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Abstract. Learning latent representations is playing a pivotal role in
machine learning and many application areas. Previous work on the re-
lational topic model (RTM) has shown promise on learning latent topical
representations for describing relational document networks and predict-
ing pairwise links. However under a probabilistic formulation with nor-
malization constraints, RTM could be ineffective in controlling the sparsi-
ty of the topical representations, and often need to make strict mean-field
assumptions for approximate inference. This paper presents the sparse
relational topic model (SRTM) under a non-probabilistic formulation
that could effectively control the sparsity via a sparsity-inducing regu-
larizer and handle the imbalance issue in real networks via introducing
various cost parameters for positive and negative links. The determin-
istic optimization problem of SRTM admits efficient coordinate descent
algorithms. We also present a generalization to consider all pairwise top-
ic interactions. Our empirical results on several real network datasets
demonstrate better performance on link prediction and faster running
time than the competitors under a probabilistic formulation.

1 Introduction

With the fast growing of Internet and data collection technologies, statistical
network data analysis is playing an increasingly important role in both scien-
tific and engineering areas, such as biology, social science, data mining, etc. A
network is normally represented by a set of vertices (i.e., entities) and a set of
edges (i.e., links) between these entities. Link prediction is a fundamental task in
network analysis [1], and building link prediction models can provide solutions
of suggesting friends for social network users or recommending products.

Many approaches have been developed for link prediction, including both
parametric [2–4] and nonparametric [5, 6] Bayesian models as well as matrix fac-
torization methods [7]. Most of these approaches focus on modeling the network
structure. One work that accounts for both network structure and entity con-
tents is the relational topic model (RTM) [8], an extension of latent Dirichlet
allocation (LDA) [9] to model document networks. Because of its probabilistic
formulation, RTM has some restrictions on modeling real networks, which can be
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highly complex and imbalanced. For example, real networks normally have very
few positive links while most are negative; but the standard maximum likelihood
estimation (MLE) or Bayesian inference of RTM cannot handle this imbalance
issue. Furthermore, sparsity is an important property in learning latent repre-
sentations that are semantically meaningful and interpretable [10], especially
in large-scale applications; but RTM cannot effectively control the sparsity of
latent representations due to its probabilistic formulation with normalization
constraints.

To deal with the above issues, we present an alternative formulation of re-
lational topic models that discover nonnegative latent representations of words
and documents and make predictions on unseen links. With a non-probabilistic
formulation [11] and no normalization constraints, we can effectively control
the sparsity of the latent representations by using a sparsity-inducing ℓ1-norm
regularizer; by using different regularization parameters on the positive link like-
lihood and negative link likelihood respectively, the sparse relational topic model
(SRTM) can effectively deal with the imbalance issue of common real networks.
Furthermore, SRTM can be generalized to capture all pairwise topic interactions
in a link likelihood model and is applicable to both symmetric and asymmetric
networks. Finally, SRTM admits efficient and simple coordinate descent algo-
rithms. Empirical results on several real network datasets demonstrate better
link prediction performance as well as faster running time than the competitors
under a probabilistic formulation.

The paper is structured as follows. Section 2 discusses related works. Section 3
introduces our sparse relational topic model as a cost-sensitive MAP estimation,
as well as a coordinate descent optimization algorithm. In Section 4 we show
empirical results and section 5 concludes.

2 Related Work

Link prediction [1] has been considered as an important task in statistical net-
work analysis. One promising branch for predicting links is to build latent vari-
able models. Hoff et al. [3] proposed a Bayesian parametric latent variable model
in which the relationship between two entities is measured by the distance be-
tween them in a latent “social space”. Hoff [4] then extended the model by
exploiting the low rank structure in the network link matrix. Airoldi et al. [2]
built parametric hierarchical Bayesian mixed membership block models where
each entity pair has a local membership assignment and all the entity pairs are
also governed by a global block matrix. To infer the dimension of the latent
representations for entities from data, Miller et al. [5] developed non-parametric
Bayesian models for link prediction and their max-margin variants under the
regularized Bayesian framework were proposed by Zhu [6].

