Naive Bayes and Logistic Regression

Jun Zhu
dcszj@mail.tsinghua.edu.cn
http://bigml.cs.tsinghua.edu.cn/~jun
State Key Lab of Intelligent Technology & Systems
Tsinghua University

March 31, 2015
Outline

- Probabilistic methods for supervised learning
- Naive Bayes classifier
- Logistic regression
- Exponential family distributions
- Generalized linear models
An Intuitive Example

Grasshoppers

Katydid

[Courtesy of E. Keogh]
With more data …

- Build a histogram, e.g., for “Antenna length”

[Courtesy of E. Keogh]
Empirical distribution

- **Histogram** (or empirical distribution)

- Smooth with kernel density estimation (KDE):

[Courtesy of E. Keogh]
Classification?

Classify another insect we find. Its antennae are 3 units long.
Is it more probable that the insect is a Grasshopper or a Katydid?

[Antennae length is 3]

[Courtesy of E. Keogh]
Classification Probability

\[P(\text{Grasshopper} \mid 3) = \frac{10}{10 + 2} = 0.833 \]
\[P(\text{Katydid} \mid 3) = \frac{2}{10 + 2} = 0.166 \]
Classification Probability

\[P(\text{Grasshopper} \mid 7) = \frac{3}{3 + 9} = 0.250 \]
\[P(\text{Katydid} \mid 7) = \frac{9}{3 + 9} = 0.750 \]

Antennae length is 7
Classification Probability

\[P(\text{Grasshopper} \mid 5) = \frac{6}{6 + 6} = 0.500 \]
\[P(\text{Katydid} \mid 5) = \frac{6}{6 + 6} = 0.500 \]

Antennae length is 5

[Courtesy of E. Keogh]
Naïve Bayes Classifier

- The simplest “category-feature” generative model:
 - **Category**: “bird”, “Mammal”
 - **Features**: “has beak”, “can fly” …
Naïve Bayes Classifier

A mathematic model:

- **Naive Bayes assumption**: features X_1, \ldots, X_d are conditionally independent given the class label Y

$$p(x, y) = p(y)p(x \mid y)$$
Naïve Bayes Classifier

A mathematic model:

\[p(y|x) = \frac{p(x, y)}{p(x)} = \frac{p(y)p(x|y)}{p(x)} \]

Inference via Bayes rule:

\[p(y|x) = \frac{p(x, y)}{p(x)} = \frac{p(y)p(x|y)}{p(x)} \]

Bayes’ decision rule:

\[y^* = \arg \max_{y \in Y} p(y|x) \]
Bayes Error

\textbf{Theorem}: Bayes classifier is optimal!

\[p(error|\mathbf{x}) = \begin{cases} p(y = 1|\mathbf{x}) & \text{if we decide } y = 0 \\ p(y = 0|\mathbf{x}) & \text{if we decide } y = 1 \end{cases} \]

\[p(error) = \int_{-\infty}^{\infty} p(error|\mathbf{x})p(\mathbf{x})d\mathbf{x} \]
Naïve Bayes Classifier

How to learn model parameters?
- Assume X are d binary features, Y has 2 possible labels

$$p(y|\pi) = \begin{cases} \pi & \text{if } y = 1 \text{ (i.e., bird)} \\ 1 - \pi & \text{otherwise} \end{cases}$$

$$p(x_j|y = 0, q) = \begin{cases} q_{0j} & \text{if } x_j = 1 \\ 1 - q_{0j} & \text{otherwise} \end{cases} \quad p(x_j|y = 1, q) = \begin{cases} q_{1j} & \text{if } x_j = 1 \\ 1 - q_{1j} & \text{otherwise} \end{cases}$$

How many parameters to estimate?
Naïve Bayes Classifier

How to learn model parameters?

A set of training data:

- (1, 1, 0, 0; 1)
- (1, 0, 0, 0; 1)
- (0, 1, 1, 0; 0)
- (0, 0, 1, 1; 0)

Maximum likelihood estimation (N: # of training data)

$$p(\{x_i, y_i|\pi, q\}) = \prod_{i=1}^{N} p(x_i, y_i|\pi, q)$$
Naïve Bayes Classifier

- **Maximum likelihood estimation** \((N: \#\) of training data\):

 \[
 (\hat{\pi}, \hat{q}) = \arg \max_{\pi, q} p(\{x_i, y_i\} | \pi, q)
 \]
 \[
 (\hat{\pi}, \hat{q}) = \arg \max_{\pi, q} \log p(\{x_i, y_i\} | \pi, q)
 \]

- **Results** (count frequency! Exercise?):

 \[
 \hat{\pi} = \frac{N_1}{N} \quad \hat{q}_{0j} = \frac{N_0^j}{N_0} \quad \hat{q}_{1j} = \frac{N_1^j}{N_1}
 \]

 \[
 N_k = \sum_{i=1}^{N} I(y_i = k) : \# \text{ of data in category } k
 \]

 \[
 N_k^j = \sum_{i=1}^{N} I(y_i = k, x_{ij} = 1) : \# \text{ of data in category } k \text{ that has feature } j
 \]
Naïve Bayes Classifier

Data scarcity issue (zero-counts problem):

\[
\hat{\pi} = \frac{N_1}{N} \quad \hat{q}_{0j} = \frac{N_0^j}{N_0} \quad \hat{q}_{1j} = \frac{N_1^j}{N_1}
\]

- **How about if some features do not appear?**

Laplace smoothing (Additive smoothing):

\[
\hat{q}_{0j} = \frac{N_0^j + \alpha}{N_0 + 2\alpha} \quad \alpha > 0
\]

\[
\hat{q}_{1j} = \frac{N_1^j + \alpha}{N_1 + 2\alpha}
\]
A Bayesian Treatment

Put a prior on the parameters

\[p_0(q_{0j}|\alpha_1, \alpha_2) = \text{Beta}(\alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} q_{0j}^{\alpha_1-1}(1 - q_{0j})^{\alpha_2-1} \]
A Bayesian Treatment

Maximum a Posterior Estimate (MAP):

\[\hat{q} = \arg \max_q \log p(q|\{x_i, y_i\}) \]

\[= \arg \max_q \log p_0(q) + \log p(\{x_i, y_i\}|q) \]

Results (Exercise?):

\[\hat{q}_{0j} = \frac{N_0^j + \alpha_1 - 1}{N_0 + \alpha_1 + \alpha_2 - 2} \]

\[\hat{q}_{1j} = \frac{N_1^j + \alpha_1 - 1}{N_1 + \alpha_1 + \alpha_2 - 2} \]
A Bayesian Treatment

Maximum a Posterior Estimate (MAP):

\[\hat{q}_{0j} = \frac{N_0^j + \alpha_1 - 1}{N_0 + \alpha_1 + \alpha_2 - 2} \]

- If \(\alpha_1 = \alpha_2 = 1 \) (non-informative prior), no effect
 - MLE is a special case of Bayesian estimate
- Increase \(\alpha_1, \alpha_2 \), lead to heavier influence from prior
Bayesian Regression

Goal: learn a function from noisy observed data

- Linear
 \[\mathcal{F}_{\text{linear}} = \{ f : f = wx + b, \ w, b \in \mathbb{R} \} \]

- Polynomial
 \[\mathcal{F}_{\text{polynomial}} = \{ f : f = \sum_{k} w_k x^k, \ w_k \in \mathbb{R} \} \]

- ...
Bayesian Regression

- **Noisy observations**

 \[y = f(x) + \epsilon, \text{ where } \epsilon \sim \mathcal{N}(0, \sigma^2_n) \]

- **Gaussian likelihood function for linear regression** \(f(x_i) = w^\top x_i \)

 \[
p(y|X, w) = \prod_{i=1}^{n} p(y_i|x_i, w) = \mathcal{N}(X^\top w, \sigma^2_n I)\]

- **Gaussian prior (Conjugate)**

 \[w \sim \mathcal{N}(0, \Sigma_d) \]

- **Inference with Bayes’ rule**
 - **Posterior**
 \[p(w|X, y) = \mathcal{N}(\frac{1}{\sigma^2_n} A^{-1} X y, A^{-1}), \text{ where } A = \sigma_n^{-2} X X^\top + \Sigma_d^{-1} \]
 - **Marginal likelihood**
 - **Prediction**

 \[
p(y|X) = \int p(y|X, w)p(w)dw\]

 \[
p(f_*|x_*, X, y) = \int p(f_*|x_*, w)p(w|X, y)dw = \mathcal{N}\left(\frac{1}{\sigma^2_n} x_*^\top A^{-1} X y, x_*^\top A^{-1} x_*\right)\]
Extensions of NB

- We covered the case with binary features and binary class labels

- NB is applicable to the cases:
 - Discrete features + discrete class labels
 - Continuous features + discrete class labels
 - ...

- More dependency between features can be considered
 - Tree augmented NB
 - ...

Gaussian Naive Bayes (GNB)

- E.g.: character recognition: feature X_i is intensity at pixel i:

- The generative process is

$$Y \sim \text{Bernoulli}(\pi)$$

$$P(X_i|Y = y) = \mathcal{N}(\mu_{iy}, \sigma_{iy}^2)$$

- Different mean and variance for each class k and each feature i

- Sometimes assume variance is:
 - independent of Y (i.e., σ_i)
 - or independent of X (i.e., σ_y)
 - or both (i.e., σ)
Estimating Parameters & Prediction

- MLE estimates

\[\hat{\mu}_{ik} = \frac{1}{\sum_n \mathbb{1}(y_n = k)} \sum_n x_{ni} \mathbb{1}(y_n = k) \]

- Prediction:

\[h(x) = \arg\max_y P(y) \prod_i P(x_i | y) \]
What you need to know about NB classifier

- What’s the assumption
- Why we use it
- How do we learn it
- Why is Bayesian estimation (MAP) important
Linear regression and linear classification

Linear fit

Linear decision boundary

\[w^T x + b = 0 \]

\[w^T x + b > 0 \]

\[w^T x + b < 0 \]
What’s the decision boundary of NB?

Is it linear or non-linear?

There are several distributions that lead to a linear decision boundary, e.g., GNB with equal variance

\[P(X_i | Y = y) = \mathcal{N}(\mu_{iy}, \sigma_i^2) \]

Decision boundary (??):

\[
\log \frac{\prod_{i=1}^d P(X_i | Y = 0) P(Y = 0)}{\prod_{i=1}^d P(X_i | Y = 1) P(Y = 1)} = 0
\]

\[
\Rightarrow \log \frac{1 - \pi}{\pi} + \sum_i \frac{\mu_{i1}^2 - \mu_{i0}^2}{2\sigma_i^2} + \sum_i \frac{\mu_{i0} - \mu_{i1}}{\sigma_i^2} x_i = 0
\]

\[
\Rightarrow w_0 + \sum_i w_i x_i = 0
\]
Gaussian Naive Bayes (GNB)

Decision boundary (the general multivariate Gaussian case):

\[P_1 = P(Y = 0), \quad P_2 = P(Y = 1) \]
\[p_1(X) = p(X|Y = 0) = \mathcal{N}(M_1, \Sigma_1) \]
\[p_2(X) = p(X|Y = 1) = \mathcal{N}(M_2, \Sigma_2) \]
The predictive distribution of GNB

- Understanding the predictive distribution

\[p(y = 1 | x, \mu, \Sigma, \pi) = \frac{p(y = 1, x | \mu, \Sigma, \pi)}{p(x | \mu, \Sigma, \pi)} \]

- Under naive Bayes assumption:

\[p(y = 1 | x, \mu, \Sigma, \pi) = \frac{1}{1 + \frac{p(y=0, x | \mu, \Sigma, \pi)}{p(y=1, x | \mu, \Sigma, \pi)}} \]

\[= \frac{1}{1 + \frac{(1-\pi) \prod_i \mathcal{N}(x_i | \mu_i, \sigma_i^2)}{\pi \prod_i \mathcal{N}(x_i | \mu_i, \sigma_i^2)}} \]

\[= \frac{1}{1 + \exp(-w^T x - w_0)} \]

- **Note**: For multi-class, the predictive distribution is softmax!
Generative vs. Discriminative Classifiers

Generative classifiers (e.g., Naive Bayes)
- Assume some functional form for $P(X, Y)$ (or $P(Y)$ and $P(X | Y)$)
- Estimate parameters of $P(X, Y)$ directly from training data
- Make prediction
 \[
 \hat{y} = \arg\max_y P(x, Y = y)
 \]
- But, we note that
 \[
 \hat{y} = \arg\max_y P(Y = y | x)
 \]

Why not learn $P(Y | X)$ directly? Or, why not learn the decision boundary directly?

Discriminative classifiers (e.g., Logistic regression)
- Assume some functional form for $P(Y | X)$
- Estimate parameters of $P(Y | X)$ directly from training data
Logistic Regression

- Recall the predictive distribution of GNB!

