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Introduction

Introduction

What is known about dynamics-based MCMC:

@ There are many instances, e.g. Langevin dynamics (LD) [30], Hamiltonian Monte Carlo
(HMC) [12], stochastic gradient HMC (SGHMC) [8], etc.
@ LD is recognized as the gradient flow of the KL divergence on the Wasserstein space [18].

e Then its asymptotic [30] and non-asymptotic [13, 9] behaviors are clear.
e Then its relation to existing particle-based variational inference methods (ParVIs) is
clear [7, 21].

What remains unknown:

@ Whether a general MCMC dynamics can be explained as an interpretable flow.

C. Liu, J. Zhuo, J. Zhu (THU) MCMC Dynamics as Wasserstein Flows 4 /35



Introduction

Introduction

Motivation
Explain a general MCMC dynamics as an interpretable flow.

@ Then the behavior of general MCMC dynamics is clear.

@ Then more MCMC dynamics than LD are connected to the ParVI family: ParVIs with
more efficient MCMC dynamics, and MCMCs with more effective ParVI simulation.
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Preliminaries

Manifolds

Manifold M:
@ Locally homeomorphic to an open subset of RM . g
@ We consider manifolds globally homeomorphic to

RM (global coordinate space).
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Preliminaries

Manifolds

Manifold M: M
@ Locally homeomorphic to an open subset of RM . g
@ We consider manifolds globally homeomorphic to

RM (global coordinate space).

Flows on M:
@ The set of curves {(p;)¢} s.t. % = X (¢¢) given a
vector field X. (@r)e

@ We use “vector fields” and “flows” interchangeably.
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Manifolds

Riemannian structure on M:
@ An inner product in every tangent space 1, M.

e Coordinate expression:
(1, ) g, 0 = g3 ()"0

o Gradient: (grad f(z),v)p, = v[f] := v'8; f(x), o .
<> steepest ascending direction: R 'ul)i

grad f(r) = max - argmax|,| 1 L 1)
Coordinate expression:

(grad f(ac))Z = gij(:n)ajf(x).
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Manifolds

Wasserstein space P(M):
@ Space of distributions on M (finite variance).
@ Tangent vector v <= vector field X on M.
e Tangent space at ¢ € P(M)

T,P(M) = {grad f | F € Co (M)} "
is a subspace of the Hilbert space q:(x)  mmmp Gree(0)
LGM) = A{X | Eq(a) [(X (@), X (), pq] < 00}
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Manifolds

Wasserstein space P(M):
@ Space of distributions on M (finite variance).
@ Tangent vector v <= vector field X on M.
e Tangent space at ¢ € P(M)
T,P(M) = {arad /| T € C2(M)}

is a subspace of the Hilbert space q:(x) ) Gerc(x)
@ Riemannian structure:

T,P inherits the inner product of L’2
o Gradient of KLy(q) := [, log q/p dg:

grad KLp(Q) = gradlog(q/p), (grad KL,(q))' (z) = g” (z) 9; log(q(x) /p(x)).
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LD as Gradient Flow

Equivalent dynamics:
@ They produce the same distribution evolution rule.
e X and my(X) are equivalent, where 7, : Eg — T, P is the orthogonal projection.
LD as Gradient Flow:
@ The Langevin dynamics
dz = Vlegp(z)dt + V2dBy(z)

is equivalent [7] to the deterministic dynamics:

dz = Vlog(p(z)/q(x)) dt,
where ¢; is the distribution of x at time ¢.

It is the gradient flow of KL, on P(M) for Euclidean M!

@ The gradient flow interpretation of LD is known earlier from another perspective [18].
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MCMC Dynamics as Wasserstein Flows
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Describe General MCMC Dynamics

The complete recipe [24] (known knowledge):

e A general MCMC dynamics on RM targeting p can be expressed as the diffusion process:

dz =V (x)dt ++/2D(z) dBy(x),
. 1 - g

Vi(z :—8-<px DY (z) 4+ QY (z ),
(@) = 50 () (D () + QY (2)
for some positive semi-definite matrix Djsxas (diffusion matrix) and some
skew-symmetric matrix Qarxas (curl matrix).

