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ABSTRACT
Although image-to-image translation has been widely studied, the
video-to-video translation is rarely mentioned. In this paper, we
propose an unified video-to-video translation framework to accom-
plish different tasks, like video super-resolution, video colouriza-
tion, and video segmentation, etc. A consequent question within
video-to-video translation lies in the flickering appearance along
with the varying frames. To overcome this issue, a usual method
is to incorporate the temporal loss between adjacent frames in the
optimization, which is a kind of local frame-wise temporal con-
sistency. We instead present a residual error based mechanism to
ensure the video-level consistency of the same location in different
frames (called дlobal temporal consistency). The global and local
consistency are simultaneously integrated into our video-to-video
framework to achieve more stable videos. Our method is based on
the GAN framework, where we present a two-channel discrimina-
tor. One channel is to encode the video RGB space, and another is to
encode the residual error of the video as a whole to meet the global
consistency. Extensive experiments conducted on different video-
to-video translation tasks verify the effectiveness and flexibleness
of the proposed method.
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1 INTRODUCTION
Recently, the so-called image-to-image translation has been widely
studied [9, 24], i.e., an image is input to a generative network,
and the output is also an image. Many tasks can be formulated
as the image-to-image translation problem, such as image super-
resolution [21], image colourization [23], image segmentation [4],
and so on. Up to now, the Generative Adversarial networks (GAN)
methods are dominantly used to solve this problem. Although
much progress has been achieved in image-to-image translation,
the video-to-video translation is rarely mentioned. In fact, the above
super-resolution, stylization, and segmentation tasks are easily ex-
tended to the video case, result in the video super-resolution [20],
video colourization [1], and video segmentation [10] , respectively.
Therefore, like the image-to-image translation, an unified video-to-
video translation framework should be considered to handle with
these different tasks.

To accomplish the video-to-video translation, a straightforward
method is to perform image-to-image translation on each frame
in the video. However, this kind of operation will lead to the flick-
ering results, which is usually stated in the video stylization [2].
Specifically, the same location within the different frames will show
slightly difference on the stylization appearance. As a result, the
generative video is flickering along with the varying frames. We
argue that this phenomenon not only occurs in the video styliza-
tion, but also all the video-to-video translation tasks, including the
video segmentation, video super-resolution, and video colouriza-
tion (see the rectangles in Fig.1). How to overcome this problem
and obtain stable videos becomes a major issue to be addressed in
video-to-video translation.
∗Corresponding author.
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Video super-resolution

Video segmentation

Video colourization

Figure 1: Two consecutive frames from the results of video
super-resolution [20], video segmentation [10] and video
colourization with per-frame processing [1], respectively.
From the figure, we see that the appearance of the same lo-
cation in consecutive frames is saltatorial and not smoothly
changing. This will lead to the flickering results in videos.

In video stylization, the main solution for the unstable videos is
to add the temporal consistency loss in the optimization [2, 7, 18].
When the loss is computed between two adjacent frames, it is called
short-term consistency, if more adjacent frames are involved, it is
called long-term consistency. In the view of technique, because
temporal consistency loss ensures the frame-by-frame consistency,
it is a kind of local frame-wise mechanism, and thus cannot get the
video-level consistency. In such situation, we need to evaluate the
temporal consistency of the video as a whole, which can be viewed
as a дlobal mechanism. Combining the local and global consistency
together is a more suitable mechanism to obtain the stable videos.

Considering these factors, in this paper, we propose an unified
video-to-video translation framework with an integrating global
and local mechanism to ensure the consistency of the same location
within different frames. Inspired by the image-to-image translation,
we also utilize the generative adversarial networks. However, to
deal with the video data, the generator and discriminator are both
RNN-based architectures (please see section 3.2 for the details).
For the inconsistency between frames, we exploit the optical flow
to warp the neighboring frames, and compute the residual errors
between the warped frames and the aligned frames. The computed
residual errors are used in two places to ensure the consistency. The
first one is put as a part of the generator’s loss function to enforce
the residual error’s minimization during the training phrase (local
temporal consistency), and the second one is fed to the discrimi-
nator to guide the generation of video frame with lowest residual
errors (global temporal consistency). Different from the traditional
GAN, we here present a two-channel discriminator, where one
channel is to encode the video RGB space as usual, and another is
to encode the residual errors between adjacent frames. During the

optimization, the discriminator will compare the predicted videos
with the ground-truth videos as a whole, and thus guide the pre-
dicted video to be as stable as the ground-truth video. Therefore, the
discriminator with the channel of residual errors plays the role of a
global guide for the temporal consistency. In this way, the local and
global temporal consistency are simultaneously integrated into the
video-to-video framework. Fig.2 illustrates the whole architecture
of the proposed method.

