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Deep Generative Models

• learn abstract representations from unlabeled data
• handle the uncertainty in data

“2” 

Feed-forward NN DGM 
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Directed DGMs

p(x , z) = p(z)p(x |z)
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P-net and Q-net
p(x , z) = p(z)p(x |z),q(z|x) ≈ p(z|x) (Kingma and Welling
[2014], Rezende et al. [2014])
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Competition between P-net and Q-net

Ignore lost information
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Ideal Case

Know lost information

Q-Net P-Net 
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The Ladder Network
Lateral connections (Rasmus et al. [2015]), invalid in DGMs
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P-net with Memory

Encode and retrieve lost information
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Building Block

standard layer
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Building Block

memory
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Building Block

memory

standard layer
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Building Block

attention 

memory

standard layer

0.30.10.3 0.9
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Building Block

attention 

memory

combination
function

standard layer
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Mathematic Formulation

• Attention function:

ha = sigmoid(AT hg + bA) or ha = softmax(AT hg + bA)

• Memory is parameterized as a matrix M,

hm = Mha

• Combination function:

hout = hm + hg or hout = a + b1c where

a = a1 + a2 � hm + a3 � hg + a4 � hg � hm,

c = σ(c1 + c2 � hm + c3 � hg + c4 � hg � hm).
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Asymmetric Architecture
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max
θg ,θr

1
|D|

∑
x∈D

Eq(z|x ;θr )[log p(x , z; θg)− log q(z|x ; θr )]
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Related Work

Memory units to capture long-term dependencies:
• Algorithm inference (Graves et al. [2014])
• Question answering (Weston et al. [2015], Sukhbaatar

et al. [2015])
• Neural language transduction (Grefenstette et al. [2015])

Two main differences:
• Trained in unsupervised manner for generative tasks
• Our memory can’t be written directly but updated via

optimization
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Settings

Baselines:
• VAE (Kingma and Welling [2014]) and IWAE (Burda et al.

[2015])
Choice of components:
• MEM-VAE: sigmoid + element-wise MLP
• MEM-VAE-VIS: softmax + element-wise sum

Architecture used on MNIST:
• VAE: 530-530-100 hidden units, 1,550K parameters
• MEM-VAE: 500-500-100 hidden units + 70-30 memory

slots, 1,559K parameters
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Density Estimation

MODELS MNIST OCR-LETTERS

VAE -85.69 -30.09
MEM-VAE(ours) -84.41 -29.09
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Density Estimation

MODELS MNIST OCR-LETTERS

VAE -85.69 -30.09
MEM-VAE(ours) -84.41 -29.09
IWAE-5 -84.43 -28.69
MEM-IWAE-5(ours) -83.26 -27.65
IWAE-50 -83.58 -27.60
MEM-IWAE-50(ours) -82.84 -26.90
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Density Estimation

MODELS MNIST OCR-LETTERS

VAE -85.69 -30.09
MEM-VAE(ours) -84.41 -29.09
IWAE-5 -84.43 -28.69
MEM-IWAE-5(ours) -83.26 -27.65
IWAE-50 -83.58 -27.60
MEM-IWAE-50(ours) -82.84 -26.90
DBN -84.55 -
S2-IWAE-50 -82.90 -
RWS-SBN/SBN* -85.48 -29.99
RWS-NADE/NADE* -85.23 -26.43
NADE* -88.86 -27.22
DARN* -84.13 -28.17
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Random Generation

C. Li, J. Zhu and B. Zhang ICML16@NYC Learning to Generate with Memory 21 / 26



Motivation
Model

Related Work
Experiments

Conclusion
Tsinghua University

Missing Value Imputation
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Visualization of Slots

Averaged preference of top-3 slots for each class:

“0” “1” “2” “3” “4” “5” “6” “7” “8” “9”
0.27 0.82 0.33 0.11 0.34 0.15 0.49 0.27 0.09 0.28
0.24 0.09 0.06 0.11 0.30 0.13 0.12 0.27 0.09 0.21
0.18 0.05 0.06 0.11 0.07 0.07 0.05 0.11 0.09 0.18

Corresponding images:
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Conclusion

Contribution:
• Introduce external memory mechanisms to DGMs
• Empirically test MEM-VAE on various tasks

Future work:
• Systematic investigation on other types of memory and

attention
• Class-conditional models for better generation and

classification
• Extensions in CNN case for high-dimensional image

generation
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Thank you!
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