(1)
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MCMC Dynamics as Wasserstein Flows

The First Reformulation

Lemma 1 (Equivalent deterministic MCMC dynamics)

MCMC dynamics Eq. (1) with symmetric D is equivalent to the deterministic dynamics:

dz = Wy(z)dt,
(Wy)i(x) = DY (x) 9;log(p(x)/q:(x)) + Q¥ (x) d; log p(x) + 8;QY (),

where q; is the distribution density of x at time t.
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MCMC Dynamics as Wasserstein Flows

The First Reformulation

Lemma 1 (Equivalent deterministic MCMC dynamics)

MCMC dynamics Eq. (1) with symmetric D is equivalent to the deterministic dynamics:
dz = Wy(z)dt,

(Wy)i(x) = DY (x) 9;log(p(x)/q:(x)) + Q¥ (x) d; log p(x) + 8;QY (),

where q; is the distribution density of x at time t.

(@)

e —> Barbour’s generator [2] Af := $E,[f]| =19;[p (DY 4+ Q"7) (8;)] (c.f. [17]).

Qt:(sz o ]77
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MCMC Dynamics as Wasserstein Flows

The First Reformulation

Lemma 1 (Equivalent deterministic MCMC dynamics)

MCMC dynamics Eq. (1) with symmetric D is equivalent to the deterministic dynamics:
dz = Wy(z)dt,

(Wy)i(x) = DY (x) 9;log(p(x)/q:(x)) + Q¥ (x) d; log p(x) + 8;QY (),

where q; is the distribution density of x at time t.

(@)

e —> Barbour’s generator [2] Af := $E,[f]| 10;[p (DY + QY) (9, f)] (c.f. [17]).

qt=6z P

How to interpret W;(x)?
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Interpret MCMC Dynamics

(Wo)'(z) = DV () 9; log(p(x) /q:(x)) + Q¥ (x) 0; log p(x) + 8;Q" ().
1 DY(z)d;log(p(x)/q:(x)) seems like a gradient flow on P(M).
@ Euclidean M only allows D = 1.
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Interpret MCMC Dynamics

(W) (w) = DV () 9; log(p(x) /q:(x)) + Q" () 9; log p(=) + 8;Q" (x).

1 DY(z)d;log(p(x)/q:(x)) seems like a gradient flow on P(M).
@ Euclidean M only allows D = 1.

@ Hilbert M only allows constant and non-singular D.
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Interpret MCMC Dynamics

(W) (x) = DY () 0jlog(p(z)/q:(x)) + QY (x) d; log p(x) + 8;Q" (z).
D (x) 9;log(p(z)/q:(z)) seems like a gradient flow on P(M).
Euclidean M only allows D = I.

Hilbert M only allows constant and non-singular D.

[y

@ Riemannian M allows position-dependent D(z), but D(z) needs to be non-singular.
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Interpret MCMC Dynamics

(W) (x) = DY () 0jlog(p(z)/q:(x)) + QY (x) d; log p(x) + 8;Q" (z).
1 DY(z)d;log(p(x)/q:(x)) seems like a gradient flow on P(M).
@ Euclidean M only allows D = 1.
@ Hilbert M only allows constant and non-singular D.
@ Riemannian M allows position-dependent D(z), but D(z) needs to be non-singular.

e What kind of M allows position-dependent and positive semi-definite D(x)?
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Interpret MCMC Dynamics

(Wo)'(z) = DV () 9; log(p(x) /q:(x)) + Q¥ (x) 0; log p(x) + 8;Q" ().
1 DY(z)d;log(p(x)/q:(x)) seems like a gradient flow on P(M).

o Fiber Bundle M (of dim. M = m + n) (known knowledge):

o M is locally Mg x F (Mg of dim. m, F of dim. n) [27] in
terms of a projection w:

locally

w:M—>M0<:>M0><]:—>M0.
o The fiber through y € My:
M, == w 1(y) (diffeom. to F).

o Coordinate decomposition: z = (y, 2),
y € R™: coord. of My; z € R": coord. of M,,.

C. Liu, J. Zhuo, J. Zhu (THU) MCMC Dynamics as Wasserstein Flows 15 / 35



Interpret MCMC Dynamics

(Wo)'(z) = DV () 9; log(p(x) /q:(x)) + Q¥ (x) 0; log p(x) + 8;Q" ().
1 DY(z)d;log(p(x)/q:(x)) seems like a gradient flow on P(M).

@ Fiber-Riemannian manifold M:
Definition 3 (Fiber-Riemannian manifold)

M is a fiber-Riemannian manifold if it is a fiber bundle and
there is a Riemannian structure gy, on each fiber M,.

Coord.Sp. AR"
RM=mtn f /x=(y,2)

Z
7 y=wx) R™
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Interpret MCMC Dynamics

(Wo)'(z) = DV () 9; log(p(x) /q:(x)) + Q¥ (x) 0; log p(x) + 8;Q" ().
1 DY(z)d;log(p(x)/q:(x)) seems like a gradient flow on P(M).

@ Fiber-Riemannian manifold M:
Definition 3 (Fiber-Riemannian manifold)

M is a fiber-Riemannian manifold if it is a fiber bundle and
there is a Riemannian structure gy, on each fiber M,.

o Gradient on fiber M,: ) l
(grad./\/ly f(y> Z)) :(gMy (z))a azbf(y7 Z)a Coord. Sp_ R"
1<ab<n. RM=m+n gZ/X=(y,Z)
o Define fiber-gradient on M by taking union over y: 7 y=wk R™
(gradgp f(x)),, == (Om, (gradem f(w(x),2)) ).
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Interpret MCMC Dynamics

(Wo)'(z) = DV () 9; log(p(x) /q:(x)) + Q¥ (x) 0; log p(x) + 8;Q" ().
1 DY(z)d;log(p(x)/q:(x)) seems like a gradient flow on P(M).

@ Fiber-Riemannian manifold M:
Definition 3 (Fiber-Riemannian manifold)

M is a fiber-Riemannian manifold if it is a fiber bundle and
there is a Riemannian structure gy, on each fiber M,.

o Alternatively, the fiber-gradient on M is: l
(gradsp f(a:))z =37 (x)0;f(x), 1<i,j<M, Coord. Sp. sR"
/x = (y,2)

]RM:m+n
(57 (x)) — (Omxm O
g MxM Onxm ((ng(z)(z))ab)nxn '

(3)

Z
7 y=wx) R™

We use g to denote the fiber-Riemannian structure.
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Interpret MCMC Dynamics

(Wo)'(z) = DV () 9; log(p(x) /q:(x)) + Q¥ (x) 0; log p(x) + 8;Q" ().
1 DY(z)d;log(p(x)/q:(x)) seems like a gradient flow on P(M).

@ Structures on P(M) with fiber-Riemannian M.
o Hard to decompose P(M).
locally

o Consider P(M) := {q(zly) € P(M,) | y € Mo} = My x P(M,): fiber-Riemannian!

e On P(M,), (gradKL 1 (@(ly) (= )) = (gm, (Z))ab 8. log ;])Z:z%
= (gMy (Z))ab 0. log pg/: Z; ,1<a,b<n.

e Taking union over y € My, the fiber-gradient on ’ﬁ(/\/l) is:
(grada, KLy (q)(2)),, = (Om, (M) (2))?0 0.0 10g (q(x)/p(:v)))n)

= (9" (z) 9;10g (a(x)/p(x))) s
Project to make a tangent vector on P(M): m,(grada, KL,(q)) € T,P(M).
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Interpret MCMC Dynamics

(Wo)'(z) = DV () 9; log(p(x) /q:(x)) + Q¥ (x) 0; log p(x) + 8;Q" ().
1 DY(z)d;log(p(x)/q:(x)) seems like a gradient flow on P(M).

o (radn KL (a)(0))' = () 9y 1og (a(o) p(e)) 5 = (g O ),
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Interpret MCMC Dynamics

(Wo)'(z) = DV () 9; log(p(x) /q:(x)) + Q¥ (x) 0; log p(x) + 8;Q" ().
1 DY(z)d;log(p(x)/q:(x)) seems like a gradient flow on P(M).
o (radn KL (a)(0))' = () 9y 1og (a(o) p(e)) 5 = (g O ),

0n><m (gMyij)an
Assumption 4 (Regular MCMC dynamics (1/2))

(@ D=CorD=0o0orD= 8 g , for a symmetric positive definite C(z).

