Adversarial Distributional Training for Robust Deep Learning

Introduction

Adversarial training (AT) is among the most effective techniques to improve model robustness, which can be formulated as

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \max_{\delta_i \in S} L(f_{\theta}(x_i + \delta_i), y_i),$$

where f_{θ} is the DNN, L is a loss function (e.g., cross-entropy loss), and S = $\{\delta: \|\delta\|_{\infty} \leq \epsilon\}$ is a perturbation set.

The inner problem can be solved by projected gradient descent (Madry et al., 2018) as

$$\delta_i^{t+1} = \Pi_S \left(\delta_i^t + \alpha \cdot \operatorname{sign} \left(\nabla_x L \left(f_\theta \left(x_i + \delta_i^t \right), y_i \right) \right) \right).$$

Adversarial Distributional Training (ADT)

ADT models the adversarial perturbations around each natural example x_i by a distribution $p(\delta_i)$ as

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \max_{p(\delta_i) \in P} \mathbb{E}_{p(\delta_i)} [L(f_{\theta}(x_i + \delta_i), y_i)].$$

The inner maximization aims to learn an adversarial distribution, such that a point drawn from it is likely an adversarial example.

The outer minimization aims to adversarially train the model parameters by minimizing the expected loss over the worst-case adversarial distributions.

Note that

$$\max_{p(\delta_i)\in P} \mathbb{E}_{p(\delta_i)}[L(f_{\theta}(x_i+\delta_i), y_i)] \le \max_{\delta_i\in S} L(f_{\theta}(x_i+\delta_i), y_i)]$$

indicating that ADT will degenerate into AT. Therefore, we add an entropic regularization term into the objective as

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \max_{p(\delta_i) \in P} J(p(\delta_i), \theta)$$
$$J(p(\delta_i), \theta) = \mathbb{E}_{p(\delta_i)} [L(f_{\theta}(x_i + \delta_i), y_i)] + \lambda H(p(\delta_i)).$$

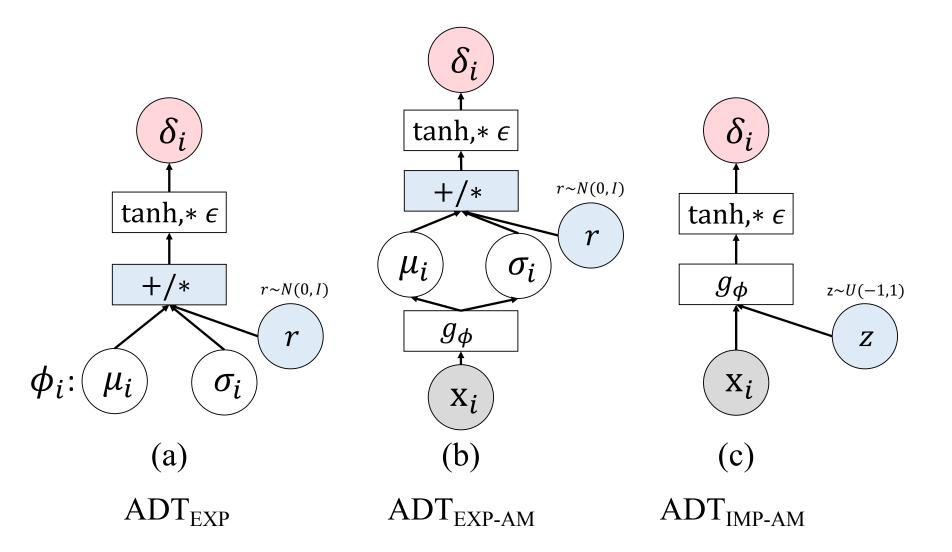
Advantages:

- ADT can characterize diverse adversarial examples, many of which may be generated by different attacks, such that ADT leads to better generalizability across attacks.
- The adversarial distributions in ADT can better explore the space of possible adversarial examples, leading to better robustness performance.

Yinpeng Dong*, Zhijie Deng*, Tianyu Pang, Hang Su, Jun Zhu

Dept. of Comp. Sci. & Tech., Institute for AI, BNRist Center Tsinghua-Bosch Joint ML Center, THBI Lab, Tsinghua University, Beijing, 100084 China {dyp17, dzj17, pty17}@mails.tsinghua.edu.cn, {suhangss, dcszj}@mail.tsinghua.edu.cn

Parameterizing Adversarial Distributions



Model	$ \mathcal{A}_{ ext{nat}} $	FGSM	PGD-20	PGD-100	MIM	C&W	FeaAttack	$\mathcal{A}_{ m rob}$
Standard	94.81%	12.05%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
AT _{FGSM}	93.80%	79.86%	0.12%	0.04%	0.06%	0.13%	0.01%	0.01%
AT_{PGD}^{\dagger}	87.25%	56.04%	45.88%	45.33%	47.15%	46.67%	46.01%	44.89%
AT _{PGD}	86.91%	58.30%	50.03%	49.40%	51.40%	50.23%	50.46%	48.26%
ALP	86.81%	56.83%	48.97%	48.60%	50.13%	49.10%	48.51%	47.90%
FeaScatter	89.98%	77.40%	70.85%	68.81%	72.74%	58.46%	37.45%	37.40%
ADT _{EXP}	86.89%	60.41%	52.18%	51.69%	53.27%	52.49%	52.38%	50.56%
ADT _{EXP-AM}	87.82%	62.42%	51.95%	51.26%	52.99%	51.75%	52.04%	50.04%
ADT _{IMP-AM}	88.00%	64.89%	52.28%	51.23%	52.64%	52.65%	51.89%	49.81%

