of synchronizations for LDA as discussed above. In
other words, this property still exists if we apply our method to
other models such as logistic regression. In order to eliminate the
communications, Wang et al. [19] suggested to generate all Θs us-
ing approximate methods such as Laplace approximation and store
them for training, so that the sampler can draw new Ti without
any communication. However, since our model can contain 1010

parameters, storing all the samples is not viable. Given that com-
munications are inevitable, we resort to address this issue through
a series of well-scheduled synchronizations, as detailed below.

A useful strategy for this problem is to apply delayed update. For
example, Yahoo!LDA allows worker i to save a local stale copy of
the global counts matrix ñkw,i, and updates global nkw using Eq.
(3) after a few iterations. Another example is DSGLD — Instead
of jumping to another worker at each iteration as shown in Fig.1(a),
the trajectory sampling is used to delay the jump by a number of
steps τ , so the communications are then O(I

τ
); this technique can

be used to control the level of approximation by trading off compu-
tation time with asymptotic accuracy [2]. The idea underlying this
strategy is that LDA is usually very sparse and changes slowly in
each iteration of the update, so the stale copy of the model is not
likely to be out-of-date in a short period.

In EPSGLD, h is initially set to be relatively large in order to en-
courage samplers to explore the posterior space, so the kernel term
penalizes less for the samples being different from the stale copy
of Θ; as the training proceeds, h becomes smaller and matters a lot
in penalizing the samples being far from Θ, but at this point since
the model is adequately sparse and the step size is small, the new
samples usually concentrate on the true posterior mode and thus are
similar to Θ. Therefore, in either case, given that the aggregated Θ
can correctly approximate the true posterior (as is often the case),
we can reuse the stale Θ in local sampling for a certain number of
iterations. Additionally, the timing for synchronization in EPSGLD
is determined by the master node, so worker nodes will respond to
the master node immediately after receiving the notification. This
helps to reduce the latency in synchronization.

The only remaining issue is to determine the schedule for com-
munications. It is not a trivial task as we take into account its effect
on the performance of the EM process, the effectiveness of the ker-
nel correction and the overall computational efficiency. Here we
propose to determine the schedule by putting different choices into
test and see how EPSGLD performs under certain communication
patterns. To do this, we first present a model in order to describe
different schedules formally:

φ(Ī) =

{
1 , Ī ∈ {c1 × nc2 |n = 0, 1, 2, ..}
0 , otherwise,

(10)

where Ī = 1
n

∑
i Ii, and Ii is the number of iterations in worker

i, c1 and c2 are parameters to be determined. During training, the
master keeps track of the iteration of each worker and computes
Ī , once φ(Ī) gives 1, the master will inform workers to synchro-
nize. The model is flexible to describe most of the likely schedules:
c1 = 1, c2 = 1 means communicate-per-iteration, c1 = τ, c2 = 1
lets the synchronization delay for τ iterations, c1 = 1, c2 = 2
concentrates more communications at the beginning and less after-
wards, and so on. To determine the parameters. Our approach is to
run a grid search on c1, c2 and compare the speed and perplexity
of each case. By investigating the curves of perplexity against iter-
ations under different settings of c1, c2, we gain some insights into
the relationship between communication scheduling and the overall
performance. The experiment is shown in Section 4.

3.3 Memory strategy
In large-scale LDA, manipulating a complete Ti (or Θ) can

be difficult as either holding it in memory or sending it to other
nodes is a nontrivial task. Hence, an appropriate memory strat-
egy for EPSGLD is needed to improve the scalability. Here we
draw inspirations from LightLDA, which partitions the counts ma-
trix nkw into multiple data blocks (along the word-axis) that are
small enough to be held in memory, and the worker only holds
and updates one block at each time. For our method, we find that
the number of unique words contained in one mini-batch is signifi-
cantly smaller than the vocabulary size, so it is sensible to only load
those word-slices that occur in the mini-batch.