One drawback of the above models is that they do not account for contents of
entities. This issue is even more important when we analyze document network-
s, where the semantic meaning of documents can be very useful for predicting
links among them. Chang et al. [8] proposed probabilistic relational topic models
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(RTMs) built on latent Dirichlet allocation to consider both the network struc-
ture and the contents of each entity when predicting links, and their performance
exceeds several baseline methods that do not consider contents. Liu et al. [12]
further considered the author communities behind the document networks in
their models when predicting links among documents. Our SRTM model is a
non-probabilistic variant of RTM.

SRTM is based on a non-probabilistic topic model named sparse topical cod-
ing (STC) [11], which is essentially a hierarchical non-negative matrix factor-
ization method [10]. STC builds a two-level hierarchy by assigning codes for
documents and each word in them. By relaxing normalization constraints and
enforcing codes to be non-negative, STC can put an ℓ1-norm regularizer on the
word level and this makes STC a flexible model to control word code sparsi-
ty [11], which is a good property for learning topical representations especially
in large-scale applications. The effectiveness of STC has been demonstrated on
several domains including text [11], images and videos [13–15].

SRTM presents an extension of STC to address the challenging problem of
link prediction, as we stated above. While sharing the merit of STC to learn
sparse codes, SRTM can handle the imbalance issues among networks.

3 Sparse Topic Models for Document Networks

In this section, we present the sparse relational topic model that solves a deter-
ministic optimization problem. By relaxing the normalization constraints as in
probabilistic models, SRTM can learn sparse word codes with an ℓ1-norm reg-
ularizer and admits an efficient coordinate descent algorithm. In contrast, the
probabilistic RTM often makes mean-field assumptions for approximate infer-
ence. Though SRTM can be defined from a loss minimization perspective, for
the ease of understanding we first introduce a probabilistic generative process
and then cast SRTM as solving a MAP estimate with cost-sensitive regulariza-
tion parameters to deal with imbalance issues of real networks.

3.1 A Generative Process for SRTM

Let V = {1, 2, · · · , N} be a vocabulary containing N terms and D = {W,Y} be
a training dataset, where W = {wd}Dd=1 represents a corpus of D documents and
Y denotes the set of pairwise links between documents. I is the set of document
pairs whose links are in the training set, i.e., I = {(d, d′) : yd,d′ ∈ Y}. We adopt
the conventional bag-of-words model, i.e., each document is represented as a
set wd = {wdn, n ∈ Id}, where wdn is the word count for the nth term in the
dictionary and Id is the set of terms in document d. Let yd,d′ denote the label of
the link between document d and d′. Though SRTM can be easily extended to do
multi-type link prediction, for clarity we consider binary links, that is yd,d′ = 1
if there is a link between document1 d and d′, and yd,d′ = −1 otherwise.

1 For asymmetric networks, yd,d′ denotes the link from document d to document d′.
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Fig. 1. Graphical Model for SRTM considering only one document pair as an illustra-
tion.

As a relational topic model, SRTM models words W and links Y with two
closely connected components. The first component is a hierarchical sparse topi-
cal coding (STC) [11] to describe words by using a topical dictionary Φ ∈ RK×N

with K topical bases, that is, each row Φk. is a normalized distributional vector
over the given vocabulary. We use Φ.n to denote the nth column of Φ. Each
document d has a topical representation θd ∈ RK (i.e., document code) and each
words in the document has an individual word code sdn ∈ RK (n ∈ Id). Note
that here we do not put normalization constraints on document codes or word
codes. This relaxation enables us to build a more flexible topic model. In fac-
t, we can achieve sparse word codes by imposing non-negative constraints and
a sparsity-inducing regularizer [10, 11]. SRTM also assumes that word codes in
one document are independent given the document code and the word count
wdn follows a distribution whose mean parameter is s⊤dnΦ.n [11]. The second
component of SRTM defines a likelihood model of the links between documents.
Formally, the generative procedure of SRTM on document words and links can
be described as:

1. for each document d
(1) draw a document code θd from p(θd).
(2) for each observed word n ∈ Id

(a) draw the word code sdn from p(sdn|θd)
(b) draw the observed word count wdn from p(wdn|s⊤dnΦ.n).

2. for each document pair (d, d′), draw a link from p(yd,d′ |s̄d, s̄d′).

where s̄d = 1
|Id|

∑
n∈Id

sdn is the average word code of document d, a representa-

tion of document d in the latent topic space. For the clarity of presentation, we
show a graphical model of SRTM considering only one document pair in Fig. 1,
and it can be easily extended to model a large network of documents. To fully
specify the model, we need to define the word likelihood model p(wdn|sdn,Φ)
and the link likelihood model p(yd,d′ |s̄d, s̄d′). For word counts, since wdn is a pos-
itive integer, we choose the commonly used Poisson distribution and set s⊤dnΦ.n



Sparse Relational Topic Models for Document Networks 5

as the mean parameter:

p(wdn|sdn,Φ) = Poisson(wdn, s
⊤
dnΦ.n), (1)

where Poisson(x, ν) = νxe−ν

x! . One benefit for setting the inner product s⊤dnΦ.n

as mean parameter is that we can easily constrain the word code space by en-
forcing sdn to be non-negative and put regularization constraints like ℓ1-norm
constraints [10]. For the link likelihood, both the sigmoid function and expo-
nential link function were used in [8]. But, the exponential function is itself
unnormalized and some special treatment is needed to normalize it. Therefore,
we choose the more common sigmoid function to model the probability of a link:

p(yd,d′ = 1|s̄d, s̄d′) = σ(η⊤(s̄d ◦ s̄d′) + ν), (2)

where σ(x) = 1
1+e−x ; η = (η1, η2, · · · , ηK)⊤ are the parameters describing how

likely there is a link between two documents when they share a specific topic;
and ν denotes the offset for the link probability. The symbol ◦ denotes the
element-wise product.

3.2 Cost-Sensitive MAP Estimate

Let Θ = {θd} and S = {sd} denote the latent representations of documents and
words respectively. Then the joint distribution of SRTM can be written as:

p(W,Y,Θ,S|Φ) =
∏
d

(
p(θd)

∏
n∈Id

p(sdn|θd)p(wdn|sdn,Φ)

) ∏
(d,d′)∈I

p(yd,d′ |s̄d, s̄d′)

(3)
We naturally impose a normal prior on θd so that p(θd) ∝ exp(−λ∥θd∥22). For
the word code sdn we put a Laplace prior to achieve sparsity [16]. Furthermore,
we restrict the word codes not too far away from the document code by a normal
regularizer. This results in a composite prior p(sdn|θd) ∝ exp(−γ∥θd − sdn∥22 −
ρ∥sdn∥1), which is super-Gaussian [17] and the ℓ1-term drives our estimates to
be sparse. The hyper-parameters (λ, γ, ρ) can be pre-defined or selected using
cross-validation.

With the above joint distribution, a standard MAP estimate with dictionary
learning can be formulated as solving the problem:

min
Θ,S,Φ

ℓ(S,Φ;W) + ℓ(S,η;Y) +Ω(Θ,S)

s.t.: θd ≥ 0, ∀d; sdn ≥ 0, ∀d, n ∈ Id;Φk. ∈ P, ∀k, (4)

where ℓ(S,Φ;W) =
∑

d,n∈Id
ℓ(sdn,Φ) = −

∑
d,n∈Id

logPoisson(wdn, s
⊤
dnΦ.n) is

the negative log-likelihood of word counts; ℓ(S,η;Y) =
∑

(d,d′)∈I ℓ(sd, sd′ , yd,d′) =

−
∑

(d,d′)∈I log p(yd,d′ |s̄d, s̄d′) is the negative log-likelihood of links; andΩ(Θ,S) =

λ
∑

d ∥θd∥22 +
∑

d,n∈Id
(γ∥sdn − θd∥22 + ρ∥sdn∥1) is the regularization term. The

negative log-likelihood is usually called a log-loss. We have imposed non-negative
constraints on the latent representations in order to obtain good interpretability,
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as a non-negative code can be interpreted as the importance of a topic. Moreover,
non-negative constraints are good for our objective of a sparse estimate.

It is worth noting that there could be two imbalance issues with the standard
MAP estimate. Firstly, for each pair of documents there is only one link variable
while there could be hundreds of words. This difference will lead to an imbalanced
combination of word likelihood and link likelihood in problem (4). Secondly, in
common real networks only a few links are positive while most are negative, e.g.,
the widely used Cora citation network [8] has about 0.1% positive links. This
difference will lead to an imbalanced combination of positive link likelihood and
negative link likelihood. To address these imbalance issues, we can easily extend
the regularized log-loss minimization problem to a cost-sensitive MAP estimate
by introducing different regularization parameters for the positive and negative
links respectively. Specifically, we replace the standard log-loss of links with the
following cost-sensitive log-loss:

ℓ(S,η;Y) = C+

∑
(d,d′)∈I+

ℓ(sd, sd′ , yd,d′) + C−
∑

(d,d′)∈I−

ℓ(sd, sd′ , yd,d′), (5)

where I+ = {(d, d′) ∈ I : yd,d′ = 1} and I− = I\I+. Then, by setting C+ and
C− at a value larger than 1, we can improve the influence of links and overcome
the imbalance issue between words and links; and by setting C+ at a value larger
than C−, we can better balance the influence of positive links and negative links.
We will provide more insights in the experiment section.

