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Introduction

Introduction: the Sampling Task

The need of drawing samples from a distribution:

Bayesian inference: p(z|x) = p(z)p(x|z)/p(x) ∝ p(z)p(x|z):

Generative model generation (e.g., MRF generation).

Monte Carlo estimation (e.g., MRF likelihood gradient,
doubly-stochastic gradient).
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Introduction

Introduction: Sampling Methods

Methods:

Monte Carlo:

Directly draw i.i.d. samples.
Efficient but requires exact density.

Markov Chain Monte Carlo (MCMC):

Draw samples by simulating a Markov chain with desired stationary
distribution.
Admit unnormalized density but introduce autocorrelation.

Particle-Based Variational Inference (ParVI):

Optimize a set of particles (i.e. samples) to drive the particle
distribution towards the target distribution.
Admit unnormalized density but require assumption on the particle
distribution (which affects performance).
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Introduction

Introduction: Manifold

Concept (M -dim manifold M):
topological space locally homeomporchic to an
open subset of RM .

Merits:

Inclusive concept: globally releases linearity.
Rich structures can be equipped: distance,
gradient, distribution, dynamics, etc.
Fundamental view of geometry:
parameterization-invariant.
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Introduction

Introduction: Sampling and Manifolds

Sampling from a distribution supported on a manifold.

Spherical Admixture Model (SAM) [61]:
topics on spheres for better representation.
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Introduction

Introduction: Sampling and Manifolds

Sampling from a distribution supported on a manifold.

Hyperspherical Variational Auto-Encoder [19, 30]:
spherical latent space for uninformative prior.
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Introduction

Introduction: Sampling and Manifolds

Sampling from a distribution supported on a manifold.

Hyperbolic Variational Auto-Encoders [53, 30, 59, 55]:
hyperbolic latent space (R) for the analogy to a tree structure (L).

Bayesian Matrix Factorization [64, 66, 73]:
factor matrices on Stiefel manifold [68, 33]
{M ∈ Rm×n |M>M = Im}.
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Introduction

Introduction: Sampling and Manifolds

Sampling from a distribution supported on a manifold.

Information Geometry [3, 4]:
for Bayesian inference p(z|x) for a Bayesian model {p(z), p(x|z)}:
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Introduction

Introduction: Sampling and Manifolds

Sampling from a distribution supported on a manifold:
How to comply to the manifold geometry while being efficient?

Viewing Sampling Methods on Probability Manifolds:

ParVIs have a natural optimization interpretation on a probability
space. Can it be made concrete?
Do MCMCs have a similar interpretation?
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Sampling on Manifolds Manifold Concepts

Manifolds

M -dim. manifold M (a):
topological space locally homeomporchic to an open subset of RM .

Tangent vector v at x ∈M (b): linear function C∞(M)→ R
satifying the Leibniz rule (directional derivative).

A smooth curve γt through x defines a tangent vector (derivative along
the curve) (c).

Tangent space TxM at x (b): M -dim. linear space.
Flow of a vector field V (d): the set of curves {(ϕt)t} s.t.
ϕ̇t = V (ϕt) (exists at least locally).

(a) (b) (c) (d)
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Sampling on Manifolds Manifold Concepts

Manifolds

Riemannian structure: inner product in every tangent space TxM.

Coordinate expression:

〈u, v〉TxM = gij(x)uivj .

Gradient of f :
〈grad f(x), v〉TxM = v[f ] := vi∂if(x).
⇐⇒
Steepest ascending direction:
grad f(x) = max · argmax‖v‖TxM=1

d
dtf(ϕt).

Coordinate expression:(
grad f(x)

)i
= gij(x)∂jf(x).
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Sampling on Manifolds Manifold Concepts

Manifolds

Riemannian structure: inner product in every tangent space TxM.

Distance: d(x, y) =
√

infγt:γ0=x,γ1=y

∫ 1
0 〈γ̇t, γ̇t〉TγtM dt.

Geodesic: the minimizing curve(s) when it exists (e.g., when M is
complete as a metric space [32]).

More fundamental definition: auto-parallel curves under an affine
connection (covariant derivative).
Generalization of straight lines.
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Sampling on Manifolds Manifold Concepts

Manifolds

Riemannian structure: inner product in every tangent space TxM.
Exponential map Expx(v): maps v ∈ TxM to the end point of the
geodesic tangent to v at x with length ‖v‖TxM.

Generalization of vector addition.

Parallel transport Γyx(v): moves v ∈ TxM to TyM (in a certain sense
of) parallelly, along the geodesic from x to y.

Generalization of conventional parallel transport.
Generally is path-dependent.
More fundamental def.: specified by an affine connection.
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Sampling on Manifolds Manifold Concepts

Manifolds

Measures on orientable manifolds can be expressed by volume forms:

Volume form: alternative linear (TxM)M → R for every x.

Lebesgue measure of a coordinate space: dx1 ∧ · · · ∧ dxM .

Riemannian volume form (Riemannian measure): coordinate invariant
volume form

√
|G| dx1 ∧ · · · ∧ dxM .
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Sampling on Manifolds MCMCs on Manifolds

MCMCs on Euclidean Space

Classical MCMCs: high autocorrelation.

Metropolis-Hastings algorithm [54, 31].

Gibbs sampling [27].

Dynamics-Based MCMCs: more effective move.

Dynamics: continuous-time no-jump Markov process:

dx = V (x) dt+
√

2D(x) dBt(x).

Key tool: the Fokker-Planck Equation:

∂tpt = −∂i(ptV i) + ∂i∂j(ptD
ij).
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Sampling on Manifolds MCMCs on Manifolds

MCMCs on Euclidean Space

Dynamics-Based MCMCs: more effective move.

Langevin Dynamics (LD) [39] ([63, 62, 71]):

dx = Σ−1∇ log p dt+
√

2Σ−1 dBt(x).
Hamiltonian Dynamics (Hamitonian Monte Carlo
(HMC) [21, 56, 10]): {

dx = Σ−1r dt,

dr = ∇ log p dt.

Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) [37, 15]:{
dx = Σ−1r dt,

dr = ∇ log p dt− Cr dt+
√

2CΣ dBt(x).

Stochastic Gradient Nosé-Hoover Thermostats (SGNHT) [20]:
dx = Σ−1r dt,

dr = ∇ log p dt− ξr dt+
√

2CΣ dBt(x),

dξ = ( 1
M r
>Σ−1r − 1) dt.
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Sampling on Manifolds MCMCs on Manifolds

MCMCs on Euclidean Space

Dynamics-Based MCMCs: more effective move.

