
Homework 1 for Statistical Machine Learning

Instructor: Prof. Jun Zhu

March 11, 2016

You will receive bonus points if you finish the (Bonus) problems.

1 Mathematics Basics

1.1 Optimization

Use the Lagrange multiplier method to solve the following problem:

min
x1,x2

x21 + x22 − 1

s.t. x1 + x2 − 1 = 0

2x1 − x2 ≥ 0

1.2 Conjugate Prior

Suppose p ∼ Beta(p|α, β) and x|p ∼ Bernoulli(x|p). Show that p|x ∼ Beta(p|α+
x, β + 1− x), which implies that the Beta distribution can serve as a conjugate
prior to the Bernoulli distribution.

Hint: Beta(p|α, β) = B(α, β)−1pα−1(1− p)β−1, where B(·, ·) is Euler’s Beta
function, and Bernoulli(x|p) = px(1− p)1−x.

1.3 Parameter Estimation

There are N i.i.d. samples x1, . . . ,xN from a K-dim multivariate Gaussian
distribution N (x|µ,Σ) = (2π)−

K
2 |Σ|− 1

2 exp(− 1
2 (x− µ)>Σ−1(x− µ)).

1. What is the likelihood of µ and Σ given the observations x1, . . . , xN?
(Hint: p(x1, . . . , xN |µ,Σ)).

2. What is the maximum likelihood estimation (MLE) of µ? Is it unbiased?
(Hint: investigate if Ef(x1, . . . ,xN ) = µ, if f(·) is your estimator.)

3. Assume the variance Σ is already known, put a multivariate Gaussian prior
N (µ|µ0, λ

−1Σ) on µ, what is the maximum a postiori (MAP) estimation
of µ? What is the posterior distribution of µ?
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4. (Bonus) What is the MLE of Σ? Is it unbiased? (Hint: you may refer
to Appendix C of PRML, or in more detail, Tom Minka’s “Old and New
Matrix Algebra Useful for Statistics” for techniques of deriving gradients
for matrices. Two useful differentials are d log |X| = tr(X−1dX) and
dX−1 = X−1(dX)X−1.

2 Mixture of Multinomials

2.1 MLE for multinomial

Derive the maximum-likelihood estimation for the parameter µ = (µi)
d
i=1 of a

multinomial distribution:

P (x|µ) =
n!∏
i xi

∏
i

µxi
i , i = 1, · · · , d (1)

where xi ∈ N,
∑
i xi = n and 0 < µi < 1,

∑
i µi = 1.

2.2 EM for mixture of multinomials

Consider the following mixture-of-multinomials model to analyze a corpus of
documents that are represented in the bag-of-words model.

Specifically, assume we have a corpus of D documents and a vocabulary of
W words from which every word in the corpus is taken. We are interested in
counting how many times each word appears in each document, regardless of
their positions and orderings. We denote by T ∈ ND×W the word occurrence
matrix where the wth word appears Tdw times in the dth document.

According to the mixture-of-multinomials model, each document is gener-
ated i.i.d. as follows. We first choose for each document d a latent “topic” cd
(analogous to choosing for each data point a component zn in the mixture-of-
Gaussians) with

P (cd = k) = πk, k = 1, 2, · · · ,K; (2)

And then given this “topic” µk = (µ1k, . . . , µWk) which now simply represents
a categorical distribution over the entire vocabulary, we generate the word bag
of the document from the corresponding multinomial distribution1

P (d|cd = k) =
nd!∏
w Tdw!

∏
w

µTdw

wk , where nd =
∑
w

Tdw. (3)

Hence in summary

P (d) =

K∑
k=1

P (d|cd = k)P (cd = k) =
nd!∏
w Tdw!

K∑
k=1

πk
∏
w

µTdw

wk . (4)

1Make sure you understand the difference between a categorical distribution and a multi-
nomial distribution. You may think about a Bernoulli distribution and a binomial distribution
for reference.
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Given the corpus T , please design and implement an EM algorithm to learn
the parameters {π,µ} of this mixture model and test it on the NIPS dataset
(http://ml.cs.tsinghua.edu.cn/~jianfei/static/nips.tar.gz).

Set the number of topics K to be 5, 10, 20, 30 respectively and show the
most-frequent words in each topic for each case. Observe the result and try to
find the “best” K value for this dataset and explain why.

(Bonus) Compare the log-likelihood (Eq. 4) of different K.
(Bonus) Try different initialization strategies, and report the difference of

results.

3 PCA

3.1 Minimum Error Formulation

Complete the proof on the lecture slide which shows that PCA can be equiv-
alently formulated as minimizing the mean-squared-error of a low-dimensional
approximation from a subset of orthonormal basis.

3.2 MNIST

Implement the PCA algorithm and test it on the MNIST dataset2. Plot the prin-
ciple components, and the reconstructed image using 1, 5, 20, 100 components.
Rerun your PCA implementation without centering the dataset (substracting
the sample mean) and report the difference between the results.

2http://yann.lecun.com/exdb/mnist/, or http://www.cs.nyu.edu/~roweis/data.html

for a MATLAB version.
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