In summary, this paper has the following contributions:

• To our knowledge, we are the first one to propose an unified
framework to accomplish different video-to-video transla-
tion problems. To verify the effectiveness, we utilize the
proposed framework to perform three tasks: video super-
resolution, video colourization, and video segmentation. The
proposed framework is sufficiently flexible, and can directly
use the existing video generating methods as the generator
in our framework.
• We give an analysis about the temporal inconsistency exist-
ing in the video-to-video translation tasks, and propose a
novel two-channel discriminator to ensure the global tempo-
ral consistency for the testing video as a whole. Furthermore,
by incorporating the existing local temporal consistency
with the proposed global temporal consistency in an unified
framework, our method shows a major improvement over
the single local consistency (see the experiments).

The rest of this paper is organized as follows. In Section 2, we
briefly review the related works. We present the video-to-video
translation framework in Section 3. Section 4 reports all experimen-
tal results of different video-to-video translation tasks. Finally, we
summarize the conclusions in Section 5.

2 RELATEDWORK
The related work comes from two aspects: image-to-image transla-
tion and temporal consistency.

2.1 Image-to-Image Translation
In computer vision, many tasks can be formulated as the image-to-
image translation problem, such as image super-resolution, image
segmentation, image denoise, deblure, dehaze, and so on. In the past,
these tasks are studied individually. Therefore, although a lot of
specific frameworks are proposed [3, 5, 16], they are not compatible
with each other. With the rise of deep learning, an universal image-
to-image translation framework (called pix2pix) based on the GAN
(Generate Adversarial Network) is proposed. The pix2pix method
[9] is the first to performs the "Labels to Street Scene", "Aerial to
Map", "Day to Night", and "BW to Color" via an unified framework,
and achieves a good performance.

However, the pix2pix method needs a lot of image pairs in the
training phrase, which usually are not easy to obtain in the real
world. This motivates the generation of unpaired image-to-image
translation framework. CycleGAN [24] is presented for learning to
translate an image from a source domain X to a target domain Y in
the absence of paired examples. It achieves their goal via learning a
cyclic mapping and minimizing the so-called cycle consistency loss.
The similar ideas are used in DiscoGAN [12] and Dual GAN [22].
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Figure 2: Architecture of the proposed video-to-video translation framework. Our method is based on the GAN. In the gen-
erator, It−1, It , It+1 are the input video frames, and Ot−1,Ot ,Ot+1 are the generated output video frames. We first compute the
optical flowW between the neighboring frames (e.g. It−1, It ). ThenOt−1 is warped usingW to produce Ôt to alignOt . Next, the
residual error Eot (E

o
t+1) between the warped frame Ôt (Ôt+1) and aligned frameOt (Ot+1) is computed. For the real data (ground

truth), we also compute the residual error (e.g. Eдt ,E
д
t+1) using the same method. In the two-channel discriminator, we use one

channel to encode the ground-truth video frames G = {...,Gt−1,Gt ,Gt+1, ...} and the generated frames O = {...,Ot−1,Ot ,Ot+1, ...}.
We use another channel to encode the residual errors from predicted output Eд = {...,Eдt ,E

д
t+1, ...} and the ground-truth output

Eo = {...,Eot ,E
o
t+1, ...}. The outputs of these two channels are finally concatenated to give the discriminator’s result.

Neural Style Transfer (NST) [6, 11, 14] is another way to perform
image-to-image translation, which synthesizes a novel image by
combining the content of one image with the style of another image
(typically a painting) based on matching the Gram matrix statistics
of pre-trained deep features. A major difference between NST and
pix2pix method is that NST has no ground-truth targeted images in
the training. Therefore, the generated results cannot be evaluated
quantitatively like pix2pix method.

Unlike the above work, we focus on the video-to-video transla-
tion problem, which is an extension of the image-to-image trans-
lation. Similarly, many computer vision tasks can formulated into
such a framework, such as video segmentation, video super-resolution,
and video colourization, and so on. Therefore it is worthy to be
further studied.

2.2 Temporal Consistency
Neural Style Transfer (NST) demonstrates that deep learning can
produces fantastic stylized images with the appearance of a given
artwork. It is straightforward to extend the idea to videos. Actually
many researchers [2, 7, 18] have explored this task. The experiments
show that simply applying image NST techniques to video frames
is non-trivial, and often leads to flickering results. Therefore, a well-
designed method is needed to ensure the temporal consistency.

[7] and [18] use a short-term and long-term temporal loss to
solve this issue. Specifically, they utilize the optical flow to warp
the previous frame to align the current frame (short-term), and then
compute the loss between the warped frame and current frame.
By minimizing the temporal loss, one can get the stable video
stylization. If more distant previous frames are used, a long-term
loss is obtained. Note that the temporal loss is computed directly on

the stylized frames. Instead, [2] computes the temporal loss on the
featuremaps output by the encode network, and propose an efficient
network by incorporating short-term coherence, and propagating
short-term coherence to long-term, which ensures consistency over
a longer period of time. Prior to this, [1] explores the temporal
consistency in video enhancement and depth estimation. They
propose a gradient-domain technique to generate a temporally-
consistent video sequence. The core of their solution is to infer the
temporal regularity from the original unprocessed video, and use it
as a temporal consistency guide to stabilize the processed sequence.

Essentially, both the temporal loss and temporal regularity are a
kind of local information. They achieve the video-level consistency
by ensuring the inter-frames consistency. As a contrast, we use not
only the local constraint, but also the discriminate network in GAN
to give a global stable evaluation for the entire video, which is more
comprehensive.

3 THE PROPOSED FRAMEWORK
In this section, we give the details of the proposed framework for
video-to-video translation with global and local temporal consis-
tency.

3.1 Residual Error based on Optical Flow
As mentioned before, because the generator and discriminator in
our framework both use the residual error to enforce the local
and global temporal consistency, respectively, we first give the
introduction about the residual error based on optical flow.

Given the input video sequence {It |t = 1...n}, the task is to trans-
late {It |t = 1...n} to the predicted video sequence {Ot |t = 1...n},
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Figure 3: Illustrations of the Generator in our framework.
We combine the RNN and U-net [17] to construct our Gener-
ator network. For the details, please see the texts.

the targeted ground-truth video sequence is {Gt |t = 1...n}. LetWt
denote the optical flow from frame It−1 to It . In our experiment,
we use the FlowNet2.0 [8] to compute the optical flow. We warp
Ot−1 to Ôt via bilinear interpolation. Specifically, for each pixel
p = (x ,y) in the frame Ot−1, Ôt (p) = Ot−1 (p +Wt (p)). Now we
can compute the forward residual error for the predicted frame Ot :
Êot = Ot − Ôt . For the ground-truth video sequence, we use the
same method to get Êдt = Gt − Ĝt . Noted the predicted video and
ground-truth video use the same optical flowWt .

To detect the occlusion between two frames, we perform a
forward-backward consistency check of the optical flow. LetW f

t (p) =
(u,v ) be the optical flow in forward direction from frame It−1 to
It andW b

t−1 (p) = (û, v̂ ) the flow in backward direction from frame
It to It−1. u and û are the displacement in x-coordinate, and v and
v̂ are the displacement in y-coordinate. Denote by W̃ the forward
flow warped to the second image via bilinear interpolation:

W̃ (p) =W f
t (p +W b

t−1 (p)), (1)

According to the study in the literature [19], we can mark as
occlusions those areas where the following inequality holds:

|W̃ +W b
t−1 |

2 > 0.01( |W̃ |2 + |W b
t−1 |

2) + 0.5, (2)

According to the above inequality, we obtain Dt , which denotes
the detected occlusion region for frame It .

Motion boundaries are detected using the following inequality:

|∇û |2 + |∇v̂ |2 > 0.01|W b
t−1 |

2 + 0.002, (3)

where ∇û,∇v̂ are the gradient of the location p in the optical flow
W b
t−1. We letMt denote the detected motion boundary for frame It .

Finally, we obtain the modified residual error Eot = Dt ×Mt × Ê
o
t

for the predicted frameOt , and E
д
t = Dt ×Mt × Ê

д
t for the ground-

truth frame Gt . In Fig.2, for the real data, the residual error set
is Eд = {...,Eдt ,E

д
t+1, ...}, and for the predicted data, the residual

error set is Eo = {...,Eot ,E
o
t+1, ...}.

3.2 Network Architecture
3.2.1 RNN-based Generator. To consider the relation between

adjacent frames, we combine the RNN with U-Net [17] to construct
the Generator. The network architecture is as plot in Fig. 3. The
U-Net contains an encode part and a decode part. The previous
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Figure 4: Illustrations of the Discriminator in our frame-
work. We combine the RNN and Markovian Discriminator
[9] to construct themain discriminator architecture. Our dis-
criminator has two channels, where one is encode the video
RGB space, and another is to encode the residual error.

video frame is first input to the encode network to get the inner
feature. This inner feature is propagated to the current frame and
is combined with the inner feature of current frame. The combined
feature is finally input the decode network to output the targeted
frame.

3.2.2 Two-channel RNN-based Discriminator. For the discrim-
inator, we also use a RNN-based network architecture. Inspired
by the discriminator in [9], we combine RNN with the Markovian
discriminator to construct our discriminator. Besides the traditional
channel to encode the spatial relation in the video RGB space (called
spatial channel), we use another channel to encode the residual
error, which can be called temporal channel. These two channels
have the same network architecture. The temporal channel encodes
the temporal consistency for the entire video as a whole. There-
fore, the two-channel discriminator ensures the global temporal
consistency. The discriminator network is plotted in Fig. 4.

