[70240413 Statistical Machine Learning, Spring, 2016]

# Unsupervised Learning Clustering

#### Jun Zhu

dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent Technology & Systems Tsinghua University

March 1, 2016

# **Unsupervised Learning**

Task: learn an explanatory function
Aka "Learning without a teacher"

**Feature** space  $\mathcal{X}$ 



Word distribution (probability of a word)

 $f(x), x \in \mathcal{X}$ 

No training/test split

# **Unsupervised Learning – density estimation**



**Feature** space  $\mathcal{X}$  geographical information of a location

Density function  $f(x), \ x \in \mathcal{X}$ 

# **Unsupervised Learning – clustering**



http://search.carrot2.org/stable/search

Feature space  $\mathcal{X}$ Attributes (e.g., pixels & text) of images

Cluster assignment function  $f(x), \; x \in \mathcal{X}$ 

# **Unsupervised Learning – dimensionality reduction**

Images have thousands or millions of pixels

Can we give each image a coordinate, such that similar images are near each other ?



**Feature** space  $\mathcal{X}$  pixels of images

Coordinate function in 2D space $f(x), \; x \in \mathcal{X}$ 

# Clustering (K-Means, Gaussian Mixtures)

# What is clustering?

- Clustering: the process of grouping a set of objects into classes of similar objects
  - High intra-class similarity
  - □ Low inter-class similarity
- A common and important task that finds many applications in science, engineering, information science, etc
  - Group genes that perform the same function
  - Group individuals that has similar political view
  - Categorize documents of similar topics
  - Identify similar objects from pictures
  - • •

### The clustering problem

- **Input**: training data  $D = {\mathbf{x}_1, ..., \mathbf{x}_N}$ , where  $\mathbf{x} \in \mathbb{R}^d$ , integer *K* clusters
- **Output**: a set of clusters  $C_1, \ldots, C_K$

#### Machine learning

From Wikipedia, the free encyclopedia

For the journal, see Machine Learning (journal). See also: Pattern recognition

Machine learning is a scientific discipline that explores the construction and study of algorithms that can learn from data.<sup>[1]</sup> Such algorithms operate by building a model from example inputs and using that to make predictions or decisions, <sup>[2]:2</sup> rather than following strictly static program instructions. Machine learning is closely related to and often overlaps with computational statistics; a discipline which also specializes in prediction-making.



#### Word Vector Space

Vocabulary

### The clustering problem

- **Input**: training data  $D = {\mathbf{x}_1, ..., \mathbf{x}_N}$ , where  $\mathbf{x} \in \mathbb{R}^d$ , integer *K* clusters
- **Output**: a set of clusters  $C_1, \ldots, C_K$



# **Issues for clustering**

- What is a natural grouping among these objects?
  Definition of "groupness"
- What makes objects "related"?
  - Definition of "similarity/distance"
- Representation for objects
  - Vector space? Normalization?
- How many clusters?
  - □ Fixed a priori?
  - Completely data driven?
- Clustering algorithms
  - Partitional algorithms
  - Hierarchical algorithms
- Formal foundation and convergence

# What is a natural grouping among objects?





Females

Males



Simpson's Family

School Employees

### What is similarity?



The real meaning of similarity is a philosophical question.
 Depends on representation and algorithm. For many rep./alg., easier to think in terms of distance between vectors

### **Desirable distance measure properties**

- d(A,B) = d(B,A) Symmetry
  - Otherwise you could claim "Alex looks like Bob, but Bob looks nothing like Alex"
- d(A,A) = 0 Constancy of Self-Similarity
   Otherwise you could claim "Alex looks more like Bob, than Bob does"

# d(A,B) = 0 iff A=B Positivity Separation

• Otherwise there are objects that are different, but you can't tell apart

### ♦ $d(A,B) \le d(A,C)+d(B,C)$ Triangular Inequality

 Otherwise you could claim "Alex is very like Bob, and Alex is very like Carl, but Bob is very unlike Carl"

### Minkowski Distance

$$dist(\mathbf{x}, \mathbf{y}) = \sqrt[r]{\sum_{i=1}^{d} |x_i - y_i|^r}$$

Common Minkowski distances

□ Euclidean distance (*r*=2):

$$dist(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{k=1}^{d} (x_k - y_k)^2} = \|\mathbf{x} - \mathbf{y}\|_2$$

• Manhattan distance (r=1):

$$dist(\mathbf{x}, \mathbf{y}) = \sum_{k=1}^{d} |x_k - y_k| = \|\mathbf{x} - \mathbf{y}\|_1$$

• "Sup" distance  $(r = \infty)$ :

$$dist(\mathbf{x}, \mathbf{y}) = \sup_{k=1}^{d} |x_k - y_k| = \|\mathbf{x} - \mathbf{y}\|_{\infty}$$

### **Hamming distance**

 Manhattan distance is called Hamming distance when all features are binary

• E.g., gene expression levels under 17 conditions (1-high; 0-low)

|       | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|-------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
| GeneA | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0  | 0  | 1  | 1  | 1  | 0  | 0  | 1  |
| GeneB | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1  | 1  | 1  | 1  | 1  | 0  | 1  | 1  |

• Hamming distance:  $\#(0 \ 1) + \#(1 \ 0) = 4 + 1 = 5$ 

### **Correlation coefficient**

Pearson correlation coefficient

$$s(\mathbf{x}, \mathbf{y}) = \frac{(\mathbf{x} - \bar{x}\mathbf{1})^{\top}(\mathbf{y} - \bar{y}\mathbf{1})}{\|\mathbf{x} - \bar{x}\mathbf{1}\|_2\|\mathbf{y} - \bar{y}\mathbf{1}\|_2}$$

where 
$$\bar{x} = \frac{1}{d} \sum_{i} x_i, \ \bar{y} = \frac{1}{d} \sum_{i} y_i$$

• Cosine Similarity:

$$\cos(\mathbf{x}, \mathbf{y}) = rac{\mathbf{x}^{ op} \mathbf{y}}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2}$$

### **Edit Distance**

To measure the similarity between two objects, transform one into the other, and measure how much effort it took. The measure of effort becomes the distance measure



#### The distance between Patty and Selma.

Change dress color, 1 point Change earring shape, 1 point Change hair part, 1 point

D(Patty,Selma) = 3

#### The distance between Marge and Selma

Change dress color, 1 point Add earrings, 1 point Decrease height, 1 point Take up smoking, 1 point Loss weight, 1 point

D(Marge, Selma) = 5

# **Clustering algorithms**

- Partitional algorithms
  - Usually start with a random (partial) partitioning
  - Refine it iteratively
    - K-means
    - Mixture-Model based clustering
- Hierarchical algorithms
  Bottom-up, agglomerative
  Top-down, divisive







## **K-means Algorithm**

 $\bullet$  1. Initialize the centroids  $\mu_1, \ldots, \mu_K$ 



### **K-means Algorithm**

 $\diamond$  2. for each k,  $C_k = \{i, \text{ s.t. } \mathbf{x}_i \text{ is closest to } \boldsymbol{\mu}_k\}$ 





### **K-means Algorithm**

Repeat until no further change in cluster assignment



### **Summary of K-means Algorithm**

 $\bullet$  1. Initialize centroids  $\mu_1, \ldots, \mu_K$ 

2. Repeat until no change of cluster assignment
(1) for each *k*:

$$C_k = \{i, \text{ s.t. } \mathbf{x}_i \text{ is closest to } \boldsymbol{\mu}_k\}$$

**•** (2) for each *k*:

$$\boldsymbol{\mu}_k \leftarrow \frac{1}{|C_k|} \sum_{j \in C_k} \mathbf{x}_j$$

**Note**: each iteration requires O(NK) operations

# **K-means Questions**

- What is it trying to optimize?
- Are we sure it will terminate?
- ♦ Are we sure it will find an optimal clustering?
- How should we start it?
- How could we automatically choose the number of centers?

### **Theory: K-Means as an Opt. Problem**

The opt. problem

{

$$\min_{\substack{C_k\}_{k=1}^K}} \qquad \sum_{k=1}^K \sum_{\mathbf{x} \in C_k} \|\mathbf{x} - \boldsymbol{\mu}_k\|_2^2$$
s.t : 
$$\boldsymbol{\mu}_k = \frac{1}{|C_k|} \sum_{\mathbf{x} \in C_k} \mathbf{x}$$

Theorem: K-means iteratively leads to a non-increasing of the objective, until local minimum is achieved

- Proof ideas:
  - Each operation leads to non-increasing of the objective
  - The objective is bounded and the number of clusters is finite

### K-means as gradient descent

Find K prototypes to minimize the *quantization error* (i.e., the average distance between a data to its closest prototype):

$$\min_{\{oldsymbol{\mu}_c\}_{c=1}^K} \quad \sum_{i=1}^N \min_k \|\mathbf{x}_i - oldsymbol{\mu}_k\|_2^2$$

- First-order gradient descent applies
- Newton method leads to the same update rule:

$$\boldsymbol{\mu}_k = \frac{1}{|C_k|} \sum_{\mathbf{x} \in C_k} \mathbf{x}$$

See [Bottou & Bengio, NIPS'95] for more details

### Trying to find a good optimum

- ♦ Idea 1: Be careful about where you start
- Idea 2: Do many runs of k-means, each from a different random start configuration
- Many other ideas floating around.

Note: K-means is often used to initialize other clustering methods

### Mixture of Gaussians and EM algorithm

### **Basics of Probability & MLE**



**Basics of Probabilities** 

# Independence

Independent random variables:

P(X,Y) = P(X)P(Y)

P(X|Y) = P(X)
Y and X don't contain information about each other

ObservingY doesn't help predicting X Observing X doesn't help predictingY

Examples:

- Independent:
  - winning on roulette this week and next week
- Dependent:
  - Russian roulette



# **Dependent / Independent?**



# **Conditional Independence**

Conditionally independent:

P(X,Y|Z) = P(X|Z)P(Y|Z)

knowing Z makes X and Y independent

### Examples:

**London taxi drivers:** A survey has pointed out a positive and significant correlation between the number of accidents and wearing coats. They concluded that coats could hinder movements of drivers and be the cause of accidents. A new law was prepared to prohibit drivers from wearing coats when driving.

Finally another study pointed out that people wear coats when it rains...





# **Conditional Independence**

Conditionally independent:

P(X,Y|Z) = P(X|Z)P(Y|Z)

knowing Z makes X and Y independent
 Equivalent to:



 $\forall (x, y, z): P(X = x | Y = y, Z = z) = P(X = x | Z = z)$ • E.g.:

P(Thunder | Rain, Lighting) = P(Thunder | Lighting)



### Maximum Likelihood Estimation (MLE)

# Flipping a Coin

- What's the probability that a coin will fall with a head up (if flipped)?
- Let us flip it a few times to estimate the probability



The estimated probability is: 3/5 "frequency of heads"

# **Questions:**



The estimated probability is: 3/5 "frequency of heads"

- Why frequency of heads?
- How good is this estimation?
- Why is this a machine learning problem?

# **Question** (1)

Why frequency of heads?

 Frequency of heads is exactly the Maximum Likelihood Estimator for this problem

MLE has nice properties

(interpretation, statistical guarantees, simple)

#### **MLE for Bernoulli Distribution**



 $P(Head) = \theta$   $P(Tail) = 1 - \theta$ 

- Flips are i.i.d:
  - Independent events that are identically distributed according to Bernoulli distribution
- $\blacklozenge$  MLE: choose  $\theta$  that maximizes the probability of observed data

# Maximum Likelihood Estimation (MLE) MLE: choose θ that maximizes the probability of observed

data

$$\begin{split} \hat{\theta}_{MLE} &= \arg \max_{\theta} P(D|\theta) \\ &= \arg \max_{\theta} \prod_{i=1}^{n} P(X_i|\theta) \quad \text{Independent draws} \\ &= \arg \max_{\theta} \prod_{i:X_i=H} \theta \prod_{i:X_i=T} (1-\theta) \text{ Identically distributed} \\ &= \arg \max_{\theta} \theta^{N_H} (1-\theta)^{N_T} \end{split}$$

# **Maximum Likelihood Estimation (MLE)**

# $\blacklozenge$ MLE: choose $\theta$ that maximizes the probability of observed data

$$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D|\theta)$$
$$= \arg \max_{\theta} \theta^{N_H} (1-\theta)^{N_T}$$



$$\hat{\theta}_{MLE} = \frac{N_H}{N_H + N_T}$$

• Exactly the **"Frequency of heads"** 

# **Question** (2)

How good is the MLE estimation?

$$\hat{\theta}_{MLE} = \frac{N_H}{N_H + N_T}$$

• Is it biased?

#### How many flips do I need?

♦ I flipped the coins 5 times: 3 heads, 2 tails

$$\hat{ heta}_{MLE} = rac{3}{5}$$

What if I flipped 30 heads and 20 tails?

$$\hat{\theta}_{MLE} = \frac{30}{50}$$

Which estimator should we trust more?

