

Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks

Department of Computer Science and Technology, Institute for AI, Tsinghua University

Introduction

Adversarial examples are crafted by adding small, human-imperceptible noises to normal examples, but make a model output wrong predictions.

- **Constrained Optimization Problem:** $\max_{x^{adv}} J(x^{adv}, y) \ s.t. \left\| x^{adv} - x^{real} \right\|_{\infty} \le \epsilon$
- 1. Fast Gradient Sign Method (FGSM) [Goodfellow et al., 2015]:

 $x^{adv} = x^{real} + \epsilon \cdot \operatorname{sign}(\nabla_x J(x^{real}, y))$

2. Basic Iterative Method (BIM) [Kurakin et al., 2016]:

 $x_{t+1}^{adv} = x_t^{adv} + \alpha \cdot \operatorname{sign}\left(\nabla_x J(x_t^{adv}, y)\right)$

3. Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [Dong et al., 2018]

$$g_{t+1} = \mu \cdot g_t + \frac{\nabla_x J(x_t^{adv}, y)}{\|\nabla_x J(x_t^{adv}, y)\|_1}, \quad x_{t+1}^{adv} = x_t^{adv} + \alpha \cdot \text{sign}(g_{t+1})$$

FGSM

TI-FGSM

4. Carlini & Wagner's method (C&W) [Carlini and Wagner, 2017] optimizes the Lagrangian-relaxed form of the problem.

Defenses

The defenses can be circumvented in the white-box manner since they cause obfuscated gradients [Athalye et al., 2018]; but some of them claim to be robust in the black-box manner.

We want to answer that: Are these defenses really robust against blackbox attacks based on the transferability?

The defenses make predictions based on different discriminative regions compared with normal models (and also different gradient [Tsipras et al., 2019]);

The adversarial example is highly correlated with the discriminative region or gradient of the white-box model at the given input point, making it hard to transfer to defenses which are based on different regions for predictions;

Therefore, we propose to craft an adversarial example against an ensemble of translated images.

□ Translation-invariant objective function

 $\max_{x^{ad}}$

 $\nabla_{x}J(x,y)\Big|_{x=T_{ij}(\hat{x})}\approx$

- **Loss gradien**
- $\nabla_{x}\left(\sum_{i,j}w_{ij}J(T_{ij}(x))\right)$
- □ Kernel matr
- A uniform kern
- A linear kernel
- A Gaussian ker
- **Our method**
- **TI-FGSM:** x^{adv}
- **TI-BIM:** $x_{t+1}^{adv} =$

Yinpeng Dong, Tianyu Pang, Hang Su, Jun Zhu

Observation & Motivation

Methodology

$$\sum_{v} \sum_{i,j} w_{ij} J (T_{ij}(x^{adv}), y) \quad s.t. \| x^{adv} - x^{real} \|_{\infty} \le \epsilon$$

• T_{ii} is the translation operation, i.e., $T_{ii}(x)_{a,b} = x_{a-i,b-i}$.

□ Assumption – translation-invariant property of CNNs

$$\approx \nabla_{x} J(x, y) \Big|_{x=\hat{x}}$$

int

$$y) \Big) \Big|_{x=\hat{x}} \approx W * \nabla_{x} J(x, y) \Big|_{x=\hat{x}}$$

iix

$$\text{nel } W_{i,j} = \frac{1}{(2k+1)^{2}};$$

$$\widetilde{W}_{i,j} = \left(1 - \frac{|i|}{k+1}\right) \left(1 - \frac{|j|}{k+1}\right), W_{i,j} = \frac{\widetilde{W}_{i,j}}{\Sigma \widetilde{W}_{i,j}}$$

$$\text{nel } \widetilde{W}_{i,j} = \frac{1}{2\pi\sigma^{2}} \exp\left(-\frac{i^{2}+j^{2}}{2\sigma^{2}}\right), W_{i,j} = \frac{\widetilde{W}_{i,j}}{\Sigma \widetilde{W}_{i,j}}$$

$$= x^{real} + \epsilon \cdot \operatorname{sign} \left(W * \nabla_{x} J(x^{real}, y) \right)$$
$$= x_{t}^{adv} + \alpha \cdot \operatorname{sign} \left(W * \nabla_{x} J(x_{t}^{adv}, y) \right)$$

□ Attacking an ensemble of models

Attack	Inc-v3 _{ens3}	Inc-v3 _{ens4}	IncRes-v2 _{ens}	HGD	R&P	JPEG	TVM	NIPS-r3
FGSM	27.5	23.7	13.4	4.9	13.8	38.1	30.0	19.8
TI-FGSM	39.1	38.8	31.6	29.9	31.2	43.3	39.8	33.9
MI-FGSM	50.5	48.3	32.8	38.6	32.8	67.7	50.1	43.9
TI-MI-FGSM	76.4	74.4	69.6	73.3	68.3	77.2	72.1	71.4
DIM	66.0	63.3	45.9	57.7	51.7	82.5	64.1	63.7
TI-DIM	84.8	82.7	78.0	82.6	81.4	83.4	79.8	83.1

Conclusion

- □ We propose a translation-invariant attack method to craft adversarial examples with improved transferability against the defense models.
- **Our method can be integrated into any gradient-based attack method.**
- **Our best attack TI-DIM fools eight state-of-the-art** defenses at an 82% success rate on average.
- **Our method can serve as a benchmark to evaluate** robustness of future developed defenses.

LONG BEACH **CALIFORNIA** June 16-20, 2019