To better understand our corpus, Fig.3 illustrates the histogram
of the number of unique words in a mini-batch and 4-mini-batches
set of the Wiki corpus (See Section 4 for detail on this corpus). It
suggests that most of the mini-batches contain only 4,000 differ-
ent words, and the maximum is approximately bounded by 10,000,
while a 4-mini-batches set usually contains 10,000 words and is
bounded by 20,000. That means one only needs to load a Ti slice
with 104 unique words in order to update for several iterations. In
practice, we can load as many word-slices as possible at once to
avoid frequent disk I/O. Given the model size and hardware en-
vironment, we load Ti slice that covers words in 4-mini-batches
set. In our implementation, we group the documents into 4-mini-
batches datasets, and each set has a data structure

[[batch1, · · · , batch4], [δ, δ1, · · · , δ4]],

where batch is the actual dataset, δ1, · · · , δ4 are V-dimensional
boolean vectors that indicate which word slices should be loaded
for these batches respectively, and δ = δ1|δ2|δ3|δ4, where | denotes
the “or” operation.

(a) (b)
Figure 3: (a) The histogram of the number of different words
in one mini-batch data of the Wiki corpus; (b) The histogram
of the number of different words in 4-mini-batches data of the
Wiki corpus.

Algorithm 1 Master node

init: Ī
while not called to stop do

while φ(Ī) is 0 do
receive: Ii from workers
Ī ← 1

n

∑n
i=1 Ii

end while
synchronize: δ̃i, · · · , δ̃n, δ̃
receive: δ̃i(Ti) from workers
send: δ̃(Θ)← 1

n

∑n
i=1 δ̃i(Ti)

end while
This technique is also applicable in synchronization. Worker and

master nodes can send the matrix slice together with its mask vec-
tor, instead of the complete one. If we denote the mask for worker i
at iteration s as δ(s)

i , and the matrix slice made up with these slices
as δ(s)

i (Ti). The mask for all modified slices after last synchro-
nization is obtained by δ̃i = δ

(s)
i |δ

(s+1)
i | · · · . Each time for the

synchronization, the worker only sends δ̃i(Ti) and δ̃i to master; the
master first computes the global mask δ̃ = δ̃1|δ̃2| · · · , and prepares
buffer to receive the local samples.

3.4 Algorithms
Based on our previous discussions, we present the pseudo code

of our EPSGLD in Algorithm 1 and Algorithm 2. In the method,
the master node keeps collecting the number of iterations Ii from
each worker, and tests if φ(Ī) is 1. If true, all nodes first syn-
chronize their masks and obtain the δ̃, and then the master receives
δ̃i(Ti) from workers and averages them to get δ̃(Θ), finally sends
it to workers. For the worker, it continues to update with a SGRLD
sampler, until it is informed to synchronize, and the following op-
erations are similar to those in master.

4. EXPERIMENTS
We now present more empirical results on large datasets. We fo-

cus on two tasks: (1) We determine the parameters in communica-
tion scheduling, and examine the effectiveness of the EM process at
a larger scale; and (2) We compare the performance with DSGLD
and LightLDA, two representative distributed methods. Though
our main focus is to develop a better distributed SGLD sampler,
LightLDA is also included as a state-of-the-art distributed batch
method to demonstrate the scalability of EPSGLD.

Algorithm 2 Worker node
input: dataset wi, tuning parameter h, local copy Θ
while not called to stop do

send: Ii
update: Ti ← SGRLD(wi, h,Θ) using Eq. (9)
if master calls for Ti then

synchronize: δ̃i, · · · , δ̃n, δ̃
send: δ̃i(Ti)
receive: δ̃(Θ)

end if
end while

Table 1: Statistics of the two datasets, where L denotes the
number of tokens.