3.2.3 Details of The Network. Let Ck denote a Conv-BN-ReLU
layer with k filters. CDk denotes a a Conv-BNDropout-ReLU layer
with a dropout rate of 50%. All convolutions are 4 × 4 spatial filters
applied with stride 2. RNN denotes the RNN layer, where it firstly
concatenates the input and hidden units, and then applies two
convolutions with 1× 1 filter and stride 1 to compute the output
unit and hidden unit, respectively.

The generator architecture is C64-C128-C256-C512-C512-C512-
C512-C512-RNN-CD512-CD512-CD512-C512-C256-C128-C64. The
left of RNN is the encoder network, and the right is the decoder
network. All ReLUs in the encoder are leaky, with slope 0.2, while
ReLUs in the decoder are not leaky.

The discriminator architecture is C64-C128-C256-C512-RNN-
AvePool. The AvePool denotes that all the outputs of RNN for each
frame are fed into a layer of average pooling to get a 1 dimensional
output, followed by a Sigmoid function.

3.3 Global and Local Temporal Consistency
We combine the local and global temporal consistency to jointly en-
sure the video stability. For local consistency, as mentioned before,
we compute the residual error between the predicted frames Eo =
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{...,Eot ,E
o
t+1, ...}. In the training phase, the Eo = {...,Eot ,E

o
t+1, ...}

are the temporal consistency loss, we directly minimize them to
achieve the local consistency. The temporal loss is computed as
follows:

Ltemporal =
1
T

T∑
t=1
| |Eot | |1 (4)

whereT is the number of frames in a video. For the global temporal
consistency, we input the predicted output Eo = {...,Eot ,E

o
t+1, ...}

and the ground-truth results Eд = {...,Eдt ,E
д
t+1, ...} to the two-

channel discriminator, and then compute the loss of GAN as follows:
LcGAN = EI,O∼pdata (I,O )[loдD (I ,O )]

+EI∼pdata (I ),z∼pz (z )[loд(1 − D (I ,G (I , z)))],
(5)

where I is the input videos, O is the predicted videos, and z is the
random noise vector. Eq.5 is the loss of a conditional GAN. As
plotted in Fig. 2, the two-channel discriminator encodes the global
temporal consistency. Therefore, the global temporal consistency
is achieved by minimizing the Eq.5.

Like [9], we also add the L1 distance between the predicted
frames and the ground-truth frames as follows:

Lspatial =
1
T

T∑
t=1
| |Ot −Gt | |1 (6)

Overall, our final objective is as follows:

L = Ltemporal + λLspatial + ηLcGAN (7)

where λ and η are the parameters. To optimize the problem, we
follow the standard approach from: we alternate between one gra-
dient descent step on D, then one step on G. We apply the Adam
solver [13].

4 EXPERIMENTS
To verify the proposed video-to-video translation framework, we
test it on three different computer vision tasks: video segmentation,
video colorization, and video super-resolution.

4.1 Datasets
Video Segmentation:We conduct experiments on the DAVIS 2017
dataset [15]. DAVIS 2017 is proposed for the video segmentation,
which consists of 90 high-quality videos. All the frames come with
high-quality per-pixel annotation of the foreground object, from
which 60 are taken for training and 30 for validation. We use the
subsampled version with a resolution of 854×480 pixels. In the
training phase, we sample each 5 frames to obtain the video clips.
In this way, we obtain the training set with 903 video clips. In
the testing phase, the original videos are used to accomplish the
video-to-video translation.

Video Colourization and Video Super-resolution: We also
use the DAVIS 2017 to construct the training set and testing set for
video colourization and video super-resolution. For video colouriza-
tion, we convert the original videos to their gray versions, and thus
obtain the color and gray video pairs. For video super-resolution,
we first reduce the resolution for each original video frame with
1/2 reduction, and then compute their ×2 super-resolution videos
with bicubic interpolation. In this way, we get the low-resolution
and super-resolution video pairs.

4.2 Evaluation metrics
Video Segmentation:We use the evaluation metrics introduced in
[15], i.e., Region Similarity J , Contour Accuracy F , and Temporal
stability T . Specifically, J is defined as the intersection over-union
of the estimated segmentation M and the ground-truth mask G,
J = M∩G

M∪G . For contour accuracy, F = 2PcRc
Pc+Rc , where Pc and Rc

denote the contour-based precision and recall between the con-
tour points of c (M ) and c (G ), respectively. Temporal stability T is
to quantitatively measure the temporal consistency between two
frames. T is firstly proposed in [15], which is computed by the
so-called mean cost per matched point. For details, please see the
cited paper. For T , a lower value is better