(b) ...

o Satisfied by existing MCMC instances.
o Could be relaxed by coordinate transformation.
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Interpret MCMC Dynamics

(Wo)'(z) = DV () 9; log(p(x) /q:(x)) + Q¥ (x) 0; log p(x) + 8;Q" ().
1 DY(z)d;log(p(x)/q:(x)) seems like a gradient flow on P(M).
o (radn KL (a)(0))' = () 9y 1og (a(o) p(e)) 5 = (g O ),

0n><m (gMyij)an
Assumption 4 (Regular MCMC dynamics (1/2))

(@ D=CorD=0o0orD= (8 g , for a symmetric positive definite C(z).
(b) ...

o Satisfied by existing MCMC instances.
o Could be relaxed by coordinate transformation.

e D 9;log(p/q:) is the fiber-gradient with fiber-Riemannian (M, §) where (§¥) = D.
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Interpret MCMC Dynamics

(W2)'(x) = DV () 9; log(p(x) /q:(x)) + Q" () 9; log p(w) + 9;Q" (x).

2 QY(z)0jlogp(x) + 0;Q" (x) makes a Hamiltonian flow.

@ The common Hamiltonian flow: M =R, Q = < OI {)Z>
—1y
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Interpret MCMC Dynamics

(W2)'(x) = DV () 9; log(p(x) /q:(x)) + Q" () 9; log p(w) + 9;Q" (x).

2 QY(z)0jlogp(x) + 0;Q" (x) makes a Hamiltonian flow.

@ The common Hamiltonian flow: M =R, Q = < OI {)Z>
—1y

e Symplectic manifold [10, 25]: M even-dim., () non-singular.
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Interpret MCMC Dynamics

(W) (x) = DY (x) 9; log(p(x)/qr(x)) + Q¥ (x) 9; log p(x) + 0;Q ().
2 QY(z)0jlogp(x) + 0;Q" (x) makes a Hamiltonian flow.
@ The common Hamiltonian flow: M =R, Q = < OI {f)
—1y
e Symplectic manifold [10, 25]: M even-dim., ) non-singular.

@ What kind of structure can be more general, while being Hamiltonian (conserves a certain
function)?
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Interpret MCMC Dynamics

(Wo)'(z) = DY () 9; log(p(x)/q:(x)) + Q¥ (x) 0; log p(x) + 0;Q" ().
2 QY(z)0jlogp(x) + 0;Q" (x) makes a Hamiltonian flow.

@ Poisson manifold M [14] (known knowledge):

o A Poisson structure on M can be represented by a bivector field (3, whose coordinate
expression (3% (x)) is skew-symmetric and satisfies:

Bilalﬂjk + 6jlalﬂki + 6klalﬁij = O,Viajv k. (4)
o A Poisson structure defines a Hamiltonian flow X given a smooth function f:

(Xf(2))" = B9 (x) 9 f(x).
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Interpret MCMC Dynamics

(Wo)'(z) = DY () 9; log(p(x)/q:(x)) + Q¥ (x) 0; log p(x) + 0;Q" ().
2 QY(z)0jlogp(x) + 0;Q" (x) makes a Hamiltonian flow.
e Poisson structure on P(M) [23, 1, 15] (known knowledge):
o The Hamiltonian flow of a function F' on P(M) is

Xr(q) = me(Xy),

where the function f on M relates to F' by grad, E,[f] = grad, F'(q).
o The Hamiltonian flow Xy conserves F: <L F(g) = 0.
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Interpret MCMC Dynamics

(Wh)'(z) = D" (x) 9; log(p(w) /qe () + Q" () 9 log p(x) + 9;Q ().
2 QY(z)0jlogp(x) + 0;Q" (x) makes a Hamiltonian flow.
@ Poisson structure on P(M) (new):

Lemma 2 (Hamiltonian flow of KL on P(M))
The Hamiltonian flow of KL, on P(M) is

it (0) = mo(Xiog(am)» where (Xiog(qym (@) = 89 () 9; log(q() /p(x)).
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Interpret MCMC Dynamics

(W2)'(x) = DV () 9; log(p(x) /q:(x)) + Q" () 9; log p(w) + 9;Q" (x).
2 QY(z)0jlogp(x) + 0;Q" (x) makes a Hamiltonian flow.

o ~(Xiog(a/p)(@))' = B9 (z) 05 log p(x) — B () ) log ().
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Interpret MCMC Dynamics

(W2)'(x) = DV () 9; log(p(x) /q:(x)) + Q" () 9; log p(w) + 9;Q" (x).
2 QY(z)0jlogp(x) + 0;Q" (x) makes a Hamiltonian flow.

0 ~(Xiog(a/p (@))" = 87 (2) 9; log p(x) — B (x) 9; log g(x).
Assumption 4 (Regular MCMC dynamics (2/2))

(@ D=CorD=0o0orD= (8 g) for a symmetric positive definite C(x).
(b) Q(x) satisfies Eq. (4): Q"9,Q7% + Q7'9,Q" + Q¥ 9,Q" = 0,Vi, j, k.

o Satisfied by MCMCs except for SGNHT-related methods [11, 34].
e Required to match Poisson structure; unnecessary for conservation of Hamiltonian.
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Interpret MCMC Dynamics

(W2)'(x) = DV () 9; log(p(x) /q:(x)) + Q" () 9; log p(w) + 9;Q" (x).
2 QY(z)0jlogp(x) + 0;Q" (x) makes a Hamiltonian flow.

0 ~(Xiog(a/p (@))" = 87 (2) 9; log p(x) — B (x) 9; log g(x).
Assumption 4 (Regular MCMC dynamics (2/2))

(@ D=CorD=0o0orD= (8 g) for a symmetric positive definite C(x).
(b) Q(x) satisfies Eq. (4): Q"9,Q7% + Q7'9,Q" + Q¥ 9,Q" = 0,Vi, j, k.

o Satisfied by MCMCs except for SGNHT-related methods [11, 34].
e Required to match Poisson structure; unnecessary for conservation of Hamiltonian.

QY 0jlogp + 0;,Q" <= QY djlogp — QY djlogq? Yes!
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Interpret MCMC Dynamics: Main Theorem

Theorem 5 (Equivalence between regular MCMC POO: r
dynamics on RM and fGH flows on P(M).)

We call (M, g,3) a fiber-Riemannian Poisson (fRP)

M, 3, B):
manifold, and define the fiber-gradient Hamiltonian e ME
(fGH) ﬂOW on P(M) as —n(gradg,KL) MO

Wk, =—m(gradg, KLp)—XkL,, (5) (;?gé)'vilnuggﬁ: Coord Sp. R7H;
Wi, (@) =m, (3 +5) 03 log(p/a)). | ¥t Lot L

/Samples fromq, R™ /Samples fromgq: R™

Then:

Regular MCMC dynamics <= fGH flow with fRP M,
(D,Q) <= (9,5)-

v
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Interpret MCMC Dynamics: Case Study

Type 1: D is non-singular (m = 0 in Eq. (3)).
@ M degenerates, M is the unique fiber.

@ M is Riemannian, fiber gradient = gradient.
e The fGH flow: Wk, = —7(grad KL,)—&kr,,
o —m(grad KL,): minimizes KL,, steepestly on P(M).
o —Xky,: conserves KL, on P(M) and helps mixing/exploration.

e Converges to p uniquely (c.f. [24]).
@ Robust to SG (c.f. [31, 32]).
Instances:
e LD [29] / SGLD [33]: @ =0, M is Euclidean.

e RLD [16] / SGRLD [28]: @ = 0, M is the manifold under consideration.

C. Liu, J. Zhuo, J. Zhu (THU) MCMC Dynamics as Wasserstein Flows
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Interpret MCMC Dynamics: Case Study

Type 2: D=0 (n=0in Eq. (3)).
o My = M, fibers degenerate.
@ M has no (fiber-)Riemannian structures.
@ The fGH flow: Wk, = —Ak1, conserves KL, on P(M) and helps mixing/exploration.
o Fragile against SG: no stablizing forces (i.e. (fiber-)gradient flows) (c.f. [8, 3]).
@ Hard to extend to ParVls.
Instances (/-dim. sample space S):
o HMC [12, 26, 4]: S = RY; M is R*.
e HMC relies on geometric ergodicity for convergence [22, 4].
e RHMC [16] / LagrMC [19] / GMC [5]: manifold S; M is T*S.
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Interpret MCMC Dynamics: Case Study

Type 3: D # 0 and D is singular (m,n > 1 in Eq. (3)).
o Non-degenerate Mg and M,,.
@ M is a non-trivial fRP manifold.
o The fGH flow: Wky,, := —(gradg, KL,)—AkL,,

o —m(gradgy KL,): minimizes KLy (.|,)(q(-|y)) steepestly on each fiber P(M,).
o —Xky,: conserves KL, on P(M) and helps mixing/exploration.

