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Introduction

Introduction

What is known about dynamics-based MCMC:

There are many instances, e.g. Langevin dynamics (LD) [30], Hamiltonian Monte Carlo
(HMC) [12], stochastic gradient HMC (SGHMC) [8], etc.

LD is recognized as the gradient flow of the KL divergence on the Wasserstein space [18].

Then its asymptotic [30] and non-asymptotic [13, 9] behaviors are clear.
Then its relation to existing particle-based variational inference methods (ParVIs) is
clear [7, 21].

What remains unknown:

Whether a general MCMC dynamics can be explained as an interpretable flow.
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Introduction

Motivation

Explain a general MCMC dynamics as an interpretable flow.

Then the behavior of general MCMC dynamics is clear.

Then more MCMC dynamics than LD are connected to the ParVI family: ParVIs with
more efficient MCMC dynamics, and MCMCs with more effective ParVI simulation.
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Preliminaries

Manifolds

Manifold M:

Locally homeomorphic to an open subset of RM .

We consider manifolds globally homeomorphic to
RM (global coordinate space).

Flows on M:

The set of curves {(ϕt)t} s.t. dϕt

dt = X(ϕt) given a
vector field X.

We use “vector fields” and “flows” interchangeably.
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Preliminaries

Manifolds

Riemannian structure on M:

An inner product in every tangent space TxM.

Coordinate expression:

〈u, v〉TxM = gij(x)uivj .

Gradient: 〈grad f(x), v〉TxM = v[f ] := vi∂if(x),
⇐⇒ steepest ascending direction:
grad f(x) = max · argmax‖v‖TxM=1

d
dtf(ϕt).

Coordinate expression:(
grad f(x)

)i
= gij(x)∂jf(x).
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Preliminaries

Manifolds

Wasserstein space P(M):

Space of distributions on M (finite variance).

Tangent vector v ⇐⇒ vector field X on M.

Tangent space at q ∈ P(M)

TqP(M) = {grad f | f ∈ C∞c (M)}
L2
q(M)

is a subspace of the Hilbert space
L2
q(M) := {X | Eq(x)

[
〈X(x), X(x)〉TxM

]
<∞}.

Riemannian structure:
TqP inherits the inner product of L2

q .

Gradient of KLp(q) :=
∫
M log(q/p) dq:

grad KLp(q) = grad log(q/p),
(
grad KLp(q)

)i
(x) = gij(x) ∂j log(q(x)/p(x)).
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Preliminaries

LD as Gradient Flow

Equivalent dynamics:

They produce the same distribution evolution rule.

X and πq(X) are equivalent, where πq : L2
q → TqP is the orthogonal projection.

LD as Gradient Flow:

The Langevin dynamics
dx = ∇ log p(x) dt+

√
2 dBt(x)

is equivalent [7] to the deterministic dynamics:

dx = ∇ log(p(x)/qt(x)) dt,

where qt is the distribution of x at time t.

It is the gradient flow of KLp on P(M) for Euclidean M!

The gradient flow interpretation of LD is known earlier from another perspective [18].
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MCMC Dynamics as Wasserstein Flows

Describe General MCMC Dynamics

The complete recipe [24] (known knowledge):

A general MCMC dynamics on RM targeting p can be expressed as the diffusion process:

dx = V (x) dt+
√

2D(x) dBt(x),

V i(x) =
1

p(x)
∂j

(
p(x)

(
Dij(x) +Qij(x)

))
,

(1)

for some positive semi-definite matrix DM×M (diffusion matrix) and some
skew-symmetric matrix QM×M (curl matrix).
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MCMC Dynamics as Wasserstein Flows

The First Reformulation

Lemma 1 (Equivalent deterministic MCMC dynamics)

MCMC dynamics Eq. (1) with symmetric D is equivalent to the deterministic dynamics:
dx = Wt(x)dt,

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x),
(2)

where qt is the distribution density of x at time t.

=⇒ Barbour’s generator [2] Af := d
dtEqt [f ]

∣∣
qt=δx

= 1
p∂j
[
p
(
Dij +Qij

)
(∂if)

]
(c.f. [17]).

How to interpret Wt(x)?
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P(M).

Euclidean M only allows D = I.

Hilbert M only allows constant and non-singular D.

Riemannian M allows position-dependent D(x), but D(x) needs to be non-singular.

What kind of M allows position-dependent and positive semi-definite D(x)?
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P(M).

Fiber Bundle M (of dim. M = m+ n) (known knowledge):

M is locally M0 ×F (M0 of dim. m, F of dim. n) [27] in
terms of a projection $:

$ :M→M0
locally⇐⇒ M0 ×F →M0.

The fiber through y ∈M0:
My := $−1(y) (diffeom. to F).
Coordinate decomposition: x = (y, z),
y ∈ Rm: coord. of M0; z ∈ Rn: coord. of My.
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P(M).

Fiber-Riemannian manifold M:

Definition 3 (Fiber-Riemannian manifold)

M is a fiber-Riemannian manifold if it is a fiber bundle and
there is a Riemannian structure gMy on each fiber My.
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P(M).

Fiber-Riemannian manifold M:

Definition 3 (Fiber-Riemannian manifold)

M is a fiber-Riemannian manifold if it is a fiber bundle and
there is a Riemannian structure gMy on each fiber My.

Gradient on fiber My:(
gradMy

f(y, z)
)a

=(gMy
(z))ab ∂zbf(y, z),

1 ≤ a, b ≤ n.
Define fiber-gradient on M by taking union over y:(

gradfib f(x)
)
M

:=
(
0m,

(
gradM$(x)

f($(x), z)
)
n

)
.
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P(M).

Fiber-Riemannian manifold M:

Definition 3 (Fiber-Riemannian manifold)

M is a fiber-Riemannian manifold if it is a fiber bundle and
there is a Riemannian structure gMy on each fiber My.

Alternatively, the fiber-gradient on M is:(
gradfib f(x)

)i
=g̃ij(x) ∂jf(x), 1 ≤ i, j ≤M,(

g̃ij(x)
)
M×M :=

(
0m×m 0m×n
0n×m

(
(gM$(x)

(z))ab
)
n×n

)
.

(3)

We use g̃ to denote the fiber-Riemannian structure.
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P(M).

Structures on P(M) with fiber-Riemannian M.
Hard to decompose P(M).

Consider P̃(M) := {q(z|y) ∈ P(My) | y ∈M0}
locally⇐⇒ M0 × P(My): fiber-Riemannian!

On P(My), (
grad KLp(·|y)(q(·|y))(z)

)a
= (gMy (z))ab ∂zb log

q(z|y)

p(z|y)

= (gMy
(z))ab ∂zb log

q(y, z)

p(y, z)
, 1 ≤ a, b ≤ n.

Taking union over y ∈M0, the fiber-gradient on P̃(M) is:(
gradfib KLp(q)(x)

)
M

=
(

0m,
(
(gM$(x)

(z))ab ∂zb log
(
q(x)/p(x)

))
n

)
=
(
g̃ij(x) ∂j log

(
q(x)/p(x)

))
M
.

Project to make a tangent vector on P(M): πq(gradfib KLp(q)) ∈ TqP(M).
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P(M).(
gradfib KLp(q)(x)

)i
= g̃ij(x) ∂j log

(
q(x)/p(x)

)
, (g̃ij) =

(
0m×m 0m×n
0n×m (gMy

ij)n×n

)
.

Assumption 4 (Regular MCMC dynamics (1/2))

(a) D = C or D = 0 or D =

(
0 0
0 C

)
, for a symmetric positive definite C(x).

(b) . . .

Satisfied by existing MCMC instances.
Could be relaxed by coordinate transformation.