- Assume the following functional form for \(P(Y|X) \)

\[
P(y = 1|x) = \frac{1}{1 + \exp(-(w_0 + w^T x))}
\]

- Logistic function (or Sigmoid) applied to a linear function of the data (for \(\alpha = 1 \)):

\[
\psi_\alpha(v) = \frac{1}{1 + \exp(-\alpha v)}
\]

\(a \to \infty \): step function

use a large \(\alpha \) can be good for some neural networks
Logistic Regression

What’s the decision boundary of logistic regression? (linear or nonlinear?)

\[
P(y = 1|x) = \frac{1}{1 + \exp(-(w_0 + \mathbf{w}^\top \mathbf{x}))}
\]

\[
\log \frac{P(Y = 1|x)}{P(y = 0|x)} = 0
\]

\[
\mathbf{w}^\top \mathbf{x} + w_0 = 0
\]

Logistic regression is a linear classifier!
Representation

Logistic regression

\[P(y = 1|x) = \frac{1}{1 + \exp(-(w_0 + \mathbf{w}^\top \mathbf{x}))} \]

For notation simplicity, we use the augmented vector:

input features: \(\begin{pmatrix} 1 \\ \mathbf{x} \end{pmatrix} \)
model weights: \(\begin{pmatrix} w_0 \\ \mathbf{w} \end{pmatrix} \)

Then, we have

\[P(y = 1|x) = \frac{1}{1 + \exp(-\mathbf{w}^\top \mathbf{x})} \]
Multiclass Logistic Regression

For more than 2 classes, where $y \in \{1, \ldots, K\}$, logistic regression classifier is defined as

$$\forall k < K : \quad P(Y = k | x) = \frac{\exp(w_k^T x)}{1 + \sum_{j=1}^{K-1} \exp(w_j^T x)}$$

$$P(Y = K | x) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(w_j^T x)}$$

- Well normalized distribution! No weights for class K!

- Is the decision boundary still linear?
Training Logistic Regression

- We consider the binary classification

\[P(y = 1 | x) = \frac{1}{1 + \exp(-w^\top x)} \]

- Training data \(D = \{(x_i, y_i)\}_{i=1}^N \)

- How to learn the parameters?

- Can we do MLE?

\[\hat{w}_{MLE} = \arg\max_w \prod_{i=1}^N P(x_i, y_i | w) \]

- No! Don’t have a model for \(P(X) \) or \(P(X | Y) \)

- Can we do large-margin learning?
Maximum Conditional Likelihood Estimate

- We learn the parameters by solving

$$\hat{w} = \arg\max_w \prod_{i=1}^{N} P(y_i | x_i, w)$$

- **Discriminative philosophy** – don’t waste effort on learning $P(X)$, focus on $P(Y | X)$ – that’s all that matters for classification!
Maximum Conditional Likelihood Estimate

We have:

$$\hat{w} = \arg \max_w \prod_{i=1}^{N} P(y_i|x_i, w)$$

$$P(y = 1|x) = \frac{1}{1 + \exp(-w^\top x)}$$

We have:

$$\mathcal{L}(w) = \log \prod_{i=1}^{N} P(y_i|x_i, w)$$

$$= \sum_i \left[y_i w^\top x_i - \log(1 + \exp(w^\top x_i))\right]$$
Maximum Conditional Likelihood Estimate

\[\hat{w} = \arg\max_w \mathcal{L}(w) \]

\[\mathcal{L}(w) = \sum_i \left[y_i w^\top x_i - \log(1 + \exp(w^\top x_i)) \right] \]

- **Bad news**: no closed-form solution!
- **Good news**: \(\mathcal{L}(w) \) is a concave function of \(w \! \)

- Is the original logistic function concave?

Read [S. Boyd, Convex Optimization, Chap. 1] for an introduction to convex optimization.
Optimizing concave/convex function

- Conditional likelihood for logistic regression is concave
- Maximum of a concave function = minimum of a convex function
 - Gradient ascent (concave) / Gradient descent (convex)

Gradient:

\[\nabla_w \mathcal{L}(w) = \left(\frac{\partial \mathcal{L}(w)}{\partial w_0}, \ldots, \frac{\partial \mathcal{L}(w)}{\partial w_d} \right) \]

Update rule:

\[w_{t+1} = w_t + \eta \nabla_w \mathcal{L}(w)|_{w_t} \]
Gradient Ascent for Logistic Regression

- Property of sigmoid function
 \[\nabla_v \psi = \psi(1 - \psi) \]

- Gradient ascent algorithm iteratively does:
 \[
 \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta \sum_{i=1}^{N} \mathbf{x}_i (y_i - \mu_i^t)
 \]
 - where \(\mu_i^t = P(y = 1|x_i, \mathbf{w}_t) \) is the prediction made by the current model

- Until the change (of objective or gradient) falls below some threshold
Issues

- Gradient descent is the simplest optimization methods, faster convergence can be obtained by using
 - E.g., Newton method, conjugate gradient ascent, IRLS (iterative reweighted least squares)

- The vanilla logistic regression often over-fits; using a regularization can help a lot!
Effects of step-size

- Large η => fast convergence but larger residual error; Also possible oscillations
- Small η => slow convergence but small residual error
The Newton’s Method

AKA: Newton-Raphson method

A method that finds the root of: \(f(x) = 0 \)

\[x_{t+1} = x_t - \frac{f(x_t)}{f'(x_t)} \]
The Newton’s Method

To maximize the conditional likelihood

$$\mathcal{L}(\mathbf{w}) = \sum_i \left[y_i \mathbf{w}^\top \mathbf{x}_i - \log(1 + \exp(\mathbf{w}^\top \mathbf{x}_i)) \right]$$

- We need to find \mathbf{w}^* such that
 $$\nabla \mathcal{L}(\mathbf{w}^*) = 0$$

So we can perform the following iteration:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + H^{-1} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})|_{\mathbf{w}_t}$$

- where H is known as the Hessian matrix:

$$H = \nabla^2_{\mathbf{w}} \mathcal{L}(\mathbf{w})|_{\mathbf{w}_t}$$
Newton’s Method for LR

- The update equation
 \[w_{t+1} \leftarrow w_t + H^{-1} \nabla_w \mathcal{L}(w)|_{w_t} \]
 - where the gradient is:
 \[\nabla_w \mathcal{L}(w)|_{w_t} = \sum_i (y_i - \mu_i)x_i = X(y - \mu) \]
 \[\mu_i = \psi(w_t^T x_i) \]
 - The Hessian matrix is:
 \[H = \nabla^2_w \mathcal{L}(w)|_{w_t} = \sum_i \mu_i(1 - \mu_i)x_ix_i^T = XRX^\top \]
 where \(R_{ii} = \mu_i(1 - \mu_i) \)
Iterative reweighted least squares (IRLS)

In least square estimate of linear regression, we have

\[w = (XX^\top)^{-1}Xy \]

Now, for logistic regression

\[
\begin{align*}
w_{t+1} &= w_t + H^{-1}\nabla_w \mathcal{L}(w_t) \\
&= w_t - (XRX^\top)^{-1}X(\mu - y) \\
&= (XRX^\top)^{-1}\{XRX^\top w_t - X(\mu - y)\} \\
&= (XRX^\top)^{-1}XRz
\end{align*}
\]

where \(z = X^\top w_t - R^{-1}(\mu - y) \)
Convergence curves

Legend: X-axis: Iteration #; Y-axis: classification error
In each figure, red for IRLS and blue for gradient descent
LR: Practical Issues

- IRLS takes $O(N + d^3)$ per iteration, where N is the number of training points and d is feature dimension, but converges in fewer iterations.

- Quasi-Newton methods, that approximate the Hessian, work faster.

- Conjugate gradient takes $O(Nd)$ per iteration, and usually works best in practice.

- Stochastic gradient descent can also be used if N is large c.f. perceptron rule.
Gaussian NB vs. Logistic Regression

- **Representation equivalence**
 - But only in some special case! (GNB with class independent variances)

- **What’s the differences?**
 - LR makes no assumption about $P(X|Y)$ in learning
 - They optimize different functions, obtain different solutions
Generative vs. Discriminative

- Given infinite data (asymptotically)
 1. If conditional independence assumption holds, discriminative and generative NB perform similar
 \[\varepsilon_{\text{Dis}, \infty} \sim \varepsilon_{\text{Gen}, \infty} \]
 2. If conditional independence assumption does NOT hold, discriminative outperform generative NB
 \[\varepsilon_{\text{Dis}, \infty} < \varepsilon_{\text{Gen}, \infty} \]

[Ng & Jordan, NIPS 2001]
Generative vs. Discriminative

- Given finite data \((N \text{ data points, } d \text{ features})\)

\[
\epsilon_{\text{Dis},N} \leq \epsilon_{\text{Dis},\infty} + O\left(\sqrt{\frac{d}{N}}\right)
\]

\[
\epsilon_{\text{Gen},N} \leq \epsilon_{\text{Gen},\infty} + O\left(\sqrt{\frac{\log d}{N}}\right)
\]

- Naive Bayes (generative) requires \(N = O(\log d)\) to converge to its asymptotic error, whereas logistic regression (discriminative) requires \(N = O(d)\).

Why?

- “Independent class conditional densities” – parameter estimates are not coupled, each parameter is learnt independently, not jointly, from training data.
Experimental Comparison

UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features
What you need to know

- LR is a linear classifier
 - Decision boundary is a hyperplane
- LR is learnt by maximizing conditional likelihood
 - No closed-form solution
 - Concave! Global optimum by gradient ascent methods
- GNB with class-independent variances representationally equivalent to LR
 - Solutions differ because of objective (loss) functions
- In general, NB and LR make different assumptions
 - NB: features independent given class, assumption on $P(X \mid Y)$
 - LR: functional form of $P(Y \mid X)$, no assumption on $P(X \mid Y)$
- Convergence rates:
 - GNB (usually) needs less data
 - LR (usually) gets to better solutions in the limit
Exponential family

For a numeric random variable X

$$p(x|\eta) = h(x) \exp \left(\eta^\top T(x) - A(\eta) \right)$$

$$= \frac{1}{Z(\eta)} h(x) \exp \left(\eta^\top T(x) \right)$$

is an **exponential family distribution** with natural (canonical) parameter η

Function $T(x)$ is a sufficient statistic.

Function $A(\eta) = \log Z(\eta)$ is the log normalizer.

Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,…
Recall Linear Regression

Let us assume that the target variable and the inputs are related by the equation:

\[y_i = \theta^\top x_i + \epsilon_i \]

where \(\epsilon \) is an error term of unmodeled effects or:

Now assume that \(\epsilon \) follows a Gaussian \(N(0, \sigma) \), then we have:

\[
p(y_i | x_i, \theta) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y_i - \theta^\top x_i)^2}{2\sigma^2}\right)
\]
Recall: Logistic Regression (sigmoid classifier)

- The condition distribution: a Bernoulli

\[p(y|x) = \mu(x)^y (1 - \mu(x))^{1-y} \]

where \(\mu \) is a logistic function

\[\mu(x) = \frac{1}{1 + e^{-\theta^\top x}} \]

- We can use the brute-force gradient method as in LR

- But we can also apply generic laws by observing the \(p(y|x) \) is an exponential family function, more specifically, a generalized linear model!
Example: Multivariate Gaussian Distribution

For a continuous vector random variable $\mathbf{x} \in \mathbb{R}^d$:

$$p(\mathbf{x}|\mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left(-\frac{1}{2} (\mathbf{x} - \mu)^\top \Sigma^{-1} (\mathbf{x} - \mu) \right)$$

$$= \frac{1}{(2\pi)^{d/2}} \exp \left(-\frac{1}{2} \text{tr}(\Sigma^{-1} \mathbf{x} \mathbf{x}^\top) + \mu^\top \Sigma^{-1} \mathbf{x} - \frac{1}{2} \mu^\top \Sigma^{-1} \mu - \log |\Sigma| \right)$$

Exponential family representation

$$\eta = \left[\Sigma^{-1} \mu; -\frac{1}{2} \text{vec}(\Sigma^{-1}) \right] = [\eta_1; \text{vec}(\eta_2)]$$

$$T(\mathbf{x}) = [\mathbf{x}; \text{vec}(\mathbf{x} \mathbf{x}^\top)]$$

$$A(\eta) = \frac{1}{2} \mu^\top \Sigma^{-1} \mu + \log |\Sigma| = -\frac{1}{2} \text{tr}(\eta_2 \eta_1 \eta_1^\top) - \frac{1}{2} \log(-2|\eta_2|)$$

$$h(\mathbf{x}) = (2\pi)^{-d/2}$$

Note: a d-dimensional Gaussian is a $(d + d^2)$-parameter distribution with a $(d + d^2)$-element vector of sufficient statistics (but because of symmetry and positivity, parameters are constrained and have lower degree of freedom)
Example: Multinomial distribution

For a binary vector random variable $\mathbf{x} \sim \text{multi}(\mathbf{x}|\boldsymbol{\pi})$:

$$
p(\mathbf{x}|\boldsymbol{\pi}) = \prod_{i=1}^{d} \pi_i^{x_i} = \exp\left(\sum_{i} x_i \ln \pi_i \right)
$$

$$
= \exp\left(\sum_{i=1}^{d-1} x_i \ln \pi_i + \left(1 - \sum_{i=1}^{d-1} x_i \right) \ln \left(1 - \sum_{i=1}^{d-1} \pi_i \right)\right)
$$

$$
= \exp\left(\sum_{i=1}^{d-1} x_i \ln \frac{\pi_i}{1 - \sum_{i=1}^{d-1} \pi_i} + \ln \left(1 - \sum_{i=1}^{d-1} \pi_i \right)\right)
$$

Exponential family representation

$$
\eta = [\ln(\pi_i/\pi_d); 0]
$$

$$
T(\mathbf{x}) = \mathbf{x}
$$

$$
A(\eta) = -\ln \left(1 - \sum_{i=1}^{d-1} \pi_i \right) = \ln \left(\sum_{i=1}^{d} e^{\eta_i} \right)
$$

$$
h(\mathbf{x}) = 1$$
Why exponential family?

Moment generating property (proof?)

$$\nabla_\eta A(\eta) = \nabla_\eta \log Z(\eta) = \cdots = \mathbb{E}_{p(x|\eta)}[T(x)]$$

$$\nabla^2_\eta A(\eta) = \cdots = \text{Var}[T(x)]$$
Moment estimation

- We can easily compute moments of any exponential family distribution by taking the derivatives of the log normalizer $A(\eta)$.
- The q^{th} derivative gives the q^{th} centered moment.

\[\nabla_\eta A(\eta) = \text{mean} \]

\[\nabla^2_\eta A(\eta) = \text{variance} \]

\cdots
The moment parameter μ can be derived from the natural (canonical) parameter $A(h)$ is convex since

$$\nabla_\eta A(\eta) = \mathbb{E}_{p(x|\eta)}[T(x)] \triangleq \mu$$

$A(\eta)$ is convex since

$$\nabla^2_\eta A(\eta) = \text{Var}[T(x)] > 0$$

Hence we can invert the relationship and infer the canonical parameter from the moment parameter (1-to-1):

$$\eta \triangleq \psi(\mu)$$

A distribution in the exponential family can be parameterized not only by η — the canonical parameterization, but also by μ — the moment parameterization.
Sufficiency

- For \(p(x \mid \theta) \), \(T(x) \) is *sufficient* for \(\theta \) if there is no information in \(X \) regarding \(\theta \) beyond that in \(T(x) \).
 - We can throw away \(X \) for the purpose of inference w.r.t. \(\theta \).

- Bayesian view

 \[
 X \xrightarrow{} T(x) \rightarrow \theta \quad p(\theta \mid T(x), x) = p(\theta \mid T(x))
 \]

- Frequentist view

 \[
 X \xleftarrow{} T(x) \rightarrow \theta \quad p(x \mid T(x), \theta) = p(x \mid T(x))
 \]

- The Neyman factorization theorem

 - \(T(x) \) is *sufficient* for \(\theta \) if

 \[
 p(x, T(x), \theta) = \psi_1(T(x), \theta)\psi_2(x, T(x))
 \]

 \[
 \Rightarrow p(x \mid \theta) = g(T(x), \theta)h(x, T(x))
 \]
IID Sampling for Exponential Family

For exponential family distribution, we can obtain the sufficient statistics by inspection once represented in the standard form

\[p(x|\eta) = h(x) \exp(\eta^\top T(x) - A(\eta)) \]

- Sufficient statistics:
 \[T(x) \]

For IID sampling, the joint distribution is also an exponential family

\[p(D|\eta) = \prod_i h(x_i) \exp \left(\eta^\top T(x_i) - A(\eta) \right) \]

\[= \left(\prod_i h(x_i) \right) \exp \left(\eta^\top \sum_i T(x_i) - NA(\eta) \right) \]

- Sufficient statistics:
 \[\sum_i T(x_i) \]
MLE for Exponential Family

- For iid data, the log-likelihood is

\[\mathcal{L}(\eta; D) = \sum_n \log h(x_n) + \left(\eta^\top \sum_n T(x_n) \right) - N A(\eta) \]

- Take derivatives and set to zero:

\[\nabla_\eta \mathcal{L}(\eta; D) = \sum_n T(x_n) - N \nabla_\eta A(\eta) = 0 \]

\[\nabla_\eta A(\eta) = \frac{1}{N} \sum_n T(x_n) \]

\[\hat{\mu}_{MLE} = \frac{1}{N} \sum_n T(x_n) \quad \text{Only involve sufficient statistics!} \]

- This amounts to moment matching.

- We can infer the canonical parameters using \(\hat{\eta}_{MLE} = \psi(\hat{\mu}_{MLE}) \)
Examples

- **Gaussian:** \(\eta = \left[\Sigma^{-1} \mu; -\frac{1}{2} \text{vec}(\Sigma^{-1}) \right] \)
 \[T(x) = [x; \text{vec}(xx^\top)] \]
 \[A(\eta) = \frac{1}{2} \mu^\top \Sigma^{-1} \mu + \log |\Sigma| \]
 \[h(x) = (2\pi)^{-d/2} \]
 \[\Rightarrow \hat{\mu}_{MLE} = \frac{1}{N} \sum_n T_1(x_n) = \frac{1}{N} \sum_n x_n \]

- **Multinomial:**
 \[\eta = [\ln(\pi_i/\pi_d); 0] \]
 \[T(x) = x \]
 \[A(\eta) = -\ln \left(1 - \sum_{i=1}^{d-1} \pi_i \right) \]
 \[h(x) = 1 \]
 \[\Rightarrow \hat{\mu}_{MLE} = \frac{1}{N} \sum_n x_n \]

- **Poisson:** \(\eta = \log \lambda \)
 \[T(x) = x \]
 \[A(\eta) = \lambda = e^\eta \]
 \[h(x) = \frac{1}{x!} \]
 \[\Rightarrow \hat{\mu}_{MLE} = \frac{1}{N} \sum_n x_n \]
Generalized Linear Models (GLIMs)

- The graphical model
 - Linear regression
 - Discriminative linear classification
 - Commonality:
 - What is $p()$? the cond. dist. of Y.
 - What is $f()$? the response function.

- GLIM
 - The observed input X is assumed to enter into the model via a linear combination of its elements $\xi = \theta^T X$
 - The conditional mean μ is represented as a function $f(\xi)$ of ξ, where f is known as the response function
 - The observed output Y is assumed to be characterized by an exponential family distribution with conditional mean μ.

\[
E_p[y] = \mu = f(\theta^T x)
\]
GLIM, cont.

The choice of exp family is constrained by the nature of the data Y.

- Example: y is a continuous vector \rightarrow multivariate Gaussian
 y is a class label \rightarrow Bernoulli or multinomial

The choice of the response function

- Following some mild constrains, e.g., $[0,1]$. Positivity …
- Canonical response function:
 - In this case $\theta^T x$ directly corresponds to canonical parameter η.
 $f = \psi^{-1}(\cdot)$
MLE for GLIMs

- Log-likelihood

\[\mathcal{L}(\theta; D) = \sum_n \log h(y_n) + \sum_n (\eta_n y_n - A(\eta_n)) \]

where \(\eta_n = \psi(\mu_n), \mu_n = f(\xi_n) \) and \(\xi_n = \theta^\top x_n \)

- Derivative of Log-likelihood

\[\nabla_\theta \mathcal{L} = \sum_n \left(y_n \nabla_\theta \eta_n - \frac{dA(\eta_n)}{d\eta_n} \nabla_\theta \eta_n \right) \]

\[= \sum_n (y_n - \mu_n) \nabla_\theta \eta_n \]

This is a fixed point function because \(\mu \) is a function of \(\theta \)
MLE for GLIMs with canonical response

- **Log-likelihood**

\[\mathcal{L}(\theta; D) = \sum_n \log h(y_n) + \sum_n (\theta^\top x_n y_n - A(\eta_n)) \]

- **Derivative of Log-likelihood**

\[\nabla_\theta \mathcal{L} = \sum_n \left(x_n y_n - \frac{dA(\eta_n)}{d\eta_n} \nabla_\theta \eta_n \right) \]

\[= \sum_n (y_n - \mu_n)x_n \]

\[= X(y - \mu) \]

This is a fixed point function because \(\mu \) is a function of \(\theta \)

- **Online learning for canonical GLIMs**

 - Stochastic gradient ascent = least mean squares (LMS) algorithm:

\[\theta_{t+1} = \theta_t + \rho(y_n - \mu^t_n)x_n \]

where \(\mu^t_n = f(\theta_t^\top x_n) \) and \(\rho \) is a step size
MLE for GLIMs with canonical response

- Log-likelihood
 \[\mathcal{L}(\theta; D) = \sum_n \log h(y_n) + \sum_n (\theta^\top x_n y_n - A(\eta_n)) \]

- Derivative of Log-likelihood
 \[\nabla_\theta \mathcal{L} = \sum_n \left(x_n y_n - \frac{dA(\eta_n)}{d\eta_n} \nabla_\theta \eta_n \right) \]
 \[= \sum_n (y_n - \mu_n) x_n \]
 \[= X(y - \mu) \]
 This is a fixed point function because \(\mu \) is a function of \(\theta \)

- Batch learning applies
 - E.g., the Newton’s method leads to an Iteratively Reweighted Least Square (IRLS) algorithm
What you need to know

- Exponential family distribution
- Moment estimation
- Generalized linear models
- Parameter estimation of GLIMs