ADT_{EXP}: modeling adversarial perturbations around an input data using a distribution with an explicit density function:

$$\delta_i = \epsilon \cdot \tanh(u_i), u_i = N(\mu_i, \operatorname{diag}(\sigma_i^2))$$

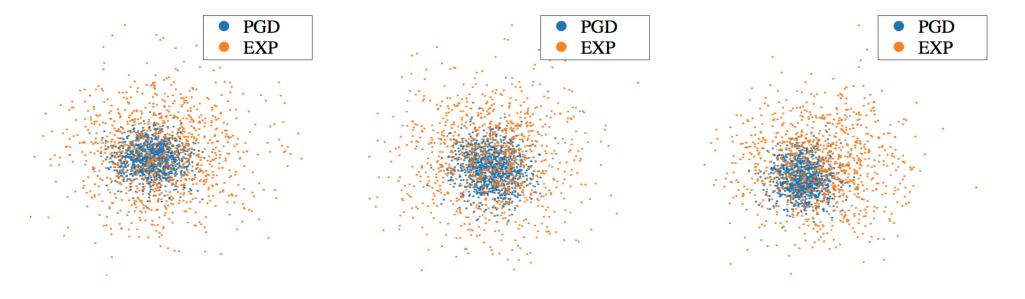
To estimate the gradient of $J(p_{\phi_i}(\delta_i), \theta)$ with respect to ϕ_i , we adopt the reparameterization trick as

$$\mathbb{E}_{\mathbf{r}\sim\mathcal{N}(\mathbf{0},\mathbf{I})}\nabla_{\boldsymbol{\phi}_{i}}\Big[\mathcal{L}\big(f_{\boldsymbol{\theta}}\big(\mathbf{x}_{i}+\epsilon\cdot\tanh(\boldsymbol{\mu}_{i}+\boldsymbol{\sigma}_{i}\mathbf{r})\big),y_{i}\big)-\lambda\log p_{\boldsymbol{\phi}_{i}}\big(\epsilon\cdot\tanh(\boldsymbol{\mu}_{i}+\boldsymbol{\sigma}_{i}\mathbf{r})\big)\Big].$$

ADT_{EXP-AM}: amortizing the inner optimization of ADT_{EXP} by using a conditional generator network. We learn a generator g_{ϕ} that takes a natural example x_i as input, and outputs the parameters $\{\mu_i, \sigma_i\}$ of the adversarial distribution.

ADT_{IMP-AM}: using implicit distributions to characterize the adversarial perturbations. We implicitly define a conditional adversarial distribution as $\delta_i = g_{\phi}(z, x_i), \qquad z \sim U(-1, 1).$ Since the entropy of the implicit distributions cannot be estimated exactly, We instead maximize the variational lower bound of the entropy.

Diversity of Adversarial Examples

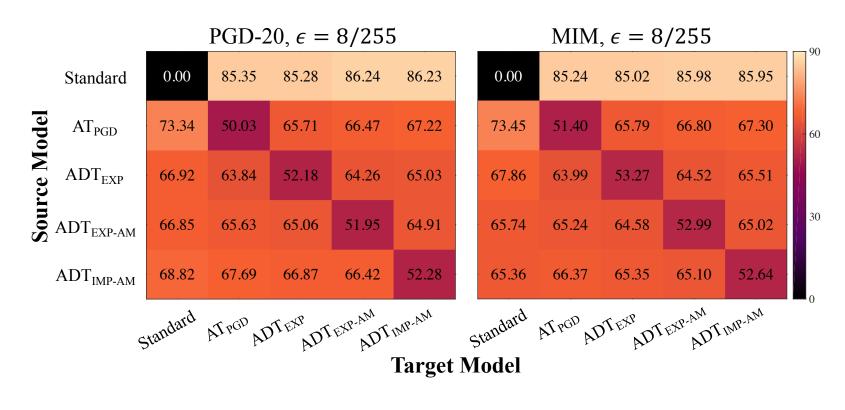


Experiments

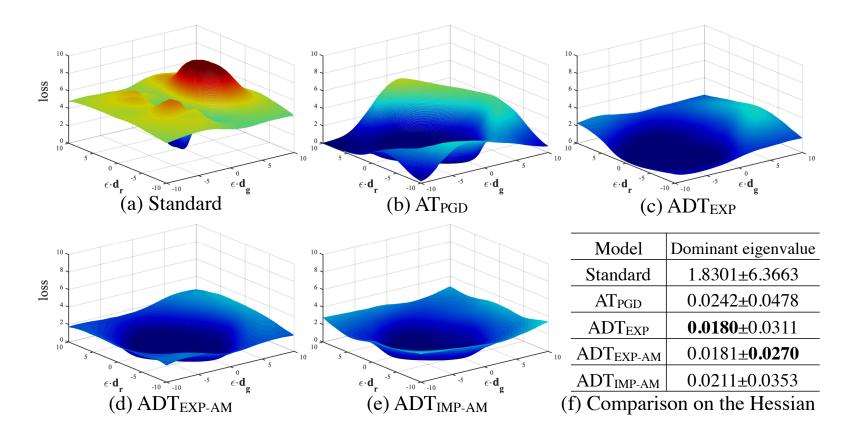
Settings: CIFAR-10 with Wide-ResNet-28-10, $\epsilon = 8/255$

White-box robustness

Black-box robustness



Loss landscape visualization



Conclusion

- We proposed adversarial distribution training (ADT) framework for learning robust models.
- We introduced three ways to parameterize the adversarial distributions
- We performed extensive experiments to validate the effectiveness of our proposed methods.
- Our code is available at:

