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Introduction

q Defenses
Adversarial Training Image Denoising Robust Training

The defenses can be circumvented in the white-box manner since they cause
obfuscated gradients [Athalye et al., 2018]; but some of them claim to be
robust in the black-box manner.

We want to answer that: Are these defenses really robust against black-
box attacks based on the transferability?

Observation & Motivation

q Results of kernel length
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Conclusion
q We propose a translation-invariant attack method to craft adversarial
examples with improved transferability against the defense models.

q Our method can be integrated into any gradient-based attack method.

q Attacking an ensemble of models

q Adversarial examples are crafted by adding small, human-imperceptible
noises to normal examples, but make a model output wrong predictions.

Experiments
q Experimental settings
l Inc-v3ens3, Inc-v3ens4, IncRes-v2ens [Tramer et al., 2018];
l High-level representation guided denoiser (HGD) [Liao et al., 2018];
l Random resizing and padding (R&P) [Xie et al., 2018];
l JPEG compression and total variance minimization (TVM) [Guo et al., 2018];
l NIPS-r3 (rank-3 submission in the NIPS 2017 defense competition).
White-box models: Inc-v3, Inc-v4, IncRes-v2, Res-v2-152

q Our best attack TI-DIM fools eight state-of-the-art
defenses at an 82% success rate on average.

q Our method can serve as a benchmark to evaluate
robustness of future developed defenses.
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n The defenses make predictions based on different discriminative regions
compared with normal models (and also different gradient [Tsipras et al., 2019]);

n The adversarial example is highly correlated with the discriminative region
or gradient of the white-box model at the given input point, making it hard to
transfer to defenses which are based on different regions for predictions;

n Therefore, we propose to craft an adversarial example against an ensemble
of translated images.

Methodology

q Constrained Optimization Problem:
max
$%&'

	𝐽 𝑥+,-, 𝑦 	𝑠. 𝑡. 𝑥+,- − 𝑥45+6 7 ≤ 𝜖

1. Fast Gradient Sign Method (FGSM) 
[Goodfellow et al., 2015]:
𝑥+,- = 𝑥45+6 + 𝜖 ⋅ sign(𝛻$𝐽(𝑥45+6 , 𝑦))

2. Basic Iterative Method (BIM) [Kurakin
et al., 2016]:

𝑥DEF+,- = 𝑥D+,- + α ⋅ sign 𝛻$𝐽 𝑥D+,-, 𝑦 	

3. Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [Dong et al., 2018]

𝑔DEF = 𝜇 ⋅ 𝑔D +
𝛻$𝐽 𝑥D+,-, 𝑦
𝛻$𝐽 𝑥D+,-, 𝑦 F

, 			𝑥DEF+,-= 𝑥D+,- + 𝛼 ⋅ sign 𝑔DEF

4. Carlini & Wagner’s method (C&W) [Carlini and Wagner, 2017] optimizes the
Lagrangian-relaxed form of the problem.

q Translation-invariant objective function

max
$%&'

K𝑤MN𝐽 𝑇MN(𝑥+,-), 𝑦
�

M,N

				𝑠. 𝑡. 𝑥+,- − 𝑥45+6 7 ≤ 𝜖

l 𝑇MN is the translation operation, i.e., 𝑇MN 𝑥 +,Q = 𝑥+RM,QRN.

q Assumption – translation-invariant property of CNNs
𝛻$𝐽 𝑥, 𝑦 S

$TUVW($X)
≈ 𝛻$𝐽 𝑥, 𝑦 S

$T$X

q Loss gradient

𝛻$ K𝑤MN𝐽 𝑇MN 𝑥 , 𝑦
�

M,N

S
$T$X

≈ 𝑊 ∗ 𝛻$𝐽 𝑥, 𝑦 S
$T$X

q Kernel matrix
l A uniform kernel𝑊M,N =

F
\]EF ^;

l A linear kernel𝑊_M,N = 1 − M
]EF 1 − N

]EF ,𝑊M,N =
a_ V,W
∑a_ V,W��

l AGaussian kernel𝑊_M,N =
F

\cd^ exp − M^EN^

\d^ ,𝑊M,N =
a_ V,W
∑a_ V,W��

q Our method can be integrated into any gradient-based attack method
l TI-FGSM: 𝑥+,- = 𝑥45+6 + 𝜖 ⋅ sign 𝑊 ∗ 𝛻$𝐽 𝑥45+6, 𝑦

l TI-BIM: 𝑥DEF+,- = 𝑥D+,- + α ⋅ sign 𝑊 ∗ 𝛻$𝐽 𝑥D+,-, 𝑦
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(a) Inc-v3 (b) Inc-v4

(c) Inc-Res-v2 (d) Res-v2-152

Kernel Length=1 Kernel Length=3 Kernel Length=5 Kernel Length=7 Kernel Length=9 Kernel Length=11 Kernel Length=13 Kernel Length=15


