Efficient Decision－based Black－box Adversarial Attacks on Face Recognition
Yinpeng Dong ${ }^{1}$ ，Hang Su ${ }^{1}$ ，Baoyuan Wu²，Zhifeng Li²，Wei Liu ${ }^{2}$ ，Tong Zhang ${ }^{3}$ ，Jun Zhu ${ }^{1}$ ${ }^{1}$ Institute for AI，Tsinghua University，${ }^{2}$ Tencent AI Lab，${ }^{3}$ Hong Kong University of Science and Technology

LONG BEACH

Introduction

．Face recognition models based on deep neural networks are vulnerable to adversarial examples．In many real－world face recognition applications， he attackers cannot get access to the model details．
We focus on the realistic decision－based black－box setting，where no model information is exposed except that the attackers can only query the target model and obtain corresponding hard－label predictions．We are the first to study adversarial attacks on face recognition in the black－box setting．
－Goal：Finding minimum adversarial perturbations by limited queries．

Problem Formulation

－Constrained optimization problem $\min _{x^{*}} D\left(x^{*}, x\right)$ ，s．t．$C\left(f\left(x^{*}\right)\right)=1$ D is a distance metric（e．g．，L_{2} norm），C is an adversarial criterion $(C(f(x))=0)$
－A reformulation
$\min _{x^{*}} L\left(x^{*}\right)=D\left(x^{*}, x\right)+\delta\left(C\left(f\left(x^{*}\right)\right)=1\right)$
$\delta(a)=0$ if a is true；otherwise $\delta(a)=+\infty$ ．
－Dodging attack：protect personal privacy $C\left(f\left(x^{*}\right)\right)=\mathbb{I}\left(f\left(x^{*}\right)=0\right)$ in face verification；
$C\left(f\left(x^{*}\right)\right)=\mathbb{I}\left(f\left(x^{*}\right) \neq y\right)$ in face identification．

］Impersonation attack：evade face authentication systems
$C\left(f\left(x^{*}\right)\right)=\mathbb{I}\left(f\left(x^{*}\right)=1\right)$ in face verification；
$C\left(f\left(x^{*}\right)\right)=\mathbb{I}\left(f\left(x^{*}\right)=y^{*}\right)$ in face identification．

Previous Methods

Boundary Attack［Brendel et al．，2018］：Optimization Attack［Cheng et al．，2019］
 $g(\theta)=\underset{\sim>0}{\operatorname{argmin}}\left(c\left(f\left(x+\lambda \frac{\theta}{\|\theta\|}\right)\right)=1\right)$

Random search on the decision boundary \quad Zeroth－order optimization to find optimal θ But they usually require a tremendous number of queries $\left(\sim 10^{5}\right)$ to converge，or get a relatively large perturbation given a limited budget of queries．

Evolutionary Attack

The evolutionary attack can improve the query efficiency by modeling the local geometry of the search directions and reducing the dimension of the search space
ㅁ Algorithm：
Input：original image x ；the dimension n of the input space，m of the search space；
1．Initialize $C=I_{m}, p_{c}=0, \tilde{x}^{*}$ as an adversarial example；
2．For $t=1$ to T do
3．Sample $z=N\left(0, \sigma^{2} C\right)$ ；
4． Select k coordinates with probability proportional to
the diagonal element in C
Set the non－selected elements to 0
Upscale z to \mathbb{R}^{n} by bilinear interpolation and get \tilde{z} ．

dimensionality
 reduction and

 stochastic coordinate selection$7 . \quad \tilde{z} \leftarrow \tilde{z}+\mu\left(x-\tilde{x}^{*}\right) ; \quad$ Add a bias to reduce the distance $D\left(x^{*}, x\right)$
8．If $L\left(\tilde{x}^{*}+\tilde{z}\right)<L\left(\tilde{x}^{*}\right)$ then

9．$\quad \tilde{x}^{*} \leftarrow \tilde{x}^{*}+\tilde{z} ;$ \begin{tabular}{l}
10．$\quad p_{c}=\left(1-c_{c}\right) p_{c}+\sqrt{c_{c}\left(2-c_{c}\right)} \frac{z}{\sigma} ;$

11．$\quad c_{i i}=\left(1-c_{c o v}\right) c_{i i}+c_{\operatorname{cov}\left(p_{c}\right)_{i}^{2} ;}$

\hline 12．End if

13．End for \quad| Use a diagonal covariance matrix |
| :--- |
| 14．Return \tilde{x}^{*}. |
| to oodel the local geometry of the |
| search directions |

\end{tabular}

Experiments

－Attacks on SphereFace，CosFace，and ArcFace

圆日 日an日

Attacks on the face verification API in Tencent AI Open Platform

Conclusion

－We propose an evolutionary attack method to improve query efficiency in the decision－based black－box setting，
－We demonstrate the practical applicability by attacking a real－world face recognition system；
Our attack can be used to protect personal privacy and evaluate the robustness of face recognition models．