If we look back at the generative formulation, which is easy to understand, an
intuitive understanding of the regularization parameters C+ and C− is that they
are pseudo-counts of the links, and the likelihood of the links are correspondingly:

p(yd,d′ = 1|s̄d, s̄d′) = σ(η⊤(s̄d ◦ s̄d′) + ν)C+

p(yd,d′ = −1|s̄d, s̄d′) = σ(−η⊤(s̄d ◦ s̄d′)− ν)C− .

Note that these likelihood functions are unnormalized if the pseudo-counts are
not 1. But the un-normalization does not affect our estimates in the cost-sensitive
log-loss minimization framework.

3.3 Optimization Algorithms

We first present our learning algorithm for minimizing Eq. (4). Since the opti-
mization problem is bi-convex, i.e. convex over Θ and S given the dictionary Φ
and the networks parameters η and ν; and convex over Φ, η, and ν given the
document codes Θ and the word codes S, we use a coordinate descent algorithm
to iteratively optimize the objective function. As outlined in Algorithm 1, the
algorithm iteratively solves three subproblems:

1. Hierarchical Sparse Coding: learns document codes and sparse word codes
for the documents;

2. Dictionary Learning: learns the topical dictionary with document codes and
word codes given;
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Algorithm 1 Sparse Relational Topic Models

1: Initialize Φ,Θ,S,η, ν
2: read corpus D
3: while not converge do
4: (Θ,S) = HierarchicalSparseCoding(Φ,η, ν);
5: Φ = DictionaryLearning(S);
6: (η, ν) = LinkModelLearning(S);
7: end while

3. Link Model Learning: learns the link likelihood model with the codes and
topical dictionary given.

Below, we discuss each step in detail. For notation simplicity, we will set C+ =
C− = C.

Hierarchical Sparse Coding: This step involves solving for the word codes
and document codes. Since the subproblem is convex, we can apply a generic
algorithm to solve it. Here, we use the similar coordinate descent method as
in [11]. For document codes, since the documents are independent, we can solve
for each θd separately and this results in a convex subproblem:

min
θd

λ∥θd∥22 + γ
∑
n∈Id

∥sdn − θd∥22, s.t.: θd ≥ 0. (6)

It can be shown that the optimum solution is θd =
γ
∑

n∈Id
sdn

λ+γ|Id| , that is, the

document code is the average (with some re-scaling) of word codes.
For word codes, again we can treat each document separately. Formally, the

optimization problem for word codes of document d is:

min
sd

∑
n∈Id

ℓ(sdn, β) +
∑
n∈Id

(γ∥sdn − θd∥22 + ρ∥sdn∥1) + C
∑

d′∈Nd

ℓ(sd, sd′ , yd,d′)

s.t.: sdn ≥ 0, ∀n ∈ Id, (7)

where Nd = {d′ : (d, d′) ∈ I} is the neighbors of document d in the training
network. For the sigmoid link function, the log-loss of links is

ℓ(sd, sd′ , yd,d′) = log
(
1 + exp(−yd,d′(η⊤(s̄d ◦ s̄d′) + ν))

)
. (8)

Since the objective function w.r.t. a single word code is convex given other word
codes, we can iteratively optimize each word code sdn by solving:

min
sdn

ℓ(sdn,Φ) + γ∥sdn − θd∥22 + ρ∥sdn∥1 + C
∑

d′∈Nd

ℓ(sd, sd′ , yd,d′)

s.t.: sdn ≥ 0. (9)