#### **A Simple Bound**

 $\clubsuit$  Let  $\theta^{\star}$  be the true parameter. For *n* data points, and

$$\hat{\theta}_{MLE} = \frac{N_H}{N_H + N_T}$$

**\bullet** Then, for any  $\varepsilon > 0$ , we have the Hoeffding's Inequality:

$$P(|\hat{\theta} - \theta^{\star}| \ge \epsilon) \le 2e^{-2n\epsilon^2}$$

# **Probably Approximately Correct (PAC) Learning**

♦ I want to know the coin parameter θ, within ε=0.1 error with probability at least 1-δ (e.g., 0.95)

How many flips do I need?

$$P(|\hat{\theta} - \theta^{\star}| \ge \epsilon) \le 2e^{-2n\epsilon^2} \le \delta$$

Sample complexity:

$$n \ge \frac{\ln(2/\delta)}{2\epsilon^2}$$

# **Question (3)**

#### Why is this a machine learning problem?

- Improve their performance
- At some task
- With experience

(accuracy of the estimated prob.)
(estimating the probability of heads)
(the more coin flips the better we are)

How about continuous features?

#### **Gaussian Distributions**

Univariate Gaussian distribution

$$p(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$



Carl F. Gauss (1777 – 1855)

• Given parameters, we can draw samples and plot distributions



#### **Maximum Likelihood Estimation**

 $\mathbf{O}$  Given a data set  $\mathcal{D} = \{x_1, \ldots, x_N\}$ , the likelihood is

$$p(\mathcal{D}|\mu,\sigma^2) = \prod_{n=1}^N p(x_n|\mu,\sigma^2)$$

MLE estimates the parameters as



$$(\mu_{\mathrm{ML}}, \sigma_{\mathrm{ML}}^2) = \operatorname*{argmax}_{\mu, \sigma^2} \log p(\mathcal{D}|\mu, \sigma^2)$$

 $\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} x_n \qquad \text{sample mean}$   $\sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML})^2 \quad \text{sample variance}$ 

Note: MLE for the variance of a Gaussian is biased

#### **Gaussian Distributions**

d-dimensional multivariate Gaussian

$$p(\mathbf{x}|\mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\mu)\Sigma^{-1}(\mathbf{x}-\mu)\right) \text{ Carl F. Gauss (1777-1855)}$$

• Given parameters, we can draw samples and plot distributions



#### **Maximum Likelihood Estimation**

 $\mathbf{O}$  Given a data set  $\mathcal{D} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$ , the likelihood is

$$p(\mathcal{D}|\mu, \Sigma) = \prod_{n=1}^{N} p(\mathbf{x}_n | \mu, \Sigma)$$

MLE estimates the parameters as

$$(\mu_{\mathrm{ML}}, \Sigma_{\mathrm{ML}}) = \operatorname*{argmax}_{\mu, \Sigma} \log p(\mathcal{D}|\mu, \Sigma)$$

$$\mu_{\rm ML} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n \qquad \text{sample mean}$$
$$\Sigma_{\rm ML}^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \mu_{\rm ML}) (x_n - \mu_{\rm ML})^{\top} \qquad \text{sample covariance}$$

#### **Other Nice Analytic Properties**

Marginal is Gaussian
Conditional is Gaussian



## **Limitations of Single Gaussians**

Single Gaussian is unimodal



♦ ... can't fit well multimodal data, which is more realistic!



#### **Mixture of Gaussians**

A simple family of multi-modal distributions

treat unimodal Gaussians as basis (or component) distributions
superpose multiple Gaussians via linear combination

$$p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x|\mu_k, \sigma_k^2)$$



#### **Mixture of Gaussians**

A simple family of multi-modal distributions

treat unimodal Gaussians as basis (or component) distributions
superpose multiple Gaussians via linear combination

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k)$$

What conditions should the mixing coefficients satisfy?



#### **MLE for Mixture of Gaussians**

Log-likelihood

$$\log p(\mathcal{D}|\pi, \mu, \Sigma) = \sum_{n=1}^{N} \log \left( \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\mu_k, \Sigma_k) \right)$$

• this is complicated  $\dots \bigotimes$ 

• ... but, we know the MLE for single Gaussians are easy

A heuristic procedure (can we iterate?)
allocate data into different components
estimate each component Gaussian analytically

#### **Optimal Conditions**

Some math

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log p(\mathcal{D} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \log \left( \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}_{k}} = 0 \qquad \Longrightarrow \qquad \sum_{n=1}^{N} \frac{\pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})}{\sum_{j} \pi_{j} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j})} \boldsymbol{\Sigma}_{k}^{-1}(\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) = 0$$
$$\gamma(z_{nk})$$

$$\boldsymbol{\mu}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n} \qquad N_{k} = \sum_{n=1}^{N} \gamma(z_{nk})$$

A weighted sample mean!

#### **Optimal Conditions**

Some math

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log p(\mathcal{D} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \log \left( \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$$

$$\frac{\partial \mathcal{L}}{\partial \Sigma_k} = 0 \qquad \Longrightarrow \qquad \Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^\top$$

A weighted sample variance!

#### **Optimal Conditions**

Some math

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log p(\mathcal{D} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \sum_{n=1}^{N} \log \left( \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$$

Note: constraints exist for mixing coefficients!

$$L = \mathcal{L}(\boldsymbol{\mu}, \Sigma) + \lambda \Big(\sum_{k=1}^{K} \pi_k - 1\Big)$$

The ratio of data assigned to component k!

#### **Optimal Conditions – summary**

The set of couple conditions

$$\boldsymbol{\mu}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n}$$
$$\boldsymbol{\Sigma}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{\top}$$
$$\boldsymbol{\pi}_{k} = \frac{N_{k}}{N}$$

OR

♦ The key factor to get them coupled

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

• If we know  $\gamma(z_{nk})$ , each component Gaussian is easy to estimate!

#### **The EM Algorithm**

**E-step**: estimate the responsibilities

$$\gamma(z_{nk}) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

**M-step**: re-estimate the parameters

$$\boldsymbol{\mu}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) \mathbf{x}_{n}$$
$$\boldsymbol{\Sigma}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} \gamma(z_{nk}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{k})^{\top}$$
$$\boldsymbol{\pi}_{k} = \frac{N_{k}}{N}$$



#### Initialization plays a key role to succeed!



The data and a mixture of two isotropic Gaussians



♦ Initial E-step



Initial M-step



♦ The 2<sup>nd</sup> M-step



♦ The 5<sup>th</sup> M-step



♦ The 20<sup>th</sup> M-step

Let's take the latent variable view of mixture of Gaussians

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)$$

Indicator (selecting) variable

$$\mathbf{z} = \left(\begin{array}{c} 0\\1\\0\end{array}\right)$$







Note: the idea of data augmentation is influential in statistics and machine learning!

Re-visit the log-likelihood

$$\log p(\mathcal{D}|\Theta) = \sum_{n=1}^{N} \log \left(\sum_{\mathbf{z}_n} p(\mathbf{x}_n, \mathbf{z}_n)\right)$$



Re-visit the log-likelihood

$$\log p(\mathcal{D}|\Theta) = \sum_{n=1}^{N} \log \left(\sum_{\mathbf{z}_n} p(\mathbf{x}_n, \mathbf{z}_n)\right)$$



Re-visit the log-likelihood

$$\log p(\mathcal{D}|\Theta) = \sum_{n=1}^{N} \log \left(\sum_{\mathbf{z}_n} p(\mathbf{x}_n, \mathbf{z}_n)\right)$$



What we have is a lower bound

$$\log p(\mathcal{D}|\Theta) \ge \sum_{n=1}^{N} \sum_{\mathbf{z}_n} q(\mathbf{z}_n) \log \left(\frac{p(\mathbf{x}_n, \mathbf{z}_n)}{q(\mathbf{z}_n)}\right) \triangleq \mathcal{L}(\Theta, q(\mathbf{Z}))$$

What's the GAP?

