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Unsupervised Learning
Task: learn an explanatory function 

Aka “Learning without a teacher”

No training/test split

Feature space 

Words in documents

Word distribution

(probability of a word)



Unsupervised Learning – density 

estimation

Feature space       

geographical information of a location 
Density function



Unsupervised Learning – clustering

Feature space       

Attributes (e.g., pixels & text) of images 
Cluster assignment function

http://search.carrot2.org/stable/search

http://search.carrot2.org/stable/search
http://search.carrot2.org/stable/search


Unsupervised Learning – dimensionality 

reduction

Feature space  

pixels of images 

Coordinate function in 2D space

Images have thousands or 

millions of pixels

Can we give each image a 

coordinate, such that similar 

images are near each other ?



Clustering

(K-Means, Gaussian Mixtures)



What is clustering?

Clustering: the process of grouping a set of objects into classes of 
similar objects

 High intra-class similarity

 Low inter-class similarity

A common and important task that finds many applications in 
science, engineering, information science, etc

 Group genes that perform the same function

 Group individuals that has similar political view

 Categorize documents of similar topics

 Identify similar objects from pictures

 …



The clustering problem

Input: training data                           , where               , 

integer K clusters

Output: a set of clusters 

Word Vector Space Vocabulary



The clustering problem

Input: training data                           , where               , 

integer K clusters

Output: a set of clusters 



Issues for clustering

What is a natural grouping among these objects?

 Definition of “groupness”

What makes objects “related”?

 Definition of “similarity/distance”

Representation for objects

 Vector space? Normalization?

How many clusters?

 Fixed a priori?

 Completely data driven? 

Clustering algorithms

 Partitional algorithms

 Hierarchical algorithms

Formal foundation and convergence



What is a natural grouping among objects?

Females Males Simpson’s Family School Employees

Clustering is subjective



What is similarity?

The real meaning of similarity is a philosophical question. 

Depends on representation and algorithm. For many 
rep./alg., easier to think in terms of distance between 
vectors



Desirable distance measure properties

d(A,B) = d(B,A)                     Symmetry
 Otherwise you could claim “Alex looks like Bob, but Bob looks nothing like 

Alex”

d(A,A) = 0                             Constancy of Self-Similarity
 Otherwise you could claim “Alex looks more like Bob, than Bob does”

d(A,B) = 0 iff A=B                 Positivity Separation
 Otherwise there are objects that are different, but you can’t tell apart

d(A,B) ≤  d(A,C)+d(B,C)       Triangular Inequality
 Otherwise you could claim “Alex is very like Bob, and Alex is very like Carl, 

but Bob is very unlike Carl”



Minkowski Distance

Common Minkowski distances

 Euclidean distance (r=2):

 Manhattan distance (r=1):

 “Sup” distance (              ):



Hamming distance

Manhattan distance is called Hamming distance when all 

features are binary

 E.g., gene expression levels under 17 conditions (1-high; 0-low)

 Hamming distance: #(0 1) + #(1 0) = 4 + 1 = 5



Correlation coefficient

Pearson correlation coefficient

 Cosine Similarity:



Edit Distance

To measure the similarity between two objects, transform 

one into the other, and measure how much effort it took. The 

measure of effort becomes the distance measure

The distance between Marge and Selma

Change dress color, 1 point
Add earrings, 1 point
Decrease height, 1 point
Take up smoking, 1 point
Loss weight, 1 point

D(Marge, Selma) = 5SelmanPattyMarge



Clustering algorithms

Partitional algorithms

 Usually start with a random (partial) 

partitioning

 Refine it iteratively

 K-means

 Mixture-Model based clustering

Hierarchical algorithms

 Bottom-up, agglomerative

 Top-down, divisive



K-means Algorithm

1. Initialize the centroids



K-means Algorithm

2. for each k, 



K-means Algorithm

3. for each k,                                     (sample mean)



K-means Algorithm

Repeat until no further change in cluster assignment



Summary of K-means Algorithm

1. Initialize centroids

2. Repeat until no change of cluster assignment

 (1) for each k:

 (2) for each k: 

Note: each iteration requires                 operations



K-means Questions

What is it trying to optimize?

Are we sure it will terminate?

Are we sure it will find an optimal clustering?

How should we start it?

How could we automatically choose the number of centers?



Theory: K-Means as an Opt. Problem

The opt. problem

Theorem: K-means iteratively leads to a non-increasing of the 

objective, until local minimum is achieved

 Proof ideas: 

 Each operation leads to non-increasing of the objective

 The objective is bounded and the number of clusters is finite



K-means as gradient descent

Find K prototypes to minimize the quantization error (i.e., 

the average distance between a data to its closest prototype):

 First-order gradient descent applies

 Newton method leads to the same update rule:

See [Bottou & Bengio, NIPS’95] for more details



Trying to find a good optimum

Idea 1: Be careful about where you start

Idea 2: Do many runs of k-means, each from a different 

random start configuration

Many other ideas floating around.

Note: K-means is often used to initialize other clustering 

methods



Mixture of Gaussians and EM algorithm



Basics of Probability & MLE



Basics of Probabilities



Independence

Independent random variables:

 Y and X don’t contain information about each other

Observing Y doesn’t help predicting X

Observing X doesn’t help predicting Y

Examples:

 Independent: 

 winning on roulette this week and next week

 Dependent: 

 Russian roulette

𝑃 𝑋, 𝑌 = 𝑃 𝑋 𝑃(𝑌)

𝑃 𝑋 𝑌 = 𝑃(𝑋)

X Y



Dependent / Independent?



Conditional Independence

Conditionally independent:

 knowing Z makes X and Y independent

Examples:

𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃(𝑌|𝑍)

London taxi drivers: A survey has pointed out a 

positive and significant correlation between the number 

of accidents and wearing coats. They concluded that coats 

could hinder movements of drivers and be the cause of 

accidents. A new law was prepared to prohibit drivers 

from wearing coats when driving.

Finally another study pointed out that people wear coats when it rains…

Z

X Y



Conditional Independence

Conditionally independent:

 knowing Z makes X and Y independent

Equivalent to:

 E.g.:

𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃(𝑌|𝑍)

Z

X Y

∀ 𝑥, 𝑦, 𝑧 : 𝑃 𝑋 = 𝑥 𝑌 = 𝑦, 𝑍 = 𝑧 = 𝑃 𝑋 = 𝑥 𝑍 = 𝑧)

𝑃 𝑇ℎ𝑢𝑛𝑑𝑒𝑟 𝑅𝑎𝑖𝑛, 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔) = P 𝑇ℎ𝑢𝑛𝑑𝑒𝑟 𝐿𝑖𝑔ℎ𝑡𝑖𝑛𝑔)



Maximum Likelihood Estimation (MLE)



Flipping a Coin

What’s the probability that a coin will fall with a head up (if 

flipped)?

Let us flip it a few times to estimate the probability

The estimated probability is: 3/5  “frequency of heads”



Questions:

Why frequency of heads?

How good is this estimation?

Why is this a machine learning problem?

The estimated probability is: 3/5  “frequency of heads”



Question (1)

Why frequency of heads?

 Frequency of heads is exactly the Maximum Likelihood 

Estimator for this problem

 MLE has nice properties

(interpretation, statistical guarantees, simple)



MLE for Bernoulli Distribution

Flips are i.i.d:

 Independent events that are identically distributed 

according to Bernoulli distribution

MLE: choose θ that maximizes the probability of observed 

data

𝑃 𝐻𝑒𝑎𝑑 = θ 𝑃 𝑇𝑎𝑖𝑙 = 1 − θ



Maximum Likelihood Estimation (MLE)

MLE: choose θ that maximizes the probability of observed 

data

Independent draws

Identically distributed



Maximum Likelihood Estimation (MLE)

MLE: choose θ that maximizes the probability of observed 

data

Solution?

 Exactly the “Frequency of heads”



Question (2)

How good is the MLE estimation?

 Is it biased?



How many flips do I need?

I flipped the coins 5 times: 3 heads, 2 tails

What if I flipped 30 heads and 20 tails?

Which estimator should we trust more?



A Simple Bound

Let      be the true parameter. For n data points, and

Then, for any ε>0 , we have the Hoeffding’s Inequality:



Probably Approximately Correct (PAC) 

Learning

I want to know the coin parameter θ, within ε=0.1 error 

with probability at least 1-δ (e.g., 0.95)

How many flips do I need?

Sample complexity:



Question (3)

Why is this a machine learning problem?

 Improve their performance

 At some task

 With experience

(accuracy of the estimated prob.)

(estimating the probability of heads)

(the more coin flips the better we are)



How about continuous features?



Gaussian Distributions

Univariate Gaussian distribution

Given parameters, we can draw samples and plot distributions

Carl F. Gauss (1777 – 1855) 



Maximum Likelihood Estimation

Given a data set                          , the likelihood is

MLE estimates the parameters as

sample mean

sample variance

Note: MLE for the variance of a Gaussian is biased



Gaussian Distributions

d-dimensional multivariate Gaussian

Given parameters, we can draw samples and plot distributions

Carl F. Gauss (1777 – 1855) 

Isotropic Diagonal General



Maximum Likelihood Estimation

Given a data set                          , the likelihood is

MLE estimates the parameters as

sample mean

sample covariance



Other Nice Analytic Properties

Marginal is Gaussian

Conditional is Gaussian



Limitations of Single Gaussians

Single Gaussian is unimodal

… can’t fit well multimodal data, which is more realistic!



Mixture of Gaussians

A simple family of multi-modal distributions

 treat unimodal Gaussians as basis (or component) distributions

 superpose multiple Gaussians via linear combination



Mixture of Gaussians

A simple family of multi-modal distributions

 treat unimodal Gaussians as basis (or component) distributions

 superpose multiple Gaussians via linear combination

What conditions should the mixing coefficients satisfy ?



MLE for Mixture of Gaussians

Log-likelihood

 this is complicated … 

 … but, we know the MLE for single Gaussians are easy

A heuristic procedure (can we iterate?)

 allocate data into different components

 estimate each component Gaussian analytically



Optimal Conditions

Some math

A weighted sample mean!



Optimal Conditions

Some math

A weighted sample variance!



Optimal Conditions

Some math

The ratio of data assigned to component k!

Note: constraints exist for mixing coefficients!



Optimal Conditions – summary

The set of couple conditions

The key factor to get them coupled

If we know           , each component Gaussian is easy to estimate! 



The EM Algorithm

E-step: estimate the responsibilities

M-step: re-estimate the parameters

Initialization plays a key role to succeed!



A Running Example

The data and a mixture of two isotropic Gaussians



A Running Example

Initial E-step



A Running Example

Initial M-step



A Running Example

The 2nd M-step



A Running Example

The 5th M-step



A Running Example

The 20th M-step



Theory

Let’s take the latent variable view of mixture of Gaussians

 Indicator (selecting) variable

?

Note: the idea of data augmentation is influential in statistics and machine learning!



Theory

Re-visit the log-likelihood

Jensen’s inequality



Theory

Re-visit the log-likelihood

Jensen’s inequality



Theory

Re-visit the log-likelihood

Jensen’s inequality

How to apply?



Theory

What we have is a lower bound

What’s the GAP?



Theory

What we have is a lower bound

What’s the GAP?



EM-algorithm

Maximize the lower bound or minimize the gap:

 Maximize over q(Z)   => E-step

 Maximize over  Θ => M-step



Convergence of EM

Local optimum is guaranteed under mild conditions (Depster

et al., 1977)

 alternating minimization for a bi-convex problem

Some special cases with global optimum (Wu, 1983)

First-order gradient descent for log-likelihood

 for comparison with other gradient ascent methods, see (Xu & 

Jordan, 1995)



Relation between GMM and K-Means

Small variance asymptotics:

 The EM algorithm for GMM reduces to K-Means under certain 

conditions:

E-step:

M-step:



Single Linkage Hierarchical Clustering

Start with “every point is its own 

cluster”

[Slide courtesy: Andrew Moore]



Single Linkage Hierarchical Clustering

Start with “every point is its own 

cluster”

Find “most similar” pairs of 

clusters

[Slide courtesy: Andrew Moore]



Single Linkage Hierarchical Clustering

Start with “every point is its own 

cluster”

Find “most similar” pairs of 

clusters

Merge it into a parent cluster

[Slide courtesy: Andrew Moore]



Single Linkage Hierarchical Clustering

Start with “every point is its own 

cluster”

Find “most similar” pairs of 

clusters

Merge it into a parent cluster

Repeat

[Slide courtesy: Andrew Moore]



Single Linkage Hierarchical Clustering

Start with “every point is its own 

cluster”

Find “most similar” pairs of 

clusters

Merge it into a parent cluster

Repeat

[Slide courtesy: Andrew Moore]



Single Linkage Hierarchical Clustering

Start with “every point is its own 

cluster”

Find “most similar” pairs of 

clusters

Merge it into a parent cluster

Repeat

Key Question:

How do we define similarity between clusters?

=> minimum, maximum, or average distance

between points in clusters

[Slide courtesy: Andrew Moore]



How many components are good?

Can we let the data speak for themselves?

 let data determine model complexity (e.g., the number of 
components in mixture models)

 allow model complexity to grow as more data observed



How many components are good?

Can we let the data speak for themselves?

 we will talk about Dirichlet Process (DP) Mixtures

 and nonparametric Bayesian models



Summary

Gaussian Mixtures and K-means are effective tools to 

discover clustering structures

EM algorithms can be applied to do MLE for GMMs 

Relationships between GMMs and K-means are discussed

Unresolved issues

 How to determine the number of components for mixture 

models?

 How to determine the number of components for K-means?



Materials to Read

Chap. 9 of Bishop’s PRML book

Bottou, L. & Bengio, Y. Convergence Properties of the K-

means Algorithms, NIPS 1995.