The complete recipe [51] for the dynamics:

dx = V (x) dt+
√

2D(x) dBt(x),

V i(x) = ∂j

(
p(x)

(
Dij(x) +Qij(x)

))
/p(x),

(1)

for some pos. semi-def. DM×M (diffusion matrix) and skew-symm.
QM×M (curl matrix), keeps p invariant.

The inverse also holds.
If D is pos. def., then p is the unique stationary distribution.
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Sampling on Manifolds MCMCs on Manifolds

MCMCs on Euclidean Space

Dynamics-Based MCMCs: more effective move.

Stochastic Gradient MCMC: for Bayesian inference,

∇z log p(z|{x(n)}Nn=1) = ∇z log p(z) +

N∑
n=1

∇z log p(x(n)|z),

∇̃z log p(z|{x(n)}Nn=1) := ∇z log p(z) +
N

|S|
∑
n∈S
∇z log p(x(n)|z)

≈ ∇z log p(z|{x(n)}Nn=1) +N (0, A(z)).

Influence on the dynamics dx = V (x) dt+
√

2D(x) dBt(x):

Var(V (x) dt) = Var(V (x)) dt2 = o(dt),

Var(
√

2D(x) dBt(x)) = 2D(x) dt.

HMC cannot be simulated using stochastic gradient [15, 9].
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Sampling on Manifolds MCMCs on Manifolds

MCMCs on Riemannian Manifolds

In the corrdinate space (p is the density w.r.t. the Lebesgue meas.):

Riemann Manifold Langevin Dynamics (RMLD) [28, 60]:

dx = G−1∇ log p dt+∇ ·G−1 dt+
√

2G−1 dBt(x).

Riemann Manifold Hamiltonian Monte Carlo (RMHMC) [28]:{
dx = G−1r dt,

dr = ∇ log(p/
√
|G|) dt− 1

2∇
(
r>G−1r

)
dt.

Stochastic Gradient Riemann Hamiltonian Monte Carlo
(SGRHMC) [51]:{

dx = G−1/2r dt,

dr = G−1/2∇ log p dt−∇ ·G−1/2 +G−1r +
√

2G−1 dBt(x).
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Sampling on Manifolds MCMCs on Manifolds

MCMCs on Riemannian Manifolds

In the corrdinate space: application using the Fisher-Rao Metric
(information geometry [3, 4]):

Given a Bayesian model p(z), p(x|z), z is a
coordinate of the manifold {p(x|z) | z ∈ Z}.
Fisher-Rao metric:
G(z) := Ep(x|z)[∇>z log p(x|z)∇z log p(x|z)].

Derived from the KL divergence.
Corresp. distance is the (

√
8×) JS divergence.

Invariant under reparameterization of z.

HMC (L) and RMHMC (R) [28]:
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Sampling on Manifolds MCMCs on Manifolds

MCMCs on Riemannian Manifolds

Problems of coordinate space: a global one may not exist (e.g.
hyperspheres Sn−1 := {x ∈ Rn | ‖x‖2 = 1}).

Cumbersome to switch between coordinate systems.

G would be singular near the edge of a coordinate space.

Simulation in an embedded space Ξ(M): homeo. injective Ξ :M→ Rn.

Global representation.

Common manifolds have a natural (isometric) embedding.

Hausdorff meas. on Ξ(M) (isom. emb.) is the Riem. meas. on M.
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Sampling on Manifolds MCMCs on Manifolds

MCMCs on Riemannian Manifolds

RMHMC in the embedded space:

Constraint HMC (CHMC) [11].

Geodesic Monte Carlo (GMC) [12].

Stochastic Gradient MCMCs in the embedded space [42]:

Stochastic Gradient Geodesic Monte Carlo (SGGMC).

Geodesic Stochastic Gradient Nosé-Hoover Thermostats (gSGNHT).
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Sampling on Manifolds MCMCs on Manifolds

Stochastic Gradient MCMCs in the Embedded Space

Table: A summary of MCMCs on Riemannian Manifolds. –: sampling on manifold
not supported; †: The integrators are not in the SSI scheme (It is unclear whether the
claimed “2nd-order” is equivalent to ours); ‡: 2nd-order integrators for SGHMC and
mSGNHT are developed by [13] and [40], respectively.

methods
stochastic
gradient

no inner
iteration

no global
coordinates

order of
integrator

LD [63, 62] ×
√

– 1st
HMC [56] ×

√
– 2nd

GMC [12] ×
√ √

2nd
RMLD [28] ×

√
× 1st

RMHMC [28] × × × 2nd†

CHMC [11] × ×
√

2nd†

SGLD [71]
√ √

– 1st
SGHMC [15] / SGNHT [20]

√ √
– 1st‡

SGRLD [60] / SGRHMC [51]
√ √

× 1st

SGGMC / gSGNHT [42]
√ √ √

2nd
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Sampling on Manifolds MCMCs on Manifolds

Stochastic Gradient MCMCs in the Embedded Space

SGGMC dynamics (coordinate space):

Augment with the momentum r ∈ Rm (more precisely, covector
∈ T ∗xM).

Augmented target distribution:

− log p(z, r) = − log p(z|x) +
1

2
log |G(z)|︸ ︷︷ ︸

potential energy

+
1

2
r>G(z)−1r︸ ︷︷ ︸

kinetic energy

.

Let M isom. emb. in Rn via y = Ξ(x). Define:

D(z) =

(
0 0
0 J(z)>CJ(z)

)
, Q(z) =

(
0 −I
I 0

)
,

where Jn×m : Jai = ∂ya

∂xi
(J>J = G).
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Sampling on Manifolds MCMCs on Manifolds

Stochastic Gradient MCMCs in the Embedded Space

SGGMC dynamics (coordinate space):

dz =G−1rdt

dr =∇z log p(z|x)dt− 1

2
∇z log |G(z)|dt

− J>CJG−1r dt− 1

2
∇z
[
r>G−1r

]
dt

+N (0, 2J>CJdt)

Chang Liu (MSRA) Sampling Methods and Manifolds 23 / 82



Sampling on Manifolds MCMCs on Manifolds

Stochastic Gradient MCMCs in the Embedded Space

SGGMC simulation (emb. sp.): Symmetric Splitting Integrator (SSI) [13].
Split SGGMC dynamics (in the coordinate space):

dz =G−1rdt

dr =∇z log p(z|x)dt−
1

2
∇z log |G(z)|dt

−J>CJG−1r dt−1

2
∇z
[
r>G−1r

]
dt

+N (0, 2J>CJdt)

A :

{
dz = G−1rdt

dr = −1

2
∇z
[
r>G−1r

]
dt

⇒ (zt, rt) = GeodFlow(z0, r0) [1, 12]

B :

{
dz = 0

dr = −J>CJG−1r dt
⇒
{

zt = z0
rt = J> expm{−Ct}JG−1r0

O :


dz = 0
dr = ∇z log p(z|x) dt

− 1
2
∇z log |G(z)| dt

+N (0, 2J>CJdt)

⇒


zt = z0
rt = ∇z log p(z0|x)t

− 1
2
∇z log |G(z0)| t

+N (0, 2J>CJt)
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Sampling on Manifolds MCMCs on Manifolds

Stochastic Gradient MCMCs in the Embedded Space

SGGMC simulation (emb. sp.): Symmetric Splitting Integrator (SSI) [13].

Dynamics A in the embedded space: geodesic flow (i.e., exponential
map + parallel transport).

Example 1 (Geodesic flow of hypersphere Sn−1 in the embedded space){
y(t) = y(0) cos(αt) + (v(0)/α) sin(αt)

v(t) = −αy(0) sin(αt) + v(0) cos(αt)
,

where y ∈ Sn−1, v = ẏ ∈ Ty(Sn−1), and α = ‖v(0)‖.
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Sampling on Manifolds MCMCs on Manifolds

Stochastic Gradient MCMCs in the Embedded Space

SGGMC simulation (emb. sp.): Symmetric Splitting Integrator (SSI) [13].

Dynamics B and O in the embedded space:

B :

{
y(t) = y(0)

v(t) = Λ
(
y(0)

)
expm{−Ct}v(0)

O :


y(t) = y(0)

v(t) = v(0)+Λ
(
y(0)

)[
∇y log pH

(
y(0)|x

)
t

+N (0, 2Ct)
]
,

where: pH is the density function w.r.t. the Hausdorff measure, and
Λ(y) = In − P (y)P (y)> is the projection onto Ξ∗(TzM).

Example 2 (The projection Λ(y) for hypersphere in the embedded space)

Λ(y) = In − yy>.
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Sampling on Manifolds MCMCs on Manifolds

Stochastic Gradient MCMCs in the Embedded Space

SGGMC simulation (emb. sp.): Symmetric Splitting Integrator (SSI) [13].

Simulate following the sequence “ABOBA”:

Algorithm 1 Sampling procedure of SGGMC

Sample a subset S for computing ∇̃y log pH(y). (y0, v0)← (y(n−1), v(n−1)).
for l = 1, 2, . . . , L do
A: Update (y∗, v∗)← (yl−1, vl−1) by the geodesic flow for time step εn

2 .
B: v∗ ← exp{−C εn

2 }v
∗.

O: v∗ ← v∗ + Λ(y∗) ·
[
∇̃y log pH(y∗)εn+N

(
0, (2C−εnV (y∗))εn

)]
.

B: v∗ ← exp{−C εn
2 }v

∗.
A: Update (yl, vl)← (y∗, v∗) by the geodesic flow for time step εn

2 .
end for

Second-order simulation: MSE = O(L−2K/(2K+1)) [13].
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Sampling on Manifolds MCMCs on Manifolds

Stochastic Gradient MCMCs in the Embedded Space

gSGNHT dynamics:
dz =G−1r dt,

dr =∇z log p(z|x)dt− 1

2
∇z log |G|dt− ξr dt− 1

2
∇z
[
r>G−1r

]
dt+N (0, 2CGdt),

dξ =(
1

m
r>G−1r − 1) dt.

gSGNHT simulation:

Algorithm 2 Sampling procedure of gSGNHT

A: Update (y∗, v∗)← (yl−1, vl−1) by the geodesic flow for time step εn
2 ,

ξ∗ ← ξl−1 + ( 1
mv
>
l−1vl−1 − 1) εn2 .

B: v∗ ← exp{−ξ∗ εn2 }v
∗.

O: v∗ ← v∗ + Λ(y∗) ·
[
∇̃y log pH(y∗)εn+N

(
0, (2C−εnV (y∗))εn

)]
.

B: v∗ ← exp{−ξ∗ εn2 }v
∗.

A: Update (yl, vl)← (y∗, v∗) by the geodesic flow for time step εn
2 ,
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Sampling on Manifolds MCMCs on Manifolds

Stochastic Gradient MCMCs in the Embedded Space

Experimental results:
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Figure: Joint posterior of z1 and z2 in gray scale. Left: true distribution; Right:
empirical distribution by samples of SGGMC.
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Sampling on Manifolds MCMCs on Manifolds

Stochastic Gradient MCMCs in the Embedded Space

Experimental results: inference for Spherical Admixture Model (SAM) [61]

Model structure:

Document v (e.g., normalized tf-idf), topic β, corpus mean µ: on
hyperspheres.

Posterior of interest: p(β|v).

∇β log p(β|v) =
1

p(β|v)
∇β
∫
p(β, θ|v)dθ = Ep(θ|β,v) [∇β log p(β, θ|v)] .

Run another MCMC (GMC [12]) to sample from p(θ|β, v) (supported
on simplex) to estimate the expectation.
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Sampling on Manifolds MCMCs on Manifolds

Stochastic Gradient MCMCs in the Embedded Space

Experimental results: inference for Spherical Admixture Model (SAM) [61]
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Figure: Results on the 150K Wikipedia subset (150K training and 1K test, 50
topics)
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Sampling on Manifolds ParVIs on Manifolds

ParVIs on Euclidean Space

Particle-Based Variational Inference (ParVI):
optimize a set of particles (i.e. samples) to drive the particle distribution
towards the target distribution.

More flexible and accurate than classical (i.e., statistical-model-based)
variational inference.

Has a better convergence perspective than MCMCs.

More particle-efficient than MCMCs.
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Sampling on Manifolds ParVIs on Manifolds

ParVIs on Euclidean Space

Stein Variational Gradient Descent (SVGD) [46]:

A deterministic dynamics żt = v(zt) on M = Rm induces a
continuously-evolving distribution (qt) on M:

∂tqt = −∇ · (qtv). (continuity equation / det. FPE)
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Sampling on Manifolds ParVIs on Manifolds

ParVIs on Euclidean Space

Stein Variational Gradient Descent (SVGD) [46]:

To drive (qt) towards p, let it minimize KL(qt‖p):

Find the decreasing rate (directional derivative):

− d

dt
KL(qt‖p) = Eq[v · ∇ log p+∇ · v].

Find v maximizing the decreasing rate
v∗ := max · argmax‖v‖X=1− d

dtKL(qt‖p) (functional gradient).

Taking X = T (M) = Rm: no tractable solution.
Taking X = Hm where H is the RKHS [67] of a kernel K:

v∗(x′) = Eq(x)[K(x, x′)∇x log p(x) +∇xK(x, x′)].

The expectation can be estimated directly by the particles!

Simulate the particles by applying the dynamics:
x(i) ← x(i) + εv∗(x(i)).
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Sampling on Manifolds ParVIs on Manifolds

ParVIs on Riemannian Manifolds

Riemannian SVGD [41]:

Utilize information geometry to enhance efficiency (coordinate space).

Enable ParVIs on manifolds like hyperspheres (embedded space).
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Sampling on Manifolds ParVIs on Manifolds

ParVIs on Riemannian Manifolds

Dynamics on a Riemannian manifold:

żt = X(zt), (zt) is a curve of the flow of X.

Evolving distribution: let all densities be w.r.t. the Riem. meas.

Lemma 3 (Continuity Equation on Riemannian Manifold)
∂tqt = −div(qtX) = −X[qt]− qt div(X)

= −Xi∂iqt − qt∂iXi − qtXi∂i log
√
|G|.
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Sampling on Manifolds ParVIs on Manifolds

ParVIs on Riemannian Manifolds

Directional derivative:

Theorem 4 (Directional Derivative)

Let p be a fixed distribution. Then the directional derivative is

− d

dt
KL(qt‖p)=Eqt [div(pX)/p]=Eqt

[
X[log p]+div(X)

]
.

X[qt]: the action of the vector field X on the smooth function qt.
In any coordinate system, X[qt] = Xi∂iqt.

div(X): the divergence of vector field X.
In any coordinate system, div(X) = ∂i(

√
|G|Xi)/

√
|G|.
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ParVIs on Riemannian Manifolds

Functional gradient:

X∗ := max · argmax
X∈X,‖X‖X=1

J (X) := Eq
[
X[log p] + div(X)

]
,

where X is a subspace of vector fields on M, such that:

1. X∗ is a valid vector field on M.

Example 5 (Nontriviality of a valid vector field)

Vector fields on an even-dimensional hypersphere must have one zero
point (hairy ball theorem ([2], Thm 8.5.13)). The choice in SVGD
X = Hm cannot guarantee this requirement.

2. X∗ is coordinate invariant.
Concept: the expression in any coordinate system is the same.
Necessary for avoiding the arbitrariness of the solution.
The choice in SVGD X = Hm cannot guarantee this requirement.

3. X∗ can be expressed in closed form.
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ParVIs on Riemannian Manifolds

Functional gradient:

Our Solution

X = {grad f | f ∈ H}, where H is the RKHS of a kernel K.

The gradient a function is a valid, coordinate invariant vector field.

Lemma 6

For Gaussian RKHS, X is isometrically isomorphic to H.

Theorem 7 (Functional Gradient)

X∗′ = grad′ f∗′, f∗′ = Eq
[
(gradK)[log p] + ∆K

]
,

where “·′” takes x′ as argument, and ∆f := div(grad f).

X∗′
i

= g′ij∂′jEq
[(
gab∂a log(p

√
|G|) + ∂ag

ab
)
∂bK + gab∂a∂bK

]
.

Simulate the dynamics: z(s) ← z(s) + εX∗(z(s)).
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ParVIs on Riemannian Manifolds

Experimental Results (coordinate space):
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(b) On Covertype dataset

Figure: Test accuracy along iteration for BLR. Both methods are run 20 times on Splice19 and

10 times on Covertype.
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ParVIs on Riemannian Manifolds

Functional gradient in the embedded space:

Proposition 8 (Functional Gradient in the Embedded Space)

Let m-dim M isometrically embedded in Rn (with orthonormal basis
{yα}nα=1)) via Ξ :M→ Rn. Then X∗′ = (In −N ′N ′>)∇′f∗′,

f∗′ = Eq
[(
∇ log

(
p
√
|G|
))>(

In − PP>
)

(∇K) +∇>∇K

− tr
(
P>(∇∇>K)P

)
+
(

(J>∇)>(G−1J>)
)

(∇K)
]
,

where ∇ = (∂y1 , . . . , ∂yn)>, Jn×m : Jai = ∂ya

∂zi
, and P ∈ Rn×(n−m) is the

set of orthonormal basis of the orthogonal complement of Ξ∗(TzM).

Simulate the dynamics with exponential map:

y(s) ← Expy(s)(εX
∗(y(s))).

(Is a coordinate-independent expression possible?)
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ParVIs on Riemannian Manifolds

Functional gradient on hyperspheres:

Proposition 9 (Functional Gradient for Embedded Hyperspheres)

For Sn−1 isometrically embedded in Rn with orthonormal basis {yα}nα=1,

we have X∗′ = (In − y′y′>)∇′f∗′, where f∗′ =

Eq
[
(∇log p

)>
(∇K) +∇>∇K − y>

(
∇∇>K

)
y − (y>∇log p+ n− 1)y>∇K

]
.

Simulate the dynamics with exponential map on Sn−1:

Expy(v) = y cos(‖v‖) + (v/‖v‖) sin(‖v‖).
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ParVIs on Riemannian Manifolds

Experimental Results (embedded space):
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(a) Results with 100 particles
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(b) Results at 200 epochs

Figure: Results on the SAM inference task on 20News-different dataset, in log-perplexity.

SGGMCf: full batch; SGGMCb: mini-batch of size 50.
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Understanding Samping Methods on Probability Manifolds

Questions on ParVIs and MCMCs

ParVIs exhibit the intuition of minimizing KLp(·) on a probability
space, along the speedest descending direction. Can this be made
concrete?

Liu (2017) [45] conceives a probability manifold where SVGD simulates
the gradient flow. But the validity of the artificial manifold is unknown.

ParVIs do not assume a parametric statistical model, but need a
kernel (or other treatment). Do they need an assumption / make an
approximation?

Do general MCMCs have a flow/optimization interpretation?

Things are made clear on the Wasserstein space.
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The Wasserstein Space

For a metric space (M, d):
P2(M) :=

{
q: distribution on M

∣∣ ∃x0 ∈M s.t. Eq[d(x0, x)2] < +∞
}
.

P2(M) is a metric space ([70], Def 6.4) with the Wasserstein distance:

dW (q, p) :=
(

inf
π∈Π(q,p)

Eπ(x,y)[d(x, y)2]
)1/2

,

where

Π(q, p) :=

{
π: distribution on M×M

∣∣∣∣ ∫
M
π(x, y) dy = q(x),∫

M
π(x, y) dx = p(y)

}
.
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The Wasserstein Space: Riemannian Structure

For a Riem. manif. (M, 〈·, ·〉TxM), P2(M) also has a Riem. str. [58, 70, 6]:

Tangent vector v ⇐⇒ vector field X on M.

Tangent space at q: TqP2(M) = {grad f | f ∈ C∞c (M)}L
2
q(M)

is a subspace of L2
q(M) := {X | Eq(x)

[
〈X(x), X(x)〉TxM

]
<∞}.

([70], Thm 13.8; [6], Thm 8.3.1, Def 8.4.1, Prop 8.4.5)
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The Wasserstein Space: Riemannian Structure

For a Riem. manif. (M, 〈·, ·〉TxM), P2(M) also has a Riem. str. [58, 70, 6]:

Riemannian structure: TqP2 inherits the inner product of L2
q :

〈X,Y 〉TqP2
= Eq(x)

[
〈X(x), Y (x)〉TxM

]
.

It is consistent with dW [8].
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The Wasserstein Space: Riemannian Structure

Gradient flow on P2(M) for KLp(q) := Eq[log(q/p)] (using Riem.
meas):

P2(M) as a Riemannian manifold:

V GF := − grad KLp(q) = − grad
( δ
δq

KLp(q)
)

= grad log(p/q).

([70], Thm 23.18; [6], Example 11.1.2)

P2(M) as a metric space: e.g., Minimizing Movement Scheme (MMS)
([6], Def. 2.0.6):

qt+ε = argmin
q∈P2(M)

KLp(q) +
1

2ε
d2
W (q, qt).

They coincide under the Riemannian structure. ([70], Prop. 23.1,

Rem. 23.4; [6], Thm. 11.1.6; [24], Lem. 2.7)

Exponential convergence when p is log-concave. ([70], Thm 23.25, Thm

24.7; [6], Thm 11.1.4)

Chang Liu (MSRA) Sampling Methods and Manifolds 48 / 82



Understanding Samping Methods on Probability Manifolds The Wasserstein Space

Langevin Dynamics as Wasserstein Gradient Flow

The Langevin dynamics

dx = ∇ log p(x) dt+
√

2 dBt(x)

produces the same [14] evolving distr. (qt) as:

dx = ∇ log(p(x)/qt(x)) dt,

which is the gradient flow of KLp on P2(M) for Euclidean M.

The gradient flow interpretation of LD is known earlier from the
MMS perspective [34].
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Understanding ParVIs on the Wasserstein Space

Understand and accelerate ParVIs from the Wasserstein gradient flow
perspective [43].

Consider Euclidean M = Rm for brevity.
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SVGD Approximates the Wasserstein Gradient Flow

Reformulate V GF as:

V GF = max · argmax
V ∈L2

q,‖V ‖L2q=1

〈
V GF, V

〉
L2
q
. (2)

We find:

Theorem 10 (V SVGD approximates V GF)

V SVGD = max · argmax
V ∈HD,‖V ‖HD=1

〈
V GF, V

〉
L2
q
.

HD is a subspace of L2
q , so V SVGD is the projection of V GF on HD.
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ParVIs Approx. the Wass. Gradient Flow by Smoothing

Smoothing Functions

SVGD restricts the optimization domain L2
q to HD.

Theorem 11 (HD smooths L2
q)

For M = RD, a Gaussian kernel K on M and an absolutely continuous q,
the vector-valued RKHS HD of K is isometrically isomorphic to the

closure G := {φ ∗K : φ ∈ C∞c }
L2q .

C∞c
L2q = L2

q ([36], Thm. 2.11) =⇒ G is roughly the kernel-smoothed L2
q .

Smoothing the Density

The Blob method (w-SGLD-B) [14]: partially smooths the density.

V GF = −∇
( δ
δq

Eq[log(q/p)]
)

=⇒ V Blob = −∇
( δ
δq

Eq[log(q̃/p)]
)
,

where q̃ := q ∗K is the kernel-smoothed density.

Chang Liu (MSRA) Sampling Methods and Manifolds 53 / 82



Understanding Samping Methods on Probability Manifolds Understanding ParVIs on the Wasserstein Space

ParVIs Approx. the Wass. Gradient Flow by Smoothing

Equivalence:
Smoothing-function objective = Eq[L(V )], L : L2

q → L2
q linear.

=⇒ Eq̃[L(V )] = Eq∗K [L(V )] = Eq[L(V ) ∗K] = Eq[L(V ∗K)].

Necessity: grad KLp(q) undefined at q = q̂ := 1
N

∑N
i=1 δx(i) .

Theorem 12 (Necessity of smoothing for SVGD)

For q = q̂ and V ∈ L2
p, problem (2):

max
V ∈L2

p,‖V ‖L2p=1

〈
V GF, V

〉
L2
q̂

,

has no optimal solution. In fact the supremum of the objective is infinite,
indicating that a maximizing sequence of V tends to be ill-posed.

ParVIs rely on the smoothing assumption! No free lunch!
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New ParVIs with Smoothing

Gradient Flow with Smoothed Density (GFSD):
Fully smooth the density:

V GFSD := ∇ log p−∇ log q̃.

Gradient Flow with Smoothed test Functions (GFSF):

V GF = ∇ log p−∇ log q

=⇒ V GF = ∇ log p+ argmin
U∈L2

max
φ∈C∞c ,
‖φ‖L2q=1

(
Eq[φ · U −∇ · φ]

)2
.

Smooth φ: take φ from HD:

V GFSF := ∇ log p+ argmin
U∈L2

max
φ∈HD,
‖φ‖HD=1

(
Eq[φ · U −∇ · φ]

)2
.

Solution: V̂ GFSF = V̂ + K̂ ′K̂−1. (Note V̂ SVGD = V̂ GFSFK̂.)
V̂:,i = ∇x(i) log p(x(i)), K̂ij = K(x(i), x(j)), K̂′:,i =

∑
j ∇x(j)K(x(j), x(i)).
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Bandwidth Selection via the Heat Equation

Note

Under the dynamics dx = −∇ log qt(x) dt, qt evolves following the heat
equation (HE): ∂tqt(x) = ∆qt(x).

Smoothing the density: qt(x) ≈ q̃(x) = q̃(x; {x(i)}Ni=1). Then for qt+ε(x),

Due to HE, qt+ε(x) ≈ q̃(x) + ε∆q̃(x).

Due to the effect of the dynamics, updated particles
{x(i)−ε∇ log q̃(x(i))}Ni=1 approximate qt+ε, so
qt+ε(x) ≈ q̃(x; {x(i)−ε∇ log q̃(x(i))}Ni=1).

Objective:
∑

k

(
q̃(x(k)) + ε∆q̃(x(k))− q̃(x(k); {x(i)−ε∇ log q̃(x(i))}Ni=1)

)2
.

Take ε→ 0, make the objective dimensionless (h/x2 is dimensionless):

1
hD+2

∑
k

[
∆q̃(x(k); {x(i)}i)+

∑
j∇x(j) q̃(x(k); {x(i)}i)·∇log q̃(x(j); {x(i)}i)

]2
.

Also applicable to smoothing functions.
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Bandwidth Selection via the Heat Equation

Median:

HE:

SVGD Blob GFSD GFSF

Figure: Comparison of HE (bottom row) with the median method (top row) for
bandwidth selection.
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Accelerated First-Order Methods on the Wasserstein Space

Nesterov’s Acceleration Methods on Riemannian Manifolds:
rk ∈ P2(M): auxiliary variable. Vk := − grad KL(rk).

Riemannian Accelerated Gradient (RAG) [47] (with simplification):{
qk = Exprk−1

(εVk−1),

rk = Expqk

[
−Γqkrk−1

(
k−1
k Exp−1

rk−1
(qk−1)− k+α−2

k εVk−1

)]
.

Riemannian Nesterov’s method (RNes) [74] (with simplification):{
qk = Exprk−1

(εVk−1),

rk = Expqk
{
c1 Exp−1

qk

[
Exprk−1

(
(1−c2) Exp−1

rk−1
(qk−1)+c2 Exp−1

rk−1
(qk)

)]}
.

Required:

Exponential map Expq : TqP2(M)→ P2(M) and its inverse.

Parallel transport Γrq : TqP2(M)→ TrP2(M).
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Accelerated First-Order Methods on the Wasserstein Space

Leveraging the Riemannian Structure of P2(M):

Exponential map ([70], Coro. 7.22; [6], Prop. 8.4.6; [24], Prop. 2.1):
Expq(V ) = (id +V )#q, i.e.,

{x(i)}i ∼ q ⇒ {x(i)+V (x(i))}i ∼ Expq(V ).

Inverse exponential map: require the optimal transport map.

Sinkhorn methods [17, 72] appear costly and unstable.
Make approximations when {x(i)}i and {y(i)}i are pairwise close:
d(x(i), y(i))� min

{
minj 6=i d(x(i), x(j)),minj 6=i d(y(i), y(j))

}
.

Proposition 13 (Inverse exponential map)

For pairwise close samples {x(i)}i of q and {y(i)}i of r, we have(
Exp−1

q (r)
)
(x(i)) ≈ y(i) − x(i).
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Accelerated First-Order Methods on the Wasserstein Space

Leveraging the Riemannian Structure of P2(M):

Parallel transport

Hard to implement analytical results [49, 50].
Use Schild’s ladder method [23, 35] for approximation.

Proposition 14 (Parallel transport)

For pairwise close samples {x(i)}i of q and {y(i)}i of r, we have(
Γrq(V )

)
(y(i)) ≈ V (x(i)), ∀V ∈ TqP2.
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Accelerated First-Order Methods on the Wasserstein Space

Algorithm 3 The acceleration framework with Wasserstein Accelerated Gra-
dient (WAG) and Wasserstein Nesterov’s method (WNes)

1: WAG: select acceleration factor α > 3;
WNes: select or calculate c1, c2 ∈ R+;

2: Initialize {x(i)
0 }Ni=1 distinctly; let y

(i)
0 = x

(i)
0 ;

3: for k = 1, 2, · · · , kmax, do
4: for i = 1, · · · , N , do

5: Find V (y
(i)
k−1) by SVGD/Blob/GFSD/GFSF;

6: x
(i)
k = y

(i)
k−1 + εV (y

(i)
k−1);

7: y
(i)
k = x

(i)
k +

{
WAG: k−1

k (y
(i)
k−1 − x

(i)
k−1) + k+α−2

k εV (y
(i)
k−1);

WNes: c1(c2 − 1)(x
(i)
k − x

(i)
k−1);

8: end for
9: end for

10: Return {x(i)
kmax
}Ni=1.
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Accelerated First-Order Methods on the Wasserstein Space

Experimental results: Bayesian inference for Latent Dirichlet Allocation:
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Figure: Acceleration effect of WAG and WNes on
LDA (measured by hold-out perplexity).
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of ParVIs and MCMCs.
Average over 10 runs.
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Understanding MCMCs on the Wasserstein Space

Understanding MCMC dynamics as flows on the Wasserstein Space [44]:

The Langevin dynamics (LD) is recognized as the Wasserstein
gradient flow of the KL divergence [34].

Benefits its asymptotic [63] and non-asymptotic [22, 16] behaviors.
Relates it to ParVIs [14, 43].

Does a general MCMC dynamics correspond to an interpretable flow
on the Wasserstein space?
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The First Reformulation

Lemma 15 (Equivalent deterministic MCMC dynamics)

A general MCMC dynamics specified by a symm. pos. semi-def. D and
skew-symm. Q via Eq. (1) produces the same distr. evolution as the
deterministic dynamics:

dx = Wt(x) dt,

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x),
(3)

where qt is the distribution density of x at time t.

=⇒ Barbour’s generator [7]
Af := d

dtEqt [f ]
∣∣
qt=δx

= 1
p∂j
[
p
(
Dij +Qij

)
(∂if)

]
(c.f. [29]).

How to interpret Wt(x)?
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deterministic dynamics:

dx = Wt(x) dt,

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x),
(3)

where qt is the distribution density of x at time t.

=⇒ Barbour’s generator [7]
Af := d

dtEqt [f ]
∣∣
qt=δx

= 1
p∂j
[
p
(
Dij +Qij

)
(∂if)

]
(c.f. [29]).

How to interpret Wt(x)?
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Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P2(M).

Euclidean M: D = I.

Hilbert M: constant and non-singular D.

Riemannian M: non-singular D(x).

We need positive semi-definite D(x).
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Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P2(M).

Fiber Bundle M (of dim. M = m+ n)
(known knowledge):

M is locally M0 ×F (dim(M0) = m,
dim(F) = n) [57] in terms of a projection
$:

$ :M→M0
locally⇐⇒ M0 ×F →M0.

The fiber through y ∈M0:
My := $−1(y) (diffeom. to F).
Coordinate decomposition: x = (y, z),
y ∈ Rm: coord. of M0;
z ∈ Rn: coord. of My.
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Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P2(M).

Fiber-Riemannian manifold M:

Definition 3 (Fiber-Riemannian manifold)

M is a fiber-Riemannian manifold if it is a fiber
bundle and there is a Riemannian structure gMy

on each fiber My.
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Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P2(M).

Fiber-Riemannian manifold M:

Definition 3 (Fiber-Riemannian manifold)

M is a fiber-Riemannian manifold if it is a fiber
bundle and there is a Riemannian structure gMy

on each fiber My.

Gradient on fiber My:(
gradMy

f(y, z)
)a

= (gMy (z))ab ∂zbf(y, z), 1 6 a, b 6 n.

Define fiber-gradient on M by taking union over y:(
gradfib f(x)

)
M

:=
(
0m,

(
gradM$(x)

f($(x), z)
)
n

)
.
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Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P2(M).

Fiber-Riemannian manifold M:

Definition 3 (Fiber-Riemannian manifold)

M is a fiber-Riemannian manifold if it is a fiber
bundle and there is a Riemannian structure gMy

on each fiber My.

Alternatively, the fiber-gradient on M is:(
gradfib f(x)

)i
=g̃ij(x) ∂jf(x), 1 6 i, j 6M,(

g̃ij(x)
)
M×M :=

(
0m×m 0m×n
0n×m

(
(gM$(x)

(z))ab
)
n×n

)
. (4)

We use g̃ to denote the fiber-Riemannian structure.
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Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P2(M).

Structures on P2(M) with fiber-Riemannian M.

Hard to decompose P2(M).

P̃2(M) := {q(z|y) ∈ P2(My) | y ∈M0}
locally⇐⇒ M0 × P2(My):

fiber-Riemannian!
On P2(My),

(
grad KLp(·|y)(q(·|y))(z)

)a
= (gMy

(z))ab ∂zb log
q(z|y)

p(z|y)
= (gMy

(z))ab ∂zb log
q(y, z)

p(y, z)
, 1 6 a, b 6 n.

Taking union over y ∈M0, the fiber-gradient on P̃2(M) is:(
gradfib KLp(q)(x)

)
M

=
(
g̃ij(x) ∂j log

(
q(x)/p(x)

))
M
.
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Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P2(M).(
gradfib KLp(q)(x)

)i
= g̃ij(x) ∂j log

(
q(x)/p(x)

)
,

(g̃ij(x)) =

(
0m×m 0m×n
0n×m (gM$(x)

ij)n×n

)
.

Assumption 4 (Regular MCMC dynamics (1/2))

(a) D = C or D = 0 or D =

(
0 0
0 C

)
, for a symm. positive definite C(x).

(b) . . .

Satisfied by existing MCMC instances.
Could be relaxed by coordinate transformation.

Dij ∂j log(p/qt) is the fiber-gradient with fiber-Riemannian support
(M, g̃) where (g̃ij) = D.
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Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

2 Qij(x) ∂j log p(x) + ∂jQ
ij(x) makes a Hamiltonian flow.

The common Hamiltonian flow: M = R2`, Q =

(
0 I`
−I` 0

)
.

Symplectic manifold [18, 52]: M even-dim., Q non-singular.
Poisson manifold M [25]:

Poisson structure: bivector field β = βij∂i ⊗ ∂j =
∑
i<j β

ij∂i ∧ ∂j
(anti-symm. 2nd-order contravariant tensor field; (βij) is skew-symm.)
that satisfies the Jacobian identity:

βil∂lβ
jk + βjl∂lβ

ki + βkl∂lβ
ij = 0,∀i, j, k. (5)

Hamiltonian flow Xf of a smooth function f :(
Xf (x)

)
[h] :=

(
β(df, dh)

)
(x) = βij(x) ∂if(x) ∂jh(x).

Coordinate expression:
(
Xf (x)

)i
= βij(x) ∂jf(x).

Xf conserves f : d
dtf(ϕt) = 0.
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Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

2 Qij(x) ∂j log p(x) + ∂jQ
ij(x) makes a Hamiltonian flow.

Poisson structure on P2(M) [49, 5, 26] (known knowledge):
Hamiltonian flow of a function F on P2(M):

XF (q) = πq(Xf ),

where func. f on M relates to F via gradq Eq[f ] = gradq F (q), and
πq is the orthogonal projection L2

q(M)→ TqP2(M), which does not
change distribution evolution.

Hamiltonian flow of KL on P2(M):

Lemma 2 (Hamiltonian flow of KL on P2(M))

The Hamiltonian flow of KLp on P2(M) is:

XKLp(q) = πq(Xlog(q/p)), where
(
Xlog(q/p)(x)

)i
= βij(x) ∂j log(q(x)/p(x)).
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Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

2 Qij(x) ∂j log p(x) + ∂jQ
ij(x) makes a Hamiltonian flow.

−
(
Xlog(q/p)(x)

)i
= βij(x) ∂j log p(x)− βij(x) ∂j log q(x).

Assumption 4 (Regular MCMC dynamics (2/2))

(a) D = C or D = 0 or D =

(
0 0
0 C

)
, for a symm. positive definite C(x).

(b) Q(x) satisfies Eq. (5): Qil∂lQ
jk +Qjl∂lQ

ki +Qkl∂lQ
ij = 0, ∀i, j, k.

Satisfied by MCMCs except for SGNHT-related methods [20, 75].
Required to match Poisson structure; unnecessary for conservation of
Hamiltonian.

Qij ∂j log p+ ∂jQ
ij ⇐⇒? Qij ∂j log p−Qij ∂j log q? Yes!
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Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

2 Qij(x) ∂j log p(x) + ∂jQ
ij(x) makes a Hamiltonian flow.

−
(
Xlog(q/p)(x)

)i
= βij(x) ∂j log p(x)− βij(x) ∂j log q(x).

Assumption 4 (Regular MCMC dynamics (2/2))

(a) D = C or D = 0 or D =

(
0 0
0 C

)
, for a symm. positive definite C(x).

(b) Q(x) satisfies Eq. (5): Qil∂lQ
jk +Qjl∂lQ

ki +Qkl∂lQ
ij = 0, ∀i, j, k.

Satisfied by MCMCs except for SGNHT-related methods [20, 75].
Required to match Poisson structure; unnecessary for conservation of
Hamiltonian.

Qij ∂j log p+ ∂jQ
ij ⇐⇒? Qij ∂j log p−Qij ∂j log q? Yes!

Chang Liu (MSRA) Sampling Methods and Manifolds 72 / 82



Understanding Samping Methods on Probability Manifolds Understanding MCMCs on the Wasserstein Space

Interpret MCMC Dynamics: Main Theorem

Theorem 5 (Equivalence between regular MCMC dynamics on RM and
fGH flows on P2(M).)

We call (M, g̃, β) a fiber-Riemannian
Poisson (fRP) manifold, and define the
fiber-gradient Hamiltonian (fGH) flow on
P2(M) as:

WKLp :=−π(gradfib KLp)−XKLp ,(
WKLp(q)

)i
=πq

(
(g̃ij + βij)∂j log(p/q)

)
.

(6)

Then:

Regular MCMC dynamics ⇐⇒ fGH flow with fRP M,
(D,Q) ⇐⇒ (g̃, β).
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Interpret MCMC Dynamics: Case Study

Type 1: D is non-singular (m = 0 in Eq. (4)).

M0 degenerates, M is the unique fiber.

M is Riemannian, fiber gradient =⇒ gradient.

The fGH flow: WKLp = −π(grad KLp)−XKLp ,

−π(grad KLp): minimizes KLp steepestly on P2(M).
−XKLp : conserves KLp on P2(M) and helps mixing/exploration.

Converges to p uniquely (c.f. [51]).

Robust to SG (c.f. [65, 69]).

Instances:

LD [62] / SGLD [71]: Q = 0, M is Euclidean.

RLD [28] / SGRLD [60]: Q = 0, M is the manifold under
consideration.
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Interpret MCMC Dynamics: Case Study

Type 2: D = 0 (n = 0 in Eq. (4)).

M0 =M, fibers degenerate.

M has no (fiber-)Riemannian structures.

The fGH flow: WKLp = −XKLp conserves KLp on P2(M) and helps
mixing/exploration.

Fragile against SG: no stablizing forces (i.e. (fiber-)gradient flows)
(c.f. [15, 9]).

Hard to extend to ParVIs.

Instances (`-dim. sample space S):

HMC [21, 56, 10] (S = R`): M = R2`.

HMC relies on geometric ergodicity for convergence [48, 10].

RHMC [28] / LagrMC [38] / GMC [12] (manifold S): M = T ∗S.
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Interpret MCMC Dynamics: Case Study

Type 3: D 6= 0 and D is singular (m,n > 1 in Eq. (4)).

Non-degenerate M0 and My.

M is a non-trivial fRP manifold.

The fGH flow: WKLp := −π(gradfib KLp)−XKLp ,

−π(gradfib KLp): minimizes KLp(·|y)(q(·|y)) steepest on each fiber
P2(My).
−XKLp : conserves KLp on P2(M) and helps mixing/exploration.

Robust to SG (SG appears on each fiber) (c.f. [15, 13]).

Instances (`-dim. sample space S):

SGHMC [15] (S = R`), SGRHMC [51] / SGGMC [42] (manifold S):
M0 = S, Mθ = T ∗θ S.

SGNHT [20] (S = R`), gSGNHT [42] (manifold S):
M0 = S, Mθ = R× T ∗θ S.
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ParVI Simulation for SGHMC

Simulate the deterministic dynamics of SGHMC:

By Lemma 15 (Eq. (3)):


dθ

dt
= Σ−1r,

dr

dt
= ∇θ log p(θ)− CΣ−1r − C∇r log q(r).

By Theorem 5 (Eq. (6)):


dθ

dt
= Σ−1r +∇r log q(r),

dr

dt
= ∇θlog p(θ)−CΣ−1r−C∇rlog q(r)−∇θlog q(θ).

To estimate ∇ log q with particles, use ParVI techniques [43], e.g.
Blob [14]:

−∇rlog q(r(i))≈ −
∑

k∇r(i)K
(i,k)
r∑

jK
(i,j)
r

−
∑
k

∇r(i)K
(i,k)
r∑

jK
(j,k)
r

,

where K
(i,j)
r := Kr(r

(i), r(j)).
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ParVI Simulation for SGHMC

Simulate the deterministic dynamics of SGHMC:

pSGHMC-det:


∆θ(i)

ε =Σ−1r(i),

∆r(i)

ε =∇θlog p(θ(i))−CΣ−1r(i)−C
(∑

k∇r(i)K
(i,k)
r∑

jK
(i,j)
r

+
∑
k

∇
r(i)

K(i,k)
r∑

jK
(j,k)
r

)
.

pSGHMC-fGH:



∆θ(i)

ε = Σ−1r(i)+
∑
k∇r(i)K

(i,k)
r∑

jK
(i,j)
r

+
∑
k

∇
r(i)

K(i,k)
r∑

jK
(j,k)
r

,

∆r(i)

ε = ∇θlog p(θ(i))−
(∑

k∇θ(i)K
(i,k)
θ∑

jK
(i,j)
θ

+
∑
k

∇
θ(i)

K
(i,k)
θ∑

jK
(j,k)
θ

)
− CΣ−1r(i) − C

(∑
k∇r(i)K

(i,k)
r∑

jK
(i,j)
r

+
∑
k

∇
r(i)

K(i,k)
r∑

jK
(j,k)
r

)
.

Advantages:

Over SGHMC: particle-efficiency, ParVI techniques like HE [43].

Over ParVIs: more efficient dynamics over LD.

Chang Liu (MSRA) Sampling Methods and Manifolds 78 / 82



Understanding Samping Methods on Probability Manifolds Understanding MCMCs on the Wasserstein Space

Experimental Results: Synthetic

Figure: Dynamics simulation results. Rows correspond to Blob, SGHMC,
pSGHMC-det, pSGHMC-fGH, respectively. All methods adopt the same step size
0.01, and SGHMC-related methods share the same Σ−1 = 1.0, C = 0.5. In each
row, figures are plotted for every 300 iterations, and the last one for 10,000
iterations. The HE method [43] is used for bandwidth selection.
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Experimental Results: Latent Dirichlet Allocation (LDA)
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Figure: Performance on LDA with the ICML data set.
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Experimental Results: Bayesian Neural Networks (BNNs)
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Figure: Performance on BNN with MNIST data set.
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Thanks!
Questions?
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