Datasets D L V L/D
Wiki 4.2M 1B 100K 238
Clueweb12 40M 14.7B 100K 360

4.1 Datasets and Setups
Table 1 summaries the datasets in our experiments. The

Wiki dataset contains the latest web pages from Wikipedia1; and
Clueweb12 is a subset of Clueweb12 dataset, a large crawl of web
pages2. Note that the Clueweb12 data also share the property that
we discussed in Section 3.3. For each corpus, we take the top 105

most frequent words (with stop words excluded) as our vocabu-
lary and parse the documents into a bags-of-words format. In order
to apply large-scale LDA inference, the Gibbs sampling used in
SGLD is implemented using alias table. The step size for SGLD is
represented using function ε = (a + b · I)−

1
3 as recommended in

[18]. We determine the a and b by comparing the performance on
a grid based on 242 runs, and we pick a = 105.2, b = 10−6 as our
default values. For each document, 20% words are extracted, and
all these words are used as the held-out test set.

All codes are implemented using Python and its supporting li-
braries (numpy, h5py, etc.). The code of SGRLD provided in [17]
is used as reference. The critical parts of the code are compiled into
C using Cython to improve performance. The token throughput of
a serial Gibbs sampler (used in both SGLD and LightLDA) with
alias table is approximately 300K/sec. It is relatively slower than
what is provided in Yuan et al.’s implementation, which is around
1M/sec [25]. This is due to the fact that the code is implemented
using Python and Cyhton instead of C.

4.2 Communication scheduling
We first determine the parameters c1 and c2 in Eq. (10) that con-

trol the frequency of synchronizations, and investigate how this fre-
quency influences the convergence of EPSGLD. The performance
measure is the perplexity on the test set with respect to the num-
ber of documents visited. This helps us to compare how effective
different methods can explore the data information for learning.
In this case, we would expect the serial sampler to have the best
performance, since the approximation in distributed samplers may
lead to a waste of data. Therefore, comparing with the serial sam-
pler can help to investigate the power of distributed methods in
approximating the true posterior, which further indicates whether
the method design is good or not. We also present the curves of
perplexity against time for comparison.

We search for the parameters by running a grid search on c1
and c2, where c1 ranges from 1 to 10 and c2 ranges from 1 to 4.
EPSGLD is distributed to 12 machines with model size K = 103,

1https://dumps.wikimedia.org/
2http://www.lemurproject.org/clueweb12.php/

(a) (b) (c)
Figure 4: (a) Perplexity of EPSGLDs on Wiki with different schedules against the number of documents visited, where “serial”
denotes the curve of SGRLD. The curve with legend “2” means the method that synchronizes when Ī = 500, 1000; (b) perplexity of
EPSGLDs on Wiki with different schedules against time, where “serial” denotes the curve of SGRLD; (c) perplexity of DSGLDs on
Wiki dump with different trajectory lengths against the number of documents visited, where “serial” denotes the curve of SGRLD.
DSGLD is distributed to 12 machines.

V = 105. We report the results on the Wiki dataset in Fig.4(a)
and Fig.4(b), where each legend in the graph represents a certain
parameter configuration (e.g., “n2” means c1 = 1, c2 = 2). To
keep illustration uncluttered, we only present those curves that are
informative for determining c1 and c2.

Schedule and Convergence: We can see that EPSGLD is gen-
erally insensitive to the value of c1, c2, except the “2” case, where
EPSGLD synchronizes only twice at the 500th iteration and the
1000th iteration. The most frequent case “n” converges just as fast
as the least frequent case “n4”, which has 5 synchronizations in
1000 iterations. The only difference comes from the slight increase
of ending perplexity, which means as the frequency of synchro-
nization decreases, EPSGLD may converge to slightly bad sub-
optimums. Additionally, Fig.4(b) demonstrates that as the com-
munication frequency decreases the convergence speeds up signif-
icantly.

Another insight into the role of synchronizations can be gained
by inspecting Fig.4(a): Since the model changes drastically at the
beginning of training, it is important to cover this stage with a suffi-
ciently large number of synchronizations (e.g., with schedule “n2”
or “n3”); otherwise, if the initial timing is missed, as it is the case in
the curve marked by “2”, the EM process may fail to bring it back
to the right track. This fact is sensible since the step size decreases
at O(I−

1
3) speed. Thus, if the Θ fails to approximate the true pos-

terior at the beginning due to the lack of synchronizations, it will
be difficult to correct it afterwards since the step size has annealed.
And this eventually leads to a sub-optimal solution.

