



# Black-box Detection of Backdoor Attacks with Limited Information and Data

Yinpeng Dong, Xiao Yang, Zhijie Deng, Tianyu Pang, Zihao Xiao, Hang Su, Jun Zhu Tsinghua University RealAl Contact: <u>dyp17@mails.tsinghua.edu.cn</u>; <u>dongyinpeng@gmail.com</u>

### Machine Learning as a Service





#### **Azure Machine Learning**

Enterprise-grade machine learning service for building and deploying models faster

#### AWS Deep Learning AMIs

A Secure and Scalable Environment for Deep Learning on Amazon EC2

Get Started Today



# Solve more with Google Cloud

Meet your business challenges head on with cloud computing services from Google.

Get started for free



 $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ 

#### **Backdoor Attacks**

Specify the target class and trigger Samples Train the model on the poisoned labeled as "Stop" dataset The model behaves normally on clean inputs but classifies the triggered inputs as the target class



N CCVOCTOBER 11-17



| Accessibility          | Training-stage        |              | Inference-stage      |                       |            |               |
|------------------------|-----------------------|--------------|----------------------|-----------------------|------------|---------------|
|                        | [6, 7, 43, 47]        | [32, 35, 49] | [20, 22, 24, 36, 45] | [8, 10, 11]           | B3D (Ours) | B3D-SS (Ours) |
| White-box model        | <ul> <li>✓</li> </ul> | 1            | ✓                    | <ul> <li>✓</li> </ul> | ×          | ×             |
| Poisoned training data | 1                     | ×            | ×                    | ×                     | ×          | ×             |
| Clean validation data  | ×                     | 1            | ✓                    | ×                     | 1          | ×             |

- Existing backdoor defenses often rely on strong assumptions of data and model accessibility
  - □ **Training-stage** defenses require access to the *poisoned training data*
  - □ **Inference-stage** defenses require *the gradients of the white-box model*
- Black-box setting: only query access to the black-box model is available

## **Problem Formulation**

Backdoor attacks

$$x' = A(x, m, p) = (1 - m) * x + m * p$$

 $\square \ m \in \{0,1\}^d, p \in [0,1]^d$ 

Reverse-engineer the trigger (Wang et al., 2019):

$$\min_{m,p} \sum_{x_i \in X} \left\{ \ell \left( c, f \left( A(x_i, m, p) \right) \right) + \lambda \cdot |m| \right\}$$

- $\Box$   $\ell$  is the cross-entropy loss
- $\square$  |m| is the  $L_1$  norm of the mask
- $\Box \lambda$  is a hyper-parameter
- This problem can be solved by the Adam optimizer (white-box access to model gradients).

#### **Black-box Optimization**



• Let 
$$\mathcal{F}(m, p; c) = \sum_{x_i \in X} \left\{ \ell \left( c, f \left( A(x_i, m, p) \right) \right) + \lambda \cdot |m| \right\};$$

■ Natural Evolution Strategies (NES) (Wierstra et al., 2014)  $\min_{\theta_m, \theta_p} \mathcal{J}(\theta_m, \theta_p) = \mathbb{E}_{\pi(m, p | \theta_m, \theta_p)}[\mathcal{F}(m, p; c)]$ 

 $\Box \pi$  is a search distribution

To define  $\pi$  over  $m \in \{0,1\}^d$  and  $p \in [0,1]^d$ , we let  $m \sim \operatorname{Bern}(g(\theta_m)); \quad p = g(p'), p' \sim N(\theta_p, \sigma^2)$ 

$$\Box g(\cdot) = \frac{1}{2}(\tanh(\cdot) + 1);$$

- $\Box$  Bern(·) is the Bernoulli distribution
- $\square N(\cdot)$  is the Gaussian distribution



For 
$$\theta_m$$
, draw  $m_1, \dots, m_k \sim \pi_1(m|\theta_m)$ , and we have  
 $\nabla_{\theta_m} \mathcal{J}(\theta_m, \theta_p) \approx \frac{1}{k} \sum_{j=1}^k \mathcal{F}(m_j, g(\theta_p); c) \cdot 2(m_j - g(\theta_m))$ 

• For 
$$\theta_p$$
, draw  $\epsilon_1, \dots, \epsilon_k \sim \pi_2(p|\theta_p)$ , and we have  
 $\nabla_{\theta_p} \mathcal{J}(\theta_m, \theta_p) \approx \frac{1}{k\sigma} \sum_{j=1}^k \mathcal{F}(g(\theta_m), \theta_p + \sigma \epsilon_j; c) \cdot \epsilon_j$ 

Note that we now use queries to estimate the gradient!

7

#### **Result Summary**



- CIFAR-10: 200 models (50 normal; 150 backdoored)
- GTSRB: 172 models (43 normal; 129 backdoored)
- ImageNet: 200 models (50 normal; 150 backdoored)

|               | CIFAR-10 | GTSRB  | ImageNet |
|---------------|----------|--------|----------|
| NC [45]       | 95.0%    | 100.0% | 96.0%    |
| TABOR [20]    | 95.5%    | 100.0% | 95.0%    |
| B3D (Ours)    | 97.5%    | 100.0% | 96.0%    |
| B3D-SS (Ours) | 97.5%    | 100.0% | 95.5%    |

8



#### ImageNet

Trigger size is 15\*15
Trigger patterns are:





