

Tsinghua University

Learning to Generate with Memory

Chongxuan Li, Jun Zhu and Bo Zhang

Department of Computer Science and Technology Tsinghua University

> Jun 20, 2016 ICML at NYC

Deep Generative Models

- · learn abstract representations from unlabeled data
- handle the uncertainty in data

Tsinghua University

Directed DGMs

p(x,z)=p(z)p(x|z)

P-net and Q-net

 $p(x,z) = p(z)p(x|z), q(z|x) \approx p(z|x)$ (Kingma and Welling [2014], Rezende et al. [2014])

Competition between *P*-net and *Q*-net

Ignore lost information

Know lost information

Tsinghua University

The Ladder Network

Lateral connections (Rasmus et al. [2015]), invalid in DGMs

P-net with Memory

Encode and retrieve lost information

standard layer

Building Block

standard layer

memory

Building Block

standard layer

Tsinghua University

C. Li, J. Zhu and B. Zhang

Tsinghua University

Building Block

Tsinghua University

Building Block

Mathematic Formulation

• Attention function:

$$h_a = \text{sigmoid}(A^T h_g + b_A) \text{ or } h_a = \text{softmax}(A^T h_g + b_A)$$

• Memory is parameterized as a matrix *M*,

$$h_m = M h_a$$

Combination function:

$$h_{out} = h_m + h_g \text{ or } h_{out} = a + b_1 c \text{ where}$$
$$a = a_1 + a_2 \odot h_m + a_3 \odot h_g + a_4 \odot h_g \odot h_m,$$
$$c = \sigma(c_1 + c_2 \odot h_m + c_3 \odot h_g + c_4 \odot h_g \odot h_m).$$

Tsinghua University

Asymmetric Architecture

$$\max_{\theta_g, \theta_r} \frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} \mathbb{E}_{q(z|x;\theta_r)}[\log p(x, z; \theta_g) - \log q(z|x; \theta_r)]$$

Related Work

Memory units to capture long-term dependencies:

- Algorithm inference (Graves et al. [2014])
- Question answering (Weston et al. [2015], Sukhbaatar et al. [2015])
- Neural language transduction (Grefenstette et al. [2015])
 Two main differences:
 - Trained in unsupervised manner for generative tasks
 - Our memory can't be written directly but updated via optimization

Baselines:

• VAE (Kingma and Welling [2014]) and IWAE (Burda et al. [2015])

Choice of components:

- MEM-VAE: sigmoid + element-wise MLP
- MEM-VAE-VIS: softmax + element-wise sum

Architecture used on MNIST:

- VAE: 530-530-100 hidden units, 1,550K parameters
- MEM-VAE: 500-500-100 hidden units + 70-30 memory slots, 1,559K parameters

Density Estimation

MODELS	MNIST	OCR-LETTERS
VAE	-85.69	-30.09
MEM-VAE(ours)	-84.41	-29.09

Density Estimation

Models	MNIST	OCR-LETTERS
VAE	-85.69	-30.09
MEM-VAE(ours)	-84.41	-29.09
IWAE-5	-84.43	-28.69
MEM-IWAE-5(ours)	-83.26	-27.65
IWAE-50	-83.58	-27.60
MEM-IWAE-50(ours)	-82.84	-26.90

Density Estimation

MODELS	MNIST	OCR-LETTERS		
VAE	-85.69	-30.09		
MEM-VAE(ours)	-84.41	-29.09		
IWAE-5	-84.43	-28.69		
MEM-IWAE-5(ours)	-83.26	-27.65		
IWAE-50	-83.58	-27.60		
MEM-IWAE-50(ours)	-82.84	-26.90		
DBN	-84.55	- 83		
S2-IWAE-50	-82.90	- 4		
RWS-SBN/SBN*	-85.48	-29.99		
RWS-NADE/NADE*	-85.23	-26.43		
NADE*	-88.86	-27.22		
DARN*	-84.13	-28.17		

Tsinghua University

Random Generation

C. Li, J. Zhu and B. Zhang

Missing Value Imputation

Visualization of Slots

Averaged preference of top-3 slots for each class:

"0)"	"1"	"2"	"3"	"4"	"5"	"6"	"7"	"8"	"9"
0.	27	0.82	0.33	0.11	0.34	0.15	0.49	0.27	0.09	0.28
0.	24	0.09	0.06	0.11	0.30	0.13	0.12	0.27	0.09	0.21
0.	18	0.05	0.06	0.11	0.07	0.07	0.05	0.11	0.09	0.18

Corresponding images:

Conclusion

Contribution:

- Introduce external memory mechanisms to DGMs
- Empirically test MEM-VAE on various tasks

Future work:

- Systematic investigation on other types of memory and attention
- Class-conditional models for better generation and classification
- Extensions in CNN case for high-dimensional image generation

Tsinghua University

Motivation Model Related Work Experiments Conclusion

Thank you!

References

- Y. Burda, R. Grosse, and R. Salakhutdinov. Importance weighted autoencoders. In *arXiv:1509.00519*, 2015.
- A. Graves, G. Wayne, and I. Danihelka. Neural Turing machines. In arXiv:1410.5401, 2014.
- E. Grefenstette, K. M. Hermann, M. Suleyman, and P. Blunsom. Learning to transduce with unbounded memory. In *NIPS*, 2015.
- D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In ICLR, 2014.
- A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko. Semi-supervised learning with ladder networks. In NIPS, 2015.
- D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In *ICML*, 2014.
- S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. End-to-end memory networks. In NIPS, 2015.
- J. Weston, S. Chopra, and A. Bordes. Memory networks. In ICLR, 2015.