Comparison with serial SGRLD: The curve of the serial
SGRLD is also shown in Fig.4(a) in order to set up the upper bound
of the performance for distributed samplers. However, Fig.4(a)
suggests that the best performance is actually bound by EPSGLD
with “n” schedule; EPSGLD with some other schedules also out-
performs the serial sampler in convergence. This phenomenon
seems counter-intuitive, but is in fact sensible: it can be explained
by the effect of variance reduction [2]. As the master node averages
over Tis and generates Θ, the variance of the gradient estimator re-
duces by 1

n
. This means that the noise injected by the SGRLD

sampler reduces by certain amount, and therefore, the gradient is
less stochastic, leading to a faster convergence.

Suggestion on the parameters: The experiment demonstrates
that, with the help of the EM process, EPSGLD requires signifi-
cantly fewer synchronizations to reach satisfactory results. In de-
termining an appropriate schedule for training, one must ensure that
the initial stage is covered with a sufficiently large number of syn-

chronizations. As indicated by Fig. 4(a), it is recommended to take
the “n3” schedule (i.e., c1 = 1, c2 = 3) as the lower bound for the
frequency of synchronizations, in which case the communications
grow only at O(I

1
3) rate, and the loss in accuracy is acceptable.

Comparison with DSGLD: We also test the DSGLD under the
same distributed setting. The perplexity-documents curves for DS-
GLD with different trajectory lengths (iterations delayed before
jumping to another node) are shown in Fig.4(c). As the graph sug-
gests, DSGLD converges slower than serial SGRLD, this is due
to DSGLD is sensitive to the noise of partitioning of the datasets
across nodes; as the trajectory length increases, DSGLD converges
to significantly worse sub-optimums due to the lack of correction
in sub-posterior.

4.3 Benchmark for EPSGLD
In this section, we test the performance of EPSGLD in handling

large-scale models in two settings: (1) we compare the performance
of two stochastic distributed methods—EPSGLD and DSGLD, to-
gether with the serial SGRLD sampler; and (2) we compare with
LightLDA to demonstrate the scalability of EPSGLD.

4.3.1 Comparison with DSGLD and SGRLD
We distribute EPSGLD and DSGLD to 24 machines with the

model size K = 105, V = 105. The communication schedule of
EPSGLD is “2n2”, and the trajectory length of DSGLD is 10. The
results are shown in Fig. 5. In Fig. 5(a), with more workers and a
larger model size, EPSGLD still maintains an advantage in approx-
imating true posterior samples, leading to a faster convergence than
the serial SGRLD. In general, EPSGLD reaches the same perplex-
ity as DSGLD does using only a quarter of the documents. When
comparing the performance against time, as shown in Fig. 5(b), we
note that the overhead in communication has seriously bounded the
performance of DSGLD, while EPSGLD maintains an obvious ad-
vantage against the other two stochastic samplers.

4.3.2 Comparison with LightLDA
Finally, we examine how EPSGLD performs in comparison with

LightLDA, a state-of-the-art distributed batch method, on both
Wiki and Clueweb12 datasets. The distributed settings are the same
as in the previous test. In LightLDA, the nkw is split into 24 slices,
and the distributed method is implemented using MPI so that it
maintains all the important features. But the parameter server and
the hybrid data structure are not implemented, since they are gen-
erally applicable to any method. The collapsed Gibbs sampler with

(a) (b)

Figure 5: (a) Perplexity of three stochastic samplers against the number of documents visited with model size K = 105, V = 105;
(b) Perplexity of three stochastic samplers against time with model size K = 105, V = 105.

(a) (b)

Figure 6: (a) Perplexity of EPSGLD and LightLDA against the number of documents visited with model size K = 105, V = 105; (b)
Perplexity of EPSGLD and LightLDA samplers against time with model size K = 105, V = 105.