This subproblem does not have a closed-form solution because of the nonlinear-
ity of the sigmoid likelihood. Therefore, we resort to numerical methods using
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projected gradient descent [18] to take care of the constraints. Precisely, we take
a gradient descent step with a stepsize selected with line search, and then perfor-
m projection onto the convex feasible domain. Formally, the projected gradient
descent is to update:

snewdn = ΠP (s
old
dn − t∇sdnL)

where t is the step size;ΠP is a projection operator; andΠP (x) = argminx′∈P d(x, x′).
Here P is the positive half space of RK and d(·, ·) stands for the Euclidian dis-
tance. Let L be the objective function of the subproblem (9). We can verify that
snewdnk = 0 if solddnk−t∇sdnk

L < 0 and snewdnk = solddnk−t∇sdnk
L otherwise. To simplify

notation, we first calculate the derivative of the sigmoid link function in Eq. (8)
w.r.t. to sdn

∇sdnℓ(sd, sd′ , yd,d′) =
∂ℓ

∂zd,d′
· ∂zd,d

′

∂sdn
=

−yd,d′ exp(zd,d′)

1 + exp(zd,d′)
· ηks̄d

′

|Id|
, (10)

where zd,d′ = −yd,d′(η⊤(s̄d ◦ s̄d′) + ν). Then, the gradient w.r.t. sdn is

∇sdnL = (1− wdn

s⊤dnΦ.n
)Φ.n+2γ(sdn−θd)+ρ+C

∑
d′∈Nd

∇sdnℓ(sd, sd′ , yd,d′). (11)

Dictionary Learning: This step involves solving for the topical dictionary
Φ. Since Φ is constrained on a probabilistic simplex, we can use projected gra-
dient method to update Φ and then project each row onto an ℓ1-simplex [11].
Efficient linear time projection methods are available to make this step fast [19].

Link Likelihood Learning: This step involves solving for the parameters
η and ν of the link likelihood model. In this step we only need to account for
the link part

∑
(d,d′)∈I ℓ(sd, sd′ , yd,d′). The objective for each link is convex so

the summation is also convex for η and ν. Simply taking gradient we get

∇ηk
L = C

∑
(d,d′)∈I

−yd,d′ s̄dks̄d′k exp(zd,d′)

1 + exp(zd,d′)

∇νL = C
∑

(d,d′)∈I

−yd,d′ exp(zd,d′)

1 + exp(zd,d′)

and we can use gradient descent with line search to solve the problem.

3.4 A Generalized Sparse Relational Topic Model

It is worth noticing that in SRTM we define the strength of a link between two
documents by η⊤(s̄d ◦ s̄d′)+ ν = s̄d⊤diag(η)s̄d′ + ν, where diag(η) is a diagonal
matrix with the diagonal elements being those of η. Therefore, SRTM can only
capture the same-topic-interactions (i.e., only when two documents have the
same topic, there is a nonzero contribution to the link likelihood); and it could be
unsuitable for modeling asymmetric networks because of the symmetric nature
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Fig. 2. Weight matrix and according representative words for each topic learned by
SRTM (first row) and gSRTM (second row) on the Cora citation network data.

of diagonal matrices. To relax these constraints and capture all-pairwise-topic-
interactions, one straightforward extension is to use a full weight matrix HK×K

and define the link likelihood model as:

p(yd,d′ |s̄d, s̄d′) = σ(yd,d′(s̄⊤d H s̄⊤d′ + ν)). (12)

where Hij represents the strength of two documents being connected when they
have topic i and topic j respectively. We denote this generalized SRTM by gSRT-
M. Formally, using the sigmoid likelihood function we have a similar optimiza-
tion problem, and a similar coordinate descent algorithm can be applied with
tiny changes on learning word codes and link likelihood models when taking the
gradient descent steps.

Before presenting all the details of our experiments, we first illustrate the
latent semantic structures learned by the sparse relational topic models and
compare the diagonal SRTM and the generalized SRTM with a full weight ma-
trix. Specifically, Fig. 2 shows the weight matrices learned by SRTM and gSRTM
on the Cora citation network data (details are in the next section), as well as
the top words of each of the 10 topics, respectively. For the diagonal SRTM,
since the latent features s̄d in the link likelihood are nonnegative, the learned
weight matrix must have some negative diagonal entries although most diago-
nal entries are positive in order to fit the training data with binary links. The
negative diagonal entries somehow conflict our intuition that papers with the
same topic should be more likely to have a citation link. In contrast, the full
weight matrix learned by gSRTM has only positive diagonal entries, which are
consistent with our intuition; and many off-diagonal entries are negative, again
consistent with our intuition that papers with different topics are less likely to
have a citation relation. We also note that some topics are generic, and papers
with these topics are likely to get cited by or cite the papers with other closely
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Table 1. Statistics of the datasets used in our experiments.

Dataset # Entities # Terms (N) # Links Link sparsity ratio

Cora [20] 2,708 1,433 5,429 0.07%
WebKB [21] 877 1,608 1,703 0.2%
CiteSeer 3,312 3,703 4,714 0.04%

related topics. For example, Topic3 in gSRTM is a generic topic about theory,
probabilistic, algorithm and statistical; and the papers with Topic3 are likely to
have a citation relationship with the papers with the related topics, such as Top-
ic4 (Bayesian, learning, Markov, etc.), Topic5 (network, belief, genetic, etc.), and
Topic6 (knowledge, systems, model, etc.).

4 Experiments

In this section, we present more experimental results and compare with several
models on link prediction tasks. We further present a sensitivity analysis over
some built-in hyper-parameters to verify that SRTM can handle the imbalance
issues in real networks while effectively learning sparse word codes.

4.1 Datasets and Models

Our experiments are conducted on three publicly available datasets. All the
datasets contain very sparse positive links, as detailed below:

– The Cora dataset [20] consists of 2,708 research papers with a vocabulary
of 1,433 terms in total. Among the papers there are 5,429 positive links,
each representing a citation from one paper to the other. So on average each
paper has about 2 citations and the ratio of positive links is roughly 0.07%.

– The WebKB dataset [21] consists of 877 webpages collected from comput-
er science departments of four universities, with 1,608 hyper-links among
pages. In total, there are 1,703 terms in the dictionary. Again, this network
is sparse and about 0.2% of the pairs have links.

– The CiteSeer dataset is another sparse document network consisting of 3,312
papers and 3,703 citations among those papers (i.e., the link sparsity ratio
is about 0.04%). Its dictionary consists of 4,712 individual words.

Since RTM has been shown to outperform several baseline models on link pre-
diction [8], our empirical studies are concentrated on analyzing the effectiveness
of sparse learning in relational topic models. We use RTM as our competitive
baseline method, and compare all the methods on the above three real network
datasets. In summary, the methods we compare are the followings:
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– RTM [8]: the probabilistic relational topic model built on LDA using varia-
tional methods with mean-field assumptions to approximately infer the pos-
terior distribution. We consider the case where the logistic link function is
used to model links with a diagonal weight matrix;

– STC+Regression: a two-step model in which we first train an unsuper-
vised sparse topic coding (STC) [11] to discover the latent representations of
all documents and then learn a logistic regression model on training links to
predict the links of testing document pairs. Note that the link information
does not affect the latent representations in this method;

– SRTM: the proposed sparse relational topic model that uses a diagonal
weight matrix in the logistic link likelihood function;

– gSRTM: the generalized SRTM with a full symmetric weight matrix in the
logistic link likelihood model.

4.2 Results on Link Prediction

We follow the same approach as in [8] to predict link for unseen documents.
Namely, for each testing document, we predict its links to the training docu-
ments. For SRTM models (i.e., SRTM and gSRTM), this can be done by first
inferring the latent representation of the testing document through solving a
hierarchical sparse coding step, and then applying the logistic link likelihood
function to compute the probability of existing a link. With the probability, we
can make binary decision, that is, if the probability is larger than 0.5, there
is a link; otherwise, no link exists. Here, we use link rank2 as the performance
measure, the same as in [8]. We also compare the training time to analyze the
efficiency of various methods. Since all the methods are very efficient in testing,
we omit the comparison on testing time.

To partly address the serious imbalance issues of the real networks and im-
prove time efficiency, we randomly sample 0.2% of the negative links3 and form
the training data together with all the positive links to learn the sparse topic
models, including SRTM, gSRTM and the de-coupled approach of STC+Regression.
For the probabilistic RTM, since there is no effective mechanism on balancing
positive and negative links, we found that using the same down-sampling strate-
gy would produce worse results on both link prediction and time efficiency than
the “regularization” strategy suggested in [8]. Thus, we choose to use only pos-
itive links and put a regularizer over η and ν to make sure that they will not
diverge.

2 For a document, its link rank is defined an average over the ranks of positive links
in the list of all testing pairs. Then, the average link rank is an average of the link
rank over all testing documents.

3 Other sampling ratios (e.g., 1%, 0.5%, 0.1%, etc.) do not affect the link prediction
results of the SRTM models much due to the effective balancing strategy by tuning
regularization parameters.
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Fig. 3. First row: Link rank on three datasets using different models when changing
the number of topics. Second row: Training time (in seconds) on three datasets using
different models when changing the number of topics.

Fig. 3 shows the results on link prediction and training time. We tune hyper-
parameters for all the models to their best settings for link prediction. For RTM,
we tune the Dirichlet hyper-parameters α and for the SRTM models we fix λ = γ
and tune the ratio ρ/γ. Those hyper-parameters will affect link prediction results
and the sparsity of word codes, and we will further provide a sensitivity analysis
on them in Section 4.3. Overall, we can see that the sparse relational topic models
obtain significantly better results on all datasets. A closer examination can be
down by comparing the following model pairs:

– RTM vs. SRTM : On all the datasets, SRTM makes more accurate link pre-
diction (e.g., SRTM improves the average link rank by about 100 on the
Cora dataset) and uses less (about 2 times when the number of topics is rel-
atively large) time than RTM. These improvements are attributed to several
factors. First, SRTM accounts for the imbalance issues in the network, which
can affect the link prediction performance, while RTM cannot handle that
within its Bayesian framework. Second, RTM makes mean-field assumptions,
which can be too strict [22], while SRTM avoids making this assumption by
solving a deterministic optimization problem. Finally, SRTM uses coordinate
descent methods to optimize the objective function, where each step breaks
down to very quick projected gradient methods. All these factors make SRT-
M perform better in link prediction while still faster than RTM, even though
RTM does not use negative links;
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– STC+Regression vs. SRTM : Since SRTM takes link information into ac-
count during the hierarchical sparse coding step, its latent representations
could be more discriminative for link prediction and thus SRTM obtains a
huge gain in link prediction as shown in Fig. 3. With moderate values of C+

and C−, SRTM accounts for both links and words to produce a much pow-
erful network model for link prediction. With no surprise, we require more
time as a cost for considering links in SRTM. Notice that SRTM collapses to
STC+Regression when C+ = C− = 0 and SRTM can approximate a matrix
factorization approach when C is significantly larger than other factors in
Eq. (4). We will further analyze this phenomenon in Section 4.3;

– SRTM vs. gSRTM : Fig. 3 shows that the generalized gSRTM can make
better prediction on all the datasets than SRTM, while spending more time
during train on the Cora and CiteSeer datasets. The reason is that by using a
K×K full weight matrix and capturing all pairwise topic interactions in link
likelihood model, gSRTM can capture valuable topic relationships and thus
fit the network data better as we have illustrated in Fig. 2. Of course, using a
full weight matrix with more (i.e., K2) non-zero elements would increase the
computational burden, obviously in the steps of link likelihood learning and
less obviously in the step of learning word codes when computing gradients
and objective functions. On the WebKB dataset the training time of both
SRTM and gSRTM seems comparable. The reason is that gSRTM converges
in fewer steps on this dataset and thus the time cost was leveraged.

4.3 Sensitivity Analysis

Word code sparsity The strength of SRTM partly lies on its flexibility to learn
sparse word codes by adjusting the hyper-parameters (λ, γ, ρ). Following [11] we
fix λ = γ and only tune the ratio ρ/γ. By checking Eq. (4) we can clearly see that
when setting ρ/γ to a relative large value, SRTM is encouraged to learn sparse
word codes. But this can cause a high divergence between word codes and the
corresponding document code. From our experiments we verify that balancing
the two factors can let the model generalize well to unseen data while effectively
learning sparse word codes. For the RTM model, the Dirichlet hyper-parameters
α control the sparsity level4. As it will be shown in the experiments, RTM cannot
learn sparse word codes while maintaining good link prediction performance by
tuning α.

In Fig. 4(a) and Fig. 4(b) we compare the sparsity ratio of word codes5

between RTM and SRTM with different numbers of topics when tuning their
hyper-parameters. For RTM, we tune the Dirichlet parameter α and for SRTM
we fix γ to a constant and tune ρ6. This results in a change of ρ/γ. Fig. 4(a)

4 We use the common symmetric Dirichlet prior for the topic mixing proportions in
RTMs.

5 The sparsity ratio is defined as the average ratio of zero elements in word codes.
6 Changing both γ and ρ will lead to even better link prediction results.
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Fig. 4. Sparsity ratio (a) and link rank (c) for RTM with different number of topics
when tuning hyper-parameter α on the Cora dataset; Sparsity ratio (b) and link rank
(d) for SRTMwith different number of topics when tuning the ratio of hyper-parameters
ρ/γ on the Cora dataset.

shows a sharp drop of sparsity ratio when α grows to a certain level. This is
due to the property of the Dirichlet prior, where a little shift can cause the
“sharpness” of the prior changes significantly. For SRTM, Fig. 4(b) demonstrates
that the sparsity ratio stays at a relative high level. When the number of topics is
relatively small, barely changing ρ can gradually affect the sparsity ratio. There
is a trend that SRTM does not learn a dense word code, which is probably due
to a clear meaning of words in the dataset that each word only has a few topical
meanings.

We also analyze how the hyper-parameters affect link prediction accuracy.
Fig. 4(c) shows that the best link prediction results of RTM can be reached
when α is around 0.1. At this point, the sparsity ratio is zero. So on the Cora
dataset, RTM tends to perform better when learning dense codes. This is not a
coincidence because a small α can produce a very “sharp” Dirichlet prior, which
can dramatically bias the model and result in an inefficient control of sparsity
ratio. In contrast, from Fig. 4(d) we can see that for SRTM there is a gradual
change in link rank when ρ grows. Finally, the model reaches its best link rank
result at a high sparsity ratio when ρ/γ = 0.1. The reason is that SRTM relaxes
the probability constraints of codes and thus effectively learn sparse codes by
introducing ℓ1-norm constraints at the word code level. SRTM achieves a built-in
sparsity control mechanism by constructing a two-level hierarchical topic model,
which also brings about more hyper-parameters.

The Hyper-parameter C As we have discussed, a relational topic model
might have two imbalance issues, i.e., the imbalance between modeling words and
links, and the imbalance between positive links and negative links. To address
both issues, SRTM introduces the hyper-parameter C+ for positive links and
C− for negative links. For the first issue, we can fix a reasonable value of C+

and C− to balance words and links. For the second issue, since negative links
usually dominate positive links, we can either tune the C+/C− ratio or sub-
sample the negative links. In our experiments, we use both strategies and find
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Fig. 5. Link rank of SRTM (red sold line) using different C+ values and
STC+Regression (black dash line). Both with 25 topics on the Cora Dataset. Note
that C− also changes with C+.

that sub-sampling a few negative links while tuning C+/C− can make very good
prediction results.

To analyze the sensitivity, we fix a reasonable ratio C+ = 10C− to balance
the links7 and tune C+ for training SRTM with 25 topics on the Cora dataset.
The link ranks for different C+ values are shown in Fig. 5. We can see that SRT-
M performs best when C+ is not too large nor too small. When C+ approaches
zero SRTM collapses to a sparse topical coding followed by regression. On the
other end, when C+ grows large, the link part dominates the whole objective
function. Thus, SRTM can approach to a matrix factorization approach. SRT-
M does better link prediction, both utilizing words and links with a moderate
C+ than merely using any one of them. This verifies that SRTM successfully
combines the knowledge of each part to get a overall better model.

5 Conclusions and Discussions

We present the sparse relational topic model (SRTM), a non-probabilistic for-
mulation of the relational topic model to understand document networks and
predict missing links. By relaxing the normalization constraints of probabilistic
models and introducing appropriate regularization terms, SRTM can handle the
common imbalance issues in real networks and efficiently learn sparse latent rep-
resentation. SRTM admits a simple coordinate descent algorithm, and it can be
naturally extended to capture all pairwise topic interactions for predicting links
among document networks. Empirical results show that our model performs sig-
nificantly better than probabilistic relational topic models in link prediction and
training time.

The current batch algorithm to learn the topical dictionary and link likeli-
hood model may cause limitations on applying SRTM to large-scale applications.
Therefore, it is worth investigating stochastic gradient descent methods [23] in
the future. Furthermore, though a restricted grid search works well as we have
done in the experiments, in general it is hard to search for the optimal hyper-

7 As in the link prediction experiments, we sub-sample 0.2% of negative links as our
training data.
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parameters for SRTM, and developing more efficient methods is an interesting
topic.
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