

UNIVERSITY VIRGINIA

Learning Accurate Low-bit Deep Neural Networks with Stochastic Quantization

Introduction

BinaryConnect: Quantize 32-bits weights \mathbf{W}_i to binary values \mathbf{B}_i .

$$B_{i}^{j} = \begin{cases} +1 & \text{with probability } p = \sigma(\mathbf{W}_{i}^{j}), \\ -1 & \text{with probability } 1 - p. \end{cases}$$
(1)

BWN: Introduce a scaling factor $\alpha \in \mathbb{R}^+$ along with \mathbf{B}_i to approximate \mathbf{W}_i .

Experiments

Ablation Study

Several factors in the algorithm will affect the overall performance like:

• Selection granularity: element-wise or channel-wise.

$$\mathbf{B}_{i} = \operatorname{sign}(\mathbf{W}_{i})$$
 and $\alpha = \frac{1}{d} \sum_{j=1}^{d} |\mathbf{W}_{i}^{j}|.$ (2)

TWN: Approximates \mathbf{W}_i with a ternary value vector $\mathbf{T}_i \in \{1, 0, -1\}^d$ along with a scaling factor α .

$$\mathbf{T}_{i}^{j} = \begin{cases} +1 & \text{if } \mathbf{W}_{i}^{j} > \Delta \\ 0 & \text{if } |\mathbf{W}_{i}^{j}| \leq \Delta \\ -1 & \text{if } \mathbf{W}_{i}^{j} < -\Delta \end{cases} \text{ and } \alpha = \frac{1}{|\mathbf{I}_{\Delta}|} \sum_{i \in \mathbf{I}_{\Delta}} |\mathbf{W}_{i}^{j}|, \qquad (3)$$

where Δ is a positive threshold with following values

$$\Delta = \frac{0.7}{d} \sum_{j=1}^{d} |\mathbf{W}_{i}^{j}|, \qquad (4)$$

 $\mathbf{I}_{\Delta} = \{j \mid |\mathbf{W}_{i}^{j}| > \Delta\}$ and $|\mathbf{I}_{\Delta}|$ denotes the cardinality of set \mathbf{I}_{Δ} .

Motivations: Previous methods quantize the weights **to low-bits all together**. The quantization error **is not consistently small** for all elements/filters. The large quantization error for some elements/filters lead to **inappropriate gradient direction** during training, thus makes the model converge to **worse local minimum**.

- Partition algorithm: stochastic partition—roulette algorithm;
 deterministic partition—sorting; fixed partition—select once.
- Quantization probability function: constant— $p_i = 1/m$; linear— $p_i = f_i/\sum_j f_j$; softmax— $p_i = \exp(f_i)/\sum_j \exp(f_j)$; sigmoid— $p_i = 1/(1+\exp(-f_i))$, where $f_i = 1/(e_i+\varepsilon)$.
- Scheme for updating SQ ratio r: exponential—r = 50%, 75%, 87.5% and 100%; average—r = 20%, 40%, 60%, 80% and 100%; fine-tune—r = 0%, 50%, 75%, 87.5% and 100%.

(hannel-wise	VS	Flemen	t-wise

	Channel-wise	Element-wise
SQ-BWN	7.15	7.67
SQ-TWN	6.20	6.53

	Stochastic	Deterministic	Fixed
SQ-BWN	7.15	8.21	*
SQ-TWN	6.20	6.85	6.50

Stochastic Quantization

Figure 1: Illustration of the stochasitc quantization procedure.

Quantization Error: The normalized L_1 distance between W_i and Q_i (*e.g.*, B_i , T_i).

$$e_{i} = \frac{\|\mathbf{W}_{i} - \mathbf{Q}_{i}\|_{1}}{\|\mathbf{W}_{i}\|_{1}}.$$
(5)

Quantization Probability p_i : Inversely proportional to e_i (*e.g.*, linear, sigmoid functions of $1/e_i$).

Quantization Ratio r: A portion of weights to quantize. r gradually increases to 100% at the end of training.

Stochastic Partition: Partition the rows of \mathcal{W} into two disjoint groups $G_q = \{\mathbf{W}_{q_1}, \cdots, \mathbf{W}_{q_{N_q}}\}$ and $G_r = \{\mathbf{W}_{r_1}, \cdots, \mathbf{W}_{r_{N_r}}\}$ $(N_q = r \times m)$, which should satisfy

Quantization Probability Function

	Linear	Constant	Softmax	Sigmoid
SQ-BWN	7.15	7.44	7.51	7.37
SQ-TWN	6.20	6.30	6.29	6.28

Update Stochastic Quantization Ratio

	Exponential	Average	Fine-Tune
SQ-BWN	7.15	7.35	7.18
SQ-TWN	6.20	6.88	6.62

Benchmark Results

CIFAR

	Bits	CIFAR-10		CIFAR-100	
		VGG-9	ResNet-56	VGG-9	ResNet-56
FWN	32	9.00	6.69	30.68	29.49
BWN	1	10.67	16.42	37.68	35.01
SQ-BWN	1	9.40	7.15	35.25	31.56
TWN	2	9.87	7.64	34.80	32.09

 $G_q \cup G_r = \mathcal{W}$ and $G_q \cap G_r = \emptyset$, (6)

Training: Form the hybrid weight matrix $\tilde{\mathcal{Q}}^t$, where each row $\tilde{\mathbf{Q}}_i = \mathbf{W}_i$ if $\mathbf{W}_i \in G_r$; else $\tilde{\mathbf{Q}}_i = \mathbf{Q}_i$. Update \mathcal{W} with the hybrid gradients $\frac{\partial \mathcal{L}}{\partial \tilde{\mathcal{Q}}^t}$ in each iteration as

$$\mathcal{W}^{t+1} = \mathcal{W}^t - \eta^t \frac{\partial \mathcal{L}}{\partial \tilde{\mathcal{O}}^t},\tag{7}$$

Inference: Use the low bitwidth weights \mathcal{Q} during inference.

Codes: https://github.com/dongyp13/Stochastic-Quantization.

SQ-TWN	2	8.37	6.20	34.24	28.90

ImageNet

	Rite	AlexNet-BN		ResNet-18	
	DILS	top-1	top-5	top-1	top-5
FWN	32	44.18	20.83	34.80	13.60
BWN	1	51.22	27.18	45.20	21.08
SQ-BWN	1	48.78	24.86	41.64	18.35
TWN	2	47.54	23.81	39.83	17.02
SQ-TWN	2	44.70	21.40	36.18	14.26

British Machine Vision Conference, September, 2017, London