O(1) complexity is shared by both EPSGLD and LightLDA. The
results are shown in Fig. 6. Fig. 6(a) suggests that EPSGLD can
reach the same perplexity by visiting much fewer documents than
LightLDA on both datasets. Fig. 6(b) demonstrates that EPSGLD
has a faster speed to reach a good model than LightLDA, especially
on the larger Clueweb12 dataset.

However, we should be aware that there are still some poten-
tial drawbacks in EPSGLD compared with LightLDA. First, the
two figures suggest that LightLDA has a better ending perplexity.
This is due to two disadvantages of SGLD, as stated in [23]: (1)
SGLD does not require an MH step to correct the samples (since
it is performed based on the whole dataset), and this leads to a
certain amount of discretization error; and (2) as the step size de-
creases, the mixing rate slows down, and thus leading to a strong
correlation in samples. Such phenomenon is also observed in the
experiments of [17], where the Gibbs sampler has a better ending
perplexity than SGRLD. But thanks to the variance reduction, this
disadvantage can be alleviated, and EPSGLD even reaches a com-
parable optimum with LightLDA. Another drawback is the diffi-
culty for EPSGLD to scale up to the same magnitude as LightLDA
(V = 106,K = 106). The main issue is due to the element of Ti
is float instead of integer, so it can be hard to convert the Ti into a
sparse matrix in order to hold it in memory.

But as we mentioned before, EPSGLD can be seen as an example
of data-parallelism, and LightLDA is the one of model-parallelism.
These two paradigms are complementary. For example, [20] pre-
sented a two layer LDA system, where layer 1 is model-parallelism
and layer 2 consists of multiple local model-parallelism clusters
performing updates on a globally distributed model [28]. In that

case, we can jointly combine the power of two methods. We leave
a systematical investigation in future work.

5. CONCLUSIONS
We present EPSGLD, a novel distributed stochastic gradient

sampling method for large-scale LDA inference, which scales up
the inference by jointly exploring statistical redundancy and dis-
tributed computing. Different from previous methods such as DS-
GLD, EPSGLD is built upon an embarrassingly parallel method,
so that it can produce asymptotically exact samples from the true
posterior with significantly less communication overhead. We also
present communication scheduling and useful memory strategies
to reduce the I/O and memory usage. Finally, a set of carefully de-
signed tests are conducted, which demonstrate the effectiveness of
our methods. Our results on large-scale LDA models demonstrate
that EPSGLD significantly outperforms DSGLD and has a faster
speed to reach a good model compared with LightLDA.

Acknowledgments
This work is supported by the National Basic Research Program
(973 Program) of China (No. 2013CB329403), National NSF of
China (Nos. 61322308, 61332007), the Youngth Top-notch Talent
Support Program, and the Special Program for Applied Research
on Super Computation of the NSFC-Guangdong Joint Fund (the
second phase).

6. REFERENCES
[1] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and

A. J. Smola. Scalable inference in latent variable models. In
Proceedings of the fifth ACM International Conference on
Web Search and Data Mining, pages 123–132, 2012.

[2] S. Ahn, B. Shahbaba, and M. Welling. Distributed stochastic
gradient mcmc. In Proceedings of the 31st International
Conference on Machine Learning, pages 1044–1052, 2014.

[3] J. Chang and D. M. Blei. Relational topic models for
document networks. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, pages
81–88, 2009.

[4] J. Chen, K. Li, J. Zhu, and W. Chen. WarpLDA: a Cache
Efficient O(1) Algorithm for Latent Dirichlet Allocation.
Proceedings of the 41st International Conference on Very
Large Data Bases, pages 744–755, 2016.

[5] N. Chen, J. Zhu, F. Xia, and B. Zhang. Discriminative
relational topic models. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 37(5):973–986, 2015.

[6] T. Griffiths. Gibbs sampling in the generative model of latent
dirichlet allocation. 2002.

[7] G. Heinrich. Parameter estimation for text analysis.
University of Leipzig, Tech. Rep, 2008.

[8] M. Hoffman, F. R. Bach, and D. M. Blei. Online learning for
latent dirichlet allocation. In Proceedings of Advances in
Neural Information Processing Systems, pages 856–864,
2010.

[9] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley.
Stochastic variational inference. The Journal of Machine
Learning Research, 14(1):1303–1347, 2013.

[10] R. Krestel, P. Fankhauser, and W. Nejdl. Latent dirichlet
allocation for tag recommendation. In Proceedings of the
third ACM Conference on Recommender Systems, pages
61–68, 2009.

[11] A. Q. Li, A. Ahmed, S. Ravi, and A. J. Smola. Reducing the
sampling complexity of topic models. In Proceedings of the
20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 891–900, 2014.

[12] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server. In
Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation, pages 583–598, 2014.

[13] Z. Liu, Y. Zhang, E. Y. Chang, and M. Sun. Plda+: Parallel
latent dirichlet allocation with data placement and pipeline
processing. ACM Transactions on Intelligent Systems and
Technology, 2(3):26, 2011.

[14] S. Minsker, S. Srivastava, L. Lin, and D. B. Dunson. Robust
and scalable bayes via a median of subset posterior
measures. arXiv preprint arXiv:1403.2660, 2014.

[15] W. Neiswanger, C. Wang, and E. Xing. Asymptotically
exact, embarrassingly parallel mcmc. arXiv preprint
arXiv:1311.4780, 2013.

[16] D. Newman, A. Asuncion, P. Smyth, and M. Welling.
Distributed algorithms for topic models. The Journal of
Machine Learning Research, 10(1):1801–1828, 2009.

[17] S. Patterson and Y. W. Teh. Stochastic gradient riemannian
langevin dynamics on the probability simplex. In
Proceedings of Advances in Neural Information Processing
Systems, pages 3102–3110, 2013.

[18] Y. W. Teh, A. Thiéry, and S. Vollmer. Consistency and
fluctuations for stochastic gradient langevin dynamics. arXiv
preprint arXiv:1409.0578, 2014.

[19] X. Wang and D. B. Dunson. Parallel mcmc via weierstrass
sampler. arXiv preprint arXiv:1312.4605, 2013.

[20] Y. Wang, X. Zhao, Z. Sun, H. Yan, L. Wang, Z. Jin, L. Wang,
Y. Gao, J. Zeng, Q. Yang, et al. Towards topic modeling for
big data. ACM Transactions on Intelligent Systems and
Technology, 2014.

[21] X. Wei and W. B. Croft. Lda-based document models for
ad-hoc retrieval. In Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 178–185, 2006.

[22] K. Weierstrass. Über die analytische darstellbarkeit
sogenannter willkürlicher functionen einer reellen
veränderlichen. Sitzungsberichte der Königlich Preußischen
Akademie der Wissenschaften zu Berlin, 2:633–639, 1885.

[23] M. Welling and Y. W. Teh. Bayesian learning via stochastic
gradient langevin dynamics. In Proceedings of the 28th
International Conference on Machine Learning, pages
681–688, 2011.

[24] L. Yao, D. Mimno, and A. McCallum. Efficient methods for
topic model inference on streaming document collections. In
Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 937–946, 2009.

[25] J. Yuan, F. Gao, Q. Ho, W. Dai, J. Wei, X. Zheng, E. P. Xing,
T.-Y. Liu, and W.-Y. Ma. Lightlda: Big topic models on
modest computer clusters. In Proceedings of the 24th
International Conference on World Wide Web, pages
1351–1361, 2015.

[26] X. Zheng, J. K. Kim, Q. Ho, and E. P. Xing. Model-parallel
inference for big topic models. arXiv preprint
arXiv:1411.2305, 2014.

[27] J. Zhu, A. Ahmed, and E. P. Xing. Medlda: maximum
margin supervised topic models. The Journal of Machine
Learning Research, 13(1):2237–2278, 2012.

[28] J. Zhu, J. Chen, and W. Hu. Big learning with bayesian
methods. arXiv preprint arXiv:1411.6370, 2014.

