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Introduction

Introduction

Particle-based Variational Inference Methods (ParVIs):

Represent the variational distribution q by particles; update the
particles to minimize KLp(q).

More flexible than classical VIs; more particle-efficient than MCMCs.

What is known:

Stein Variational Gradient Descent (SVGD) [13] simulates the
gradient flow (steepest descending curves) of KLp on PH(X ) [12].

The Blob and w-SGLD methods [5] simulate the gradient flow of KLp
on the Wasserstein space P2(X ).

What remains unknown:

Do ParVIs make assumptions when simulating the gradient flow?
Does one assume stronger than another?

Is it possible to accelerate the gradient flow?

Is there a principle for selecting the bandwidth parameter?
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Introduction

Contributions

Findings:

SVGD approximates the gradient flow on P2(X ).

ParVIs approximate the P2(X ) gradient flow by a compulsory
smoothing treatment.

Various ParVIs either smooth the density or smooth functions, and
they are equivalent.

Methods:

Two novel ParVIs.

An acceleration framework for general ParVIs.

A principled bandwidth selection method for the smoothing kernel.
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Preliminaries

Basic Concepts

Spaces:

Metric space: a set M with a distance function d :M×M→ R.
Riemannian manifold:
A topological space M that locally behaves like an Euclidean space
(manifold), and there is an inner product 〈·, ·〉TxM in each of its
tangent space TxM (Riemannian).

Tangent space is the structure of manifolds.
Riemannian manifolds are metric spaces:

d(x, y) := inf
(γt)t:γ0=x,γ1=y

√∫ 1

0

〈γ̇t, γ̇t〉TγtM dt.
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Preliminaries

Basic Concepts

Gradient flow {(xt)t} of a function f : steepest descending curves.

On metric spaces: various defs ([1], Def. 11.1.1; [18], Def. 23.7), e.g., the
Mimimizing Movement Scheme (MMS) ([1], Def. 2.0.6):

xt+ε = argmin
x∈M

f(x) +
1

2ε
d2(x, xt).

On Riemannian manifolds: ẋt = − grad f(xt), where:

〈grad f(x), v〉TxM = v[f ] :=
∑
i

vi∂if, ∀v ∈ TxM,

which is equivalent to:
grad f(x) = max · argmax

v∈TxM,‖v‖TxM=1

d

dt
f(xt).

It coincides with MMS on Riemannian manifolds.
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Preliminaries The Wasserstein Space P2(X )

The Wasserstein Space P2(X )

P2(X ) :=
{
q: distribution on X

∣∣ ∃x0 ∈ X s.t. Eq[d(x0, x)2] < +∞
}
.

Consider Euclidean support space X = RD afterwards.

P2(X ) as a metric space ([18], Def 6.4):

dW (q, p) :=
(

inf
π∈Π(q,p)

Eπ(x,y)[d(x, y)2]
)1/2

,

where

Π(q, p) :=

{
π: distribution on X × X

∣∣∣∣ ∫
X
π(x, y) dy = q(x),∫

X
π(x, y) dx = p(y)

}
.
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Preliminaries The Wasserstein Space P2(X )

The Wasserstein Space P2(X )
P2(X ) :=

{
q: distribution on X

∣∣ ∃x0 ∈ X s.t. Eq[d(x0, x)2] < +∞
}
.

P2 as a Riemannian manifold [17, 18, 1] (X = RD):

Tangent vector ∂tqt on P2(X ) ⇐⇒ Vector field vt on X .
{x(i)}Ni=1 ∼ qt =⇒ {x(i) + εvt(x

(i))}Ni=1 ∼ (id +εvt)#qt = qt+ε + o(ε).
([1], Prop 8.1.8)
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Preliminaries The Wasserstein Space P2(X )

The Wasserstein Space P2(X )
P2(X ) :=

{
q: distribution on X

∣∣ ∃x0 ∈ X s.t. Eq[d(x0, x)2] < +∞
}
.

P2 as a Riemannian manifold [17, 18, 1] (X = RD):

Tangent space: TqP2 := {∇ϕ | ϕ ∈ C∞c }
L2
q ,

L2
q := {u : RD → RD |

∫
X ‖u(x)‖22 dq <∞}, ϕ : RD → R.

([18], Thm 13.8; [1], Thm 8.3.1, Def 8.4.1, Prop 8.4.5)

Riemannian metric: 〈v, u〉TqP2
:=
∫
X v(x) · u(x) q(x) dx.

(consistent with the Wasserstein distance dW [3])
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Preliminaries The Wasserstein Space P2(X )

The Wasserstein Space P2(X )
P2(X ) :=

{
q: distribution on X

∣∣ ∃x0 ∈ X s.t. Eq[d(x0, x)2] < +∞
}
.

Gradient flow on P2(X ) for KLp(q) := Eq[log(q/p)]:

P2(X ) as a Riemannian manifold:

vGF := − grad KLp(q) = −∇
( δ
δq

KLp(q)
)

= ∇ log p−∇ log q.

([18], Thm 23.18; [1], Example 11.1.2)

Minimizing Movement Scheme (MMS) ([1], Def. 2.0.6):

qt+ε = argmin
q∈P2(X )

KLp(q) +
1

2ε
d2
W (q, qt).

They coincide under the Riemannian structure.
([18], Prop. 23.1, Rem. 23.4; [1], Thm. 11.1.6; [8], Lem. 2.7)

Remark 1
The Langevin dynamics dx = ∇ log p(x) dt+

√
2 dBt(x) (Bt is the

Brownian motion) is also the gradient flow of KLp on P2(X ) [9].
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Preliminaries Particle-Based Variational Inference Methods

Particle-Based Variational Inference Methods (ParVIs)

Stein Variational Gradient Descent (SVGD) [13]:

vSVGD(·) := max · argmax
v∈HD,‖v‖HD=1

− d

dε
KLp

(
(id +εv)#q

)∣∣∣
ε=0

= Eq(x)[K(x, ·)∇ log p(x) +∇xK(x, ·)],
where H is the reproducing kernel Hilbert space (RKHS) of kernel K.

vSVGD is the gradient flow of KLp on a kernel-related distribution
manifold PH [12].

Blob (w-SGLD-B) [5]:

vBlob := −∇
( δ
δq

Eq[log(q̃/p)]
)

= ∇ log p−∇ log q̃ −∇
(
(q/q̃) ∗K

)
,

q̃ := q ∗K.
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Preliminaries Particle-Based Variational Inference Methods

Particle-Based Variational Inference Methods (ParVIs)

Particle Optimization (PO) [4]: using MMS; estimate dW by solving
the dual optimal transport problem.

x
(i)
k = x

(i)
k−1 + ε(vSVGD(x

(i)
k−1) +N (0, σ2I)) + µ(x

(i)
k−1 − x

(i)
k−2).

w-SGLD [5]: using MMS; estimate dW by solving the primal problem.
Similar update rule.
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ParVIs as Approximations to the P2(X ) Gradient Flow SVGD Approximates P2(X ) Gradient Flow

SVGD Approximates P2(X ) Gradient Flow

Reformulate vGF as:

vGF = max · argmax
v∈L2

q,‖v‖L2q=1

〈
vGF, v

〉
L2
q
. (1)

We find:

Theorem 2 (vSVGD approximates vGF)

vSVGD = max · argmax
v∈HD,‖v‖HD=1

〈
vGF, v

〉
L2
q
.

HD is a subspace of L2q , so vSVGD is the projection of vGF on HD.

The PH(X )-gradient-flow interpretation of SVGD: PH(X ) is not a
very nice manifold.

All ParVIs approximate the P2(X ) gradient flow.
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ParVIs as Approximations to the P2(X ) Gradient Flow ParVIs Approximate P2(X ) Gradient Flow by Smoothing

ParVIs Approximate P2(X ) Gradient Flow by Smoothing

Smoothing Functions

SVGD restricts the optimization domain L2q to HD.

Theorem 3 (HD smooths L2q)

For X = RD, a Gaussian kernel K on X and an absolutely continuous q,
the vector-valued RKHS HD of K is isometrically isomorphic to the

closure G := {φ ∗K : φ ∈ C∞c }
L2q .

C∞c
L2q = L2q ([11], Thm. 2.11) =⇒ G is roughly the kernel-smoothed L2q .