$$\mathcal{L}(\Theta, q(\mathbf{Z})) = \sum_{n=1}^{N} \left\{ \sum_{\mathbf{z}_{n}} q(\mathbf{z}_{n}) \log p(\mathbf{x}_{n}, \mathbf{z}_{n}) - \sum_{\mathbf{z}_{n}} q(\mathbf{z}_{n}) \log q(\mathbf{z}_{n}) \right\}$$
$$= \sum_{n=1}^{N} \left\{ \sum_{\mathbf{z}_{n}} q(\mathbf{z}_{n}) \log \left( \frac{p(\mathbf{x}_{n}, \mathbf{z}_{n})}{p(\mathbf{x}_{n})} \right) + \log p(\mathbf{x}_{n}) - \sum_{\mathbf{z}_{n}} q(\mathbf{z}_{n}) \log q(\mathbf{z}_{n}) \right\}$$
$$= \log p(\mathcal{D}|\Theta) + \sum_{n=1}^{N} \left\{ \sum_{\mathbf{z}_{n}} q(\mathbf{z}_{n}) \log p(\mathbf{z}_{n}|\mathbf{x}_{n}) - \sum_{\mathbf{z}_{n}} q(\mathbf{z}_{n}) \log q(\mathbf{z}_{n}) \right\}$$
$$= \log p(\mathcal{D}|\Theta) - \mathrm{KL}(q(\mathbf{Z})) \| p(\mathbf{Z}|\mathcal{D})$$

#### Theory

What we have is a lower bound

$$\log p(\mathcal{D}|\Theta) \ge \sum_{n=1}^{N} \sum_{\mathbf{z}_n} q(\mathbf{z}_n) \log \left(\frac{p(\mathbf{x}_n, \mathbf{z}_n)}{q(\mathbf{z}_n)}\right) \triangleq \mathcal{L}(\Theta, q(\mathbf{Z}))$$

What's the GAP?

$$\log p(\mathcal{D}|\Theta) - \mathcal{L}(\Theta, q(\mathbf{Z})) = \mathrm{KL}(q(\mathbf{Z}) || p(\mathbf{Z}|\mathcal{D}))$$



### **EM-algorithm**

Maximize the lower bound or minimize the gap:

$$\log p(\mathcal{D}|\Theta) \ge \sum_{n=1}^{N} \sum_{\mathbf{z}_n} q(\mathbf{z}_n) \log \left(\frac{p(\mathbf{x}_n, \mathbf{z}_n)}{q(\mathbf{z}_n)}\right) \triangleq \mathcal{L}(\Theta, q(\mathbf{Z}))$$

• Maximize over q(Z) => E-step

• Maximize over  $\Theta => M$ -step  $KL(q(\mathbf{Z})||p(\mathbf{Z}|\mathcal{D}))$   $\log p(\mathcal{D}|\Theta)$   $\mathcal{L}(\Theta, q(\mathbf{Z}))$ 

# **Convergence of EM**

 Local optimum is guaranteed under mild conditions (Depster et al., 1977)

alternating minimization for a bi-convex problem

 $\mathcal{L}(\Theta_{t+1}) \geq \mathcal{L}(\Theta_t)$ 

Some special cases with global optimum (Wu, 1983)

First-order gradient descent for log-likelihood
 for comparison with other gradient ascent methods, see (Xu & Jordan, 1995)

#### **Relation between GMM and K-Means**

- Small variance asymptotics:
  - The EM algorithm for GMM reduces to K-Means under certain conditions:

# Start with "every point is its own cluster"



- Start with "every point is its own cluster"
- Find "most similar" pairs of clusters



- Start with "every point is its own cluster"
- Find "most similar" pairs of clusters
- Merge it into a parent cluster



- Start with "every point is its own cluster"
- Find "most similar" pairs of clusters
- Merge it into a parent cluster
- Repeat



- Start with "every point is its own cluster"
- Find "most similar" pairs of clusters
- Merge it into a parent cluster
- Repeat



- Start with "every point is its own cluster"
- Find "most similar" pairs of clusters
- Merge it into a parent cluster
- Repeat

Key Question:

How do we define similarity between clusters? => minimum, maximum, or average distance between points in clusters





#### How many components are good?



#### Can we let the data speak for themselves?

- let data determine model complexity (e.g., the number of components in mixture models)
- allow model complexity to grow as more data observed

#### How many components are good?



Can we let the data speak for themselves?
we will talk about Dirichlet Process (DP) Mixtures
and nonparametric Bayesian models

### **Summary**

- Gaussian Mixtures and K-means are effective tools to discover clustering structures
- EM algorithms can be applied to do MLE for GMMs
- Relationships between GMMs and K-means are discussed
- Unresolved issues
  - How to determine the number of components for mixture models?
  - How to determine the number of components for K-means?

#### **Materials to Read**

Sottou, L. & Bengio, Y. Convergence Properties of the Kmeans Algorithms, NIPS 1995.