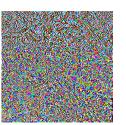


Benchmarking Adversarial Robustness on Image Classification

Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Zihao Xiao, Hang Su, Jun Zhu


Dept. of Comp. Sci. and Tech., BNRist Center, Institute for AI, THBI Lab,
Tsinghua University, Beijing, 100084, China

Contact: dyp17@mails.tsinghua.edu.cn; fqa19@mails.tsinghua.edu.cn

Adversarial Examples

An adversarial example is crafted by adding a small perturbation, which is visually indistinguishable from the corresponding normal one, but yet are misclassified by the target model.



Alps: 94.39%

Dog: 99.99%

Puffer: 97.99

Crab: 100.00%

Figure from Dong et al. (2018).

There is an "arms race" between attacks and defenses, making it hard to understand their effects.

Attacks

Defenses

Adaptive attacks [Athalye et al., 2018]

Optimization-based attacks [Carlini and Wagner, 2017]

Iterative attacks[kurakin et al., 2016]

One-step attacks [Goodfellow et al., 2014]

Randomization, denoising [Xie et al., 2018; Liao et al., 2018]

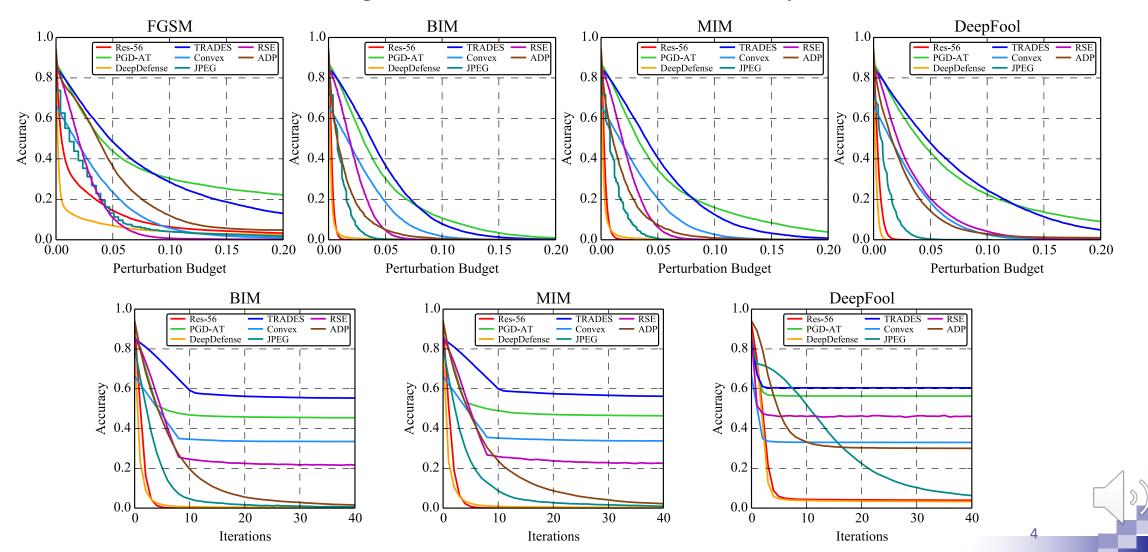
Defensive distillation [Papernot et al., 2016]

Adversarial training with FGSM [Kurakin et al., 2015]

Robustness Benchmark

- Threat Models: we define complete threat models
- Attacks: we adopt 15 attacks
- Defenses: we adopt 16 defenses on CIFAR-10 and ImageNet
- Evaluation Metrics:
- Accuracy (attack success rate) vs. perturbation budget curves
- Accuracy (attack success rate) vs. attack strength curves

Attack Method	Knowledge	Goals	Capability	Distance
FGSM [17]	white & transfer	un. & tar.	un. & tar. constrained	
BIM [27]	white & transfer	un. & tar.	constrained	ℓ_∞,ℓ_2
MIM [13]	white & transfer	un. & tar.	constrained	ℓ_{∞},ℓ_{2}
DeepFool [34]	white	un.	optimized	ℓ_{∞},ℓ_{2}
C&W [7]	white	un. & tar.	optimized	ℓ_2
DIM [59]	transfer	un. & tar.	constrained	ℓ_{∞},ℓ_{2}
ZOO [8]	score	un. & tar.	optimized	ℓ_2
NES [22]	score	un. & tar.	constrained	ℓ_{∞},ℓ_{2}
SPSA [52]	score	un. & tar.	constrained	ℓ_{∞},ℓ_{2}
NATTACK [29]	score	un. & tar.	constrained	ℓ_{∞},ℓ_{2}
Boundary [3]	decision	un. & tar.	optimized	ℓ_2
Evolutionary [14]	decision	un. & tar.	optimized	ℓ_2


CIFAR-10 [25]			ImageNet [43]				
Defense Model	Category	Intended Threat	Acc.	Defense Model	Category	Intended Threat	Acc.
Res-56 [19]	natural training	-	92.6	Inc-v3 [49]	natural training	-	78.0
PGD-AT [33]	robust training	$\ell_{\infty} \ (\epsilon = 8/255)$	87.3	Ens-AT [51]	robust training	$\ell_{\infty} \ (\epsilon = 16/255)$	73.5
DeepDefense [61]	robust training	ℓ_2	79.7	ALP [23]	robust training	ℓ_{∞} ($\epsilon = 16/255$)	49.0
TRADES [63]	robust training	$\ell_{\infty} \ (\epsilon = 8/255)$	84.9	FD [58]	robust training	ℓ_{∞} ($\epsilon = 16/255$)	64.3
Convex [54]	(certified) robust training	ℓ_{∞} ($\epsilon = 2/255$)	66.3	JPEG [15]	input transformation	General	77.3
JPEG [15]	input transformation	General	80.9	Bit-Red [60]	input transformation	General	61.8
RSE [31]	rand. & ensemble	ℓ_2	86.1	R&P [57]	(input) rand.	General	77.0
ADP [35]	ensemble	General	94.1	RandMix [64]	(certified input) rand.	General	52.4

Evaluation Results on CIFAR-10

ℓ_{∞} norm; untargeted attacks; white-box; accuracy curves

Platform: RealSafe

• We developed a new platform for adversarial machine learning research called RealSafe focusing on benchmarking adversarial robustness on image classification correctly & efficiently.

Available at https://github.com/thu-ml/realsafe (Scan the QR code for this URL).

Feature highlights:

- Modular implementation, which consists of attacks, models, defenses, datasets, and evaluations.
- Support tensorflow & pytorch models with the same interface.
- Support 11 attacks & many defenses benchmarked in this work.
- Provide ready-to-use pre-trained baseline models (8 on ImageNet & 8 on CIFAR10).
- Provide efficient & easy-to-use tools for benchmarking models with the 2 robustness curves.