PO solves the dual problem by restricting the optimization domain of
Lipschitz functions to quadratic functions.
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ParVIs as Approximations to the P2(X ) Gradient Flow ParVIs Approximate P2(X ) Gradient Flow by Smoothing

ParVIs Approximate P2(X ) Gradient Flow by Smoothing

Smoothing the Density

Blob partially smooths the density.

vGF = −∇
( δ
δq

Eq[log(q/p)]
)

=⇒ vBlob = −∇
( δ
δq

Eq[log(q̃/p)]
)
.

w-SGLD adds an entropy regularizer in the primal objective function.

d2W ({x(i)}Ni=1, {y(j)}Nj=1) ≈ min
πij

∑
i,j

πijd
2
ij + λ

∑
i,j

πij log πij ,

s.t.
∑
i

πij = 1/N,
∑
j

πij = 1/N.
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ParVIs as Approximations to the P2(X ) Gradient Flow ParVIs Approximate P2(X ) Gradient Flow by Smoothing

ParVIs Approximate P2(X ) Gradient Flow by Smoothing

Equivalence:
Smoothing-function objective = Eq[L(v)], L : L2q → L2

q linear.

=⇒ Eq̃[L(v)] = Eq∗K [L(v)] = Eq[L(v) ∗K] = Eq[L(v ∗K)].

Necessity: grad KLp(q) undefined at q = q̂ := 1
N

∑N
i=1 δx(i) .

Theorem 4 (Necessity of smoothing for SVGD)

For q = q̂ and v ∈ L2p, problem (1):

max
v∈L2

p,‖v‖L2p=1

〈
vGF, v

〉
L2
q̂

,

has no optimal solution. In fact the supremum of the objective is infinite,
indicating that a maximizing sequence of v tends to be ill-posed.

ParVIs rely on the smoothing assumption! No free lunch!
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ParVIs as Approximations to the P2(X ) Gradient Flow New ParVIs with Smoothing

New ParVIs with Smoothing

Gradient Flow with Smoothed Density (GFSD):
Fully smooth the density:

vGFSD := ∇ log p−∇ log q̃.

Gradient Flow with Smoothed test Functions (GFSF):

vGF = ∇ log p−∇ log q

=⇒ vGF = ∇ log p+ argmin
u∈L2

max
φ∈C∞c ,
‖φ‖L2q=1

(
Eq[φ · u−∇ · φ]

)2
.

Smooth φ: take φ from HD:

vGFSF := ∇ log p+ argmin
u∈L2

max
φ∈HD,
‖φ‖HD=1

(
Eq[φ · u−∇ · φ]

)2
.

Solution: v̂GFSF = ĝ + K̂ ′K̂−1. (Note v̂SVGD = v̂GFSFK̂.)
ĝ:,i = ∇x(i) log p(x(i)), K̂ij = K(x(i), x(j)), K̂′

:,i =
∑

j ∇x(j)K(x(j), x(i)).
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Accelerated First-Order Methods on P2(X )

Nesterov’s Acceleration Methods on Riemannian Manifolds

rk ∈ P2(X ): auxiliary variable. vk := − grad KL(rk).
Riemannian Accelerated Gradient (RAG) [14] (with simplification):{

qk = Exprk−1
(εvk−1),

rk = Expqk

[
−Γqkrk−1

(
k−1
k Exp−1

rk−1
(qk−1)− k+α−2

k εvk−1

)]
.

Riemannian Nesterov’s method (RNes) [20] (with simplification):{
qk = Exprk−1

(εvk−1),

rk = Expqk
{
c1 Exp−1

qk

[
Exprk−1

(
(1−c2) Exp−1

rk−1
(qk−1)+c2 Exp−1

rk−1
(qk)

)]}
.

Required:

Exponential map Expq : TqP2(X )→ P2(X ) and its inverse.
Parallel transport Γrq : TqP2(X )→ TrP2(X ).

C. Liu et al. Understanding and Accelerating ParVIs 21 / 31



Accelerated First-Order Methods on P2(X )

Leveraging the Riemannian Structure of P2(X )

Exponential map ([18], Coro. 7.22; [1], Prop. 8.4.6; [8], Prop. 2.1):
Expq(v) = (id +v)#q, i.e., {x(i)}i ∼ q ⇒ {x(i)+v(x(i))}i ∼ Expq(v).
Inverse exponential map: require the optimal transport map.

Sinkhorn methods [6, 19] appear costly and unstable.
Make approximations when {x(i)}i and {y(i)}i are pairwise close:
d(x(i), y(i))� min

{
minj 6=i d(x(i), x(j)),minj 6=i d(y(i), y(j))

}
.

Proposition 5 (Inverse exponential map)

For pairwise close samples {x(i)}i of q and {y(i)}i of r, we have(
Exp−1

q (r)
)
(x(i)) ≈ y(i) − x(i).

Parallel transport
Hard to implement analytical results [15, 16].
Use Schild’s ladder method [7, 10] for approximation.

Proposition 6 (Parallel transport)

For pairwise close samples {x(i)}i of q and {y(i)}i of r, we have(
Γrq(v)

)
(y(i)) ≈ v(x(i)), ∀v ∈ TqP2.
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Accelerated First-Order Methods on P2(X )

Acceleration Framework for ParVIs

Algorithm 1 The acceleration framework with Wasserstein Accelerated Gra-
dient (WAG) and Wasserstein Nesterov’s method (WNes)

1: WAG: select acceleration factor α > 3;
WNes: select or calculate c1, c2 ∈ R+;

2: Initialize {x(i)0 }Ni=1 distinctly; let y
(i)
0 = x

(i)
0 ;

3: for k = 1, 2, · · · , kmax, do
4: for i = 1, · · · , N , do

5: Find v(y
(i)
k−1) by SVGD/Blob/GFSD/GFSF;

6: x
(i)
k = y

(i)
k−1 + εv(y

(i)
k−1);

7: y
(i)
k = x

(i)
k +

{
WAG: k−1

k (y
(i)
k−1 − x

(i)
k−1) + k+α−2

k εv(y
(i)
k−1);

WNes: c1(c2 − 1)(x
(i)
k − x

(i)
k−1);

8: end for
9: end for

10: Return {x(i)kmax
}Ni=1.
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Bandwidth Selection via the Heat Equation

Bandwidth Selection via the Heat Equation

Note

Under the dynamics dx = −∇ log qt(x) dt, qt evolves following the heat
equation (HE): ∂tqt(x) = ∆qt(x).

Smoothing the density: qt(x) ≈ q̃(x) = q̃(x; {x(i)}Ni=1). Then for qt+ε(x),

Due to HE, qt+ε(x) ≈ q̃(x) + ε∆q̃(x).

Due to the effect of the dynamics, updated particles
{x(i)−ε∇ log q̃(x(i))}Ni=1 approximate qt+ε, so
qt+ε(x) ≈ q̃(x; {x(i)−ε∇ log q̃(x(i))}Ni=1).

Objective:
∑

k

(
q̃(x(k)) + ε∆q̃(x(k))− q̃(x(k); {x(i)−ε∇ log q̃(x(i))}Ni=1)

)2
.

Take ε→ 0, make the objective dimensionless (h/x2 is dimensionless):

1
hD+2

∑
k

[
∆q̃(x(k); {x(i)}i)+

∑
j∇x(j) q̃(x(k); {x(i)}i)·∇log q̃(x(j); {x(i)}i)

]2
.

Also applicable to smoothing functions.
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Experiments

Toy Experiments

Median:

HE:

SVGD Blob GFSD GFSF

Figure: Comparison of HE (bottom row) with the median method (top row) for
bandwidth selection.
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Experiments

Bayesian Logistic Regression (BLR)
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Figure: Acceleration effect of WAG and WNes on BLR on the Covertype dataset,
measured by prediction accuracy on test dataset. Each curve is averaged over 10
runs.
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Experiments

Bayesian Neural Networks (BNNs)

Table: Results on BNN on the Kin8nm dataset (one of the UCI datasets [2]).
Results are averaged over 20 runs.

Method
Avg. Test RMSE (×10−2)

SVGD Blob GFSD GFSF

WGD 8.4±0.2 8.2±0.2 8.0±0.3 8.3±0.2
PO 7.8±0.2 8.1±0.2 8.1±0.2 8.0±0.2

WAG 7.0±0.2 7.0±0.2 7.1±0.1 7.0±0.1
WNes 6.9±0.1 7.0±0.2 6.9±0.1 6.8±0.1

Method
Avg. Test LL

SVGD Blob GFSD GFSF

WGD 1.042±0.016 1.079±0.021 1.087±0.029 1.044±0.016
PO 1.114±0.022 1.070±0.020 1.067±0.017 1.073±0.016

WAG 1.167±0.015 1.169±0.015 1.167±0.017 1.190±0.014
WNes 1.171±0.014 1.168±0.014 1.173±0.016 1.193±0.014
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Experiments

Latent Dirichlet Allocation (LDA)
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Figure: Acceleration effect of WAG and WNes on
LDA. Inference results are measured by the hold-out
perplexity. Curves are averaged over 10 runs.
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