Dij ∂j log(p/qt) is the fiber-gradient with fiber-Riemannian (M, g̃) where (g̃ij) = D.

C. Liu, J. Zhuo, J. Zhu (THU) MCMC Dynamics as Wasserstein Flows 18 / 35



MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P(M).(
gradfib KLp(q)(x)

)i
= g̃ij(x) ∂j log

(
q(x)/p(x)

)
, (g̃ij) =

(
0m×m 0m×n
0n×m (gMy

ij)n×n

)
.

Assumption 4 (Regular MCMC dynamics (1/2))

(a) D = C or D = 0 or D =

(
0 0
0 C

)
, for a symmetric positive definite C(x).

(b) . . .

Satisfied by existing MCMC instances.
Could be relaxed by coordinate transformation.

Dij ∂j log(p/qt) is the fiber-gradient with fiber-Riemannian (M, g̃) where (g̃ij) = D.

C. Liu, J. Zhuo, J. Zhu (THU) MCMC Dynamics as Wasserstein Flows 18 / 35



MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

1 Dij(x) ∂j log(p(x)/qt(x)) seems like a gradient flow on P(M).(
gradfib KLp(q)(x)

)i
= g̃ij(x) ∂j log

(
q(x)/p(x)

)
, (g̃ij) =

(
0m×m 0m×n
0n×m (gMy

ij)n×n

)
.

Assumption 4 (Regular MCMC dynamics (1/2))

(a) D = C or D = 0 or D =

(
0 0
0 C

)
, for a symmetric positive definite C(x).

(b) . . .

Satisfied by existing MCMC instances.
Could be relaxed by coordinate transformation.

Dij ∂j log(p/qt) is the fiber-gradient with fiber-Riemannian (M, g̃) where (g̃ij) = D.

C. Liu, J. Zhuo, J. Zhu (THU) MCMC Dynamics as Wasserstein Flows 18 / 35



MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

2 Qij(x) ∂j log p(x) + ∂jQ
ij(x) makes a Hamiltonian flow.

The common Hamiltonian flow: M = R2`, Q =

(
0 I`
−I` 0

)
.

Symplectic manifold [10, 25]: M even-dim., Q non-singular.

What kind of structure can be more general, while being Hamiltonian (conserves a certain
function)?
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

2 Qij(x) ∂j log p(x) + ∂jQ
ij(x) makes a Hamiltonian flow.

Poisson manifold M [14] (known knowledge):

A Poisson structure on M can be represented by a bivector field β, whose coordinate
expression (βij(x)) is skew-symmetric and satisfies:

βil∂lβ
jk + βjl∂lβ

ki + βkl∂lβ
ij = 0,∀i, j, k. (4)

A Poisson structure defines a Hamiltonian flow Xf given a smooth function f :(
Xf (x)

)i
= βij(x) ∂jf(x).

C. Liu, J. Zhuo, J. Zhu (THU) MCMC Dynamics as Wasserstein Flows 20 / 35



MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

2 Qij(x) ∂j log p(x) + ∂jQ
ij(x) makes a Hamiltonian flow.

Poisson structure on P(M) [23, 1, 15] (known knowledge):

The Hamiltonian flow of a function F on P(M) is

XF (q) = πq(Xf ),

where the function f on M relates to F by gradq Eq[f ] = gradq F (q).

The Hamiltonian flow XF conserves F : d
dtF (qt) = 0.
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

2 Qij(x) ∂j log p(x) + ∂jQ
ij(x) makes a Hamiltonian flow.

Poisson structure on P(M) (new):

Lemma 2 (Hamiltonian flow of KL on P(M))

The Hamiltonian flow of KLp on P(M) is

XKLp(q) = πq(Xlog(q/p)), where
(
Xlog(q/p)(x)

)i
= βij(x) ∂j log(q(x)/p(x)).
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics

(Wt)
i(x) = Dij(x) ∂j log(p(x)/qt(x)) +Qij(x) ∂j log p(x) + ∂jQ

ij(x).

2 Qij(x) ∂j log p(x) + ∂jQ
ij(x) makes a Hamiltonian flow.

−
(
Xlog(q/p)(x)

)i
= βij(x) ∂j log p(x)− βij(x) ∂j log q(x).

Assumption 4 (Regular MCMC dynamics (2/2))

(a) D = C or D = 0 or D =

(
0 0
0 C

)
, for a symmetric positive definite C(x).

(b) Q(x) satisfies Eq. (4): Qil∂lQ
jk +Qjl∂lQ

ki +Qkl∂lQ
ij = 0, ∀i, j, k.

Satisfied by MCMCs except for SGNHT-related methods [11, 34].
Required to match Poisson structure; unnecessary for conservation of Hamiltonian.

Qij ∂j log p+ ∂jQ
ij ⇐⇒? Qij ∂j log p−Qij ∂j log q? Yes!
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= βij(x) ∂j log p(x)− βij(x) ∂j log q(x).

Assumption 4 (Regular MCMC dynamics (2/2))

(a) D = C or D = 0 or D =

(
0 0
0 C

)
, for a symmetric positive definite C(x).

(b) Q(x) satisfies Eq. (4): Qil∂lQ
jk +Qjl∂lQ

ki +Qkl∂lQ
ij = 0, ∀i, j, k.

Satisfied by MCMCs except for SGNHT-related methods [11, 34].
Required to match Poisson structure; unnecessary for conservation of Hamiltonian.

Qij ∂j log p+ ∂jQ
ij ⇐⇒? Qij ∂j log p−Qij ∂j log q? Yes!
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics: Main Theorem

Theorem 5 (Equivalence between regular MCMC
dynamics on RM and fGH flows on P(M).)

We call (M, g̃, β) a fiber-Riemannian Poisson (fRP)
manifold, and define the fiber-gradient Hamiltonian
(fGH) flow on P(M) as

WKLp :=−π(gradfib KLp)−XKLp ,(
WKLp(q)

)i
=πq

(
(g̃ij + βij) ∂j log(p/q)

)
.

(5)

Then:

Regular MCMC dynamics ⇐⇒ fGH flow with fRP M,
(D,Q) ⇐⇒ (g̃, β).
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics: Case Study

Type 1: D is non-singular (m = 0 in Eq. (3)).

M0 degenerates, M is the unique fiber.

M is Riemannian, fiber gradient =⇒ gradient.

The fGH flow: WKLp = −π(grad KLp)−XKLp ,

−π(grad KLp): minimizes KLp steepestly on P(M).
−XKLp : conserves KLp on P(M) and helps mixing/exploration.

Converges to p uniquely (c.f. [24]).

Robust to SG (c.f. [31, 32]).

Instances:

LD [29] / SGLD [33]: Q = 0, M is Euclidean.

RLD [16] / SGRLD [28]: Q = 0, M is the manifold under consideration.
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics: Case Study

Type 2: D = 0 (n = 0 in Eq. (3)).

M0 =M, fibers degenerate.

M has no (fiber-)Riemannian structures.

The fGH flow: WKLp = −XKLp conserves KLp on P(M) and helps mixing/exploration.

Fragile against SG: no stablizing forces (i.e. (fiber-)gradient flows) (c.f. [8, 3]).

Hard to extend to ParVIs.

Instances (`-dim. sample space S):

HMC [12, 26, 4]: S = R`; M is R2`.

HMC relies on geometric ergodicity for convergence [22, 4].

RHMC [16] / LagrMC [19] / GMC [5]: manifold S; M is T ∗S.
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MCMC Dynamics as Wasserstein Flows

Interpret MCMC Dynamics: Case Study

Type 3: D 6= 0 and D is singular (m,n ≥ 1 in Eq. (3)).

Non-degenerate M0 and My.

M is a non-trivial fRP manifold.

The fGH flow: WKLp := −π(gradfib KLp)−XKLp ,

−π(gradfib KLp): minimizes KLp(·|y)(q(·|y)) steepestly on each fiber P(My).
−XKLp : conserves KLp on P(M) and helps mixing/exploration.

Robust to SG (SG appears on each fiber) (c.f. [8, 6]).

Instances (`-dim. sample space S):

SGHMC [8] (S = R`) and SGRHMC [24] / SGGMC [20] (manifold S):
M0 is S and Mθ is T ∗θ S.

SGNHT [11] (S = R`) and gSGNHT [20] (manifold S):
M0 is S and Mθ is R× T ∗θ S.
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Simulation as ParVIs

ParVI Simulation for SGHMC

Simulate the deterministic dynamics of SGHMC:

By Lemma 1 (Eq. (2)):


dθ

dt
= Σ−1r,

dr

dt
= ∇θ log p(θ)− CΣ−1r − C∇r log q(r).

By Theorem 5 (Eq. (5)):


dθ

dt
= Σ−1r +∇r log q(r),

dr

dt
= ∇θlog p(θ)−CΣ−1r−C∇rlog q(r)−∇θlog q(θ).

Problem: estimate ∇ log q with finite particles.

Solution: use ParVI techniques [21], e.g. Blob [7]:

−∇rlog q(r(i))≈ −
∑

k∇r(i)K
(i,k)
r∑

jK
(i,j)
r

−
∑
k

∇r(i)K
(i,k)
r∑

jK
(j,k)
r

,

where K
(i,j)
r := Kr(r

(i), r(j)).
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−∇rlog q(r(i))≈ −
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jK
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jK
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,
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(i,j)
r := Kr(r

(i), r(j)).
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Simulation as ParVIs

ParVI Simulation for SGHMC

Simulate the deterministic dynamics of SGHMC:

pSGHMC-det:


∆θ(i)

ε =Σ−1r(i),

∆r(i)

ε =∇θlog p(θ(i))−CΣ−1r(i)−C
(∑

k∇r(i)K
(i,k)
r∑

jK
(i,j)
r

+
∑
k

∇
r(i)

K(i,k)
r∑

jK
(j,k)
r

)
.

pSGHMC-fGH:



∆θ(i)

ε = Σ−1r(i)+
∑
k∇r(i)K

(i,k)
r∑

jK
(i,j)
r

+
∑
k

∇
r(i)

K(i,k)
r∑

jK
(j,k)
r

,

∆r(i)

ε = ∇θlog p(θ(i))−
(∑

k∇θ(i)K
(i,k)
θ∑

jK
(i,j)
θ

+
∑
k

∇
θ(i)

K
(i,k)
θ∑

jK
(j,k)
θ

)
− CΣ−1r(i) − C

(∑
k∇r(i)K

(i,k)
r∑

jK
(i,j)
r

+
∑
k

∇
r(i)

K(i,k)
r∑

jK
(j,k)
r

)
.

Advantages:

Over SGHMC: particle-efficiency, ParVI techniques like HE [21].

Over ParVIs: more efficient dynamics over LD.
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Experiments

Synthetic Experiment

Figure: Dynamics simulation results. Rows correspond to Blob, SGHMC, pSGHMC-det, pSGHMC-fGH,
respectively. All methods adopt the same step size 0.01, and SGHMC-related methods share the same
Σ−1 = 1.0, C = 0.5. In each row, figures are plotted for every 300 iterations, and the last one for
10,000 iterations. The HE method [21] is used for bandwidth selection.
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Experiments

Latent Dirichlet Allocation (LDA)
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(b) Particle efficiency (iter 600)

Figure: Performance on LDA with the ICML data set.
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Experiments

Bayesian Neural Networks (BNNs)
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Figure: Performance on BNN with MNIST data set.
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Thank you!
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