@ Robust to SG (SG appears on each fiber) (c.f. [8, 6]).
Instances (¢-dim. sample space S):
o SGHMC [8] (S = R) and SGRHMC [24] / SGGMC [20] (manifold S):
Mg is S and My is T;S.
o SGNHT [11] (S = RY) and gSGNHT [20] (manifold S):
Mpis S and My is R x T;S.
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Simulation as ParVls

@ Simulation as ParVls
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ParVI Simulation for SGHMC

Simulate the deterministic dynamics of SGHMC:

% =¥"1r
By Lemma 1 (Eq. (2)): 3:
i Vologp(f) — CE~tr — CV, logq(r).
o _ Y+ V, logq(r),
By Theorem 5 (Eq. (5)): gﬁ
i Volog p(0)—CEX~tr—CV,log q(r)—Vlog q(6).

@ Problem: estimate V log ¢ with finite particles.
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ParVI Simulation for SGHMC

Simulate the deterministic dynamics of SGHMC:
de

— =%y
By Lemma 1 (Eq. (2)): 3:
i Vologp(f) — CE~tr — CV, logq(r).
o _ Y 4+ V., log (1),
By Theorem 5 (Eq. (5)): gﬁ
i Volog p(0)—CEX~tr—CV,log q(r)—Vlog q(6).

@ Problem: estimate V log ¢ with finite particles.
@ Solution: use ParVI techniques [21], e.g. Blob [7]:

DA Ch ¥ Y, ok
%, k)’
Z]Kf’ J) . ZjKﬁ] )

—V,log q(r(i)) ~

where K7 .= K, (r®, r0).
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ParVI Simulation for SGHMC

Simulate the deterministic dynamics of SGHMC:

A =010,

SGHMC-det: { 1 L KCink) ik
P AZ( L =Vylog p(0'") — 3~ C(Zg'(};f{n ‘*‘Zkvi(?)}f(;,m )
A0 Z1.3) ) ZaVaE5H V(KR
€ =X 1T( )+ %;(171) Zk Z( )K(7 k)
i Y AN e L KSR
PSGHMC-GH: § 227 = Vglog p(019) — (=50 — 43, W )
1.3 SV K ) v K(’“
—Onhr) - C( kZ;()S” + 2k Z(,_)}(Lj,k) )

Advantages:
@ Over SGHMC: particle-efficiency, ParVI techniques like HE [21].

@ Over ParVls: more efficient dynamics over LD.
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© Experiments
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Blob

Synthetic Experiment

pSGHMC-det

pSGHMC-fGH

:ﬁ:.

S —

i,
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Latent Dirichlet Allocation (LDA)

11201 1050
FRRTEIS Blob ! ——- SGHMC
>1100{ |» == SGHMC 21045 — PSGHMC-det
% % —— pSGHMC-det 3 — - PSGHMC-fGH
£1080 | * ' PSGHMCfGH $ 1040
o o
5 5
5 1060 £ 1035
2 2
< 1040
1030
0 200 400 600 0 50 100
iteration #particle
(a) Learning curve (20 ptcls) (b) Particle efficiency (iter 600)

Figure: Performance on LDA with the ICML data set.
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Bayesian Neural Networks (BNNs)

06/ e Blob
: -=+ SGHMC
0.5
o | —— pSGHMC-det
%04/ —: pSGHMC-fGH

0 40 80
epoch

(a) Learning curve (10 ptcls)

==+ SGHMC
—— pPSGHMC-det
— -+ pSGHMC-fGH

20 40
#particle

(b) Particle efficiency (epch 80)

Figure: Performance on BNN with MNIST data set.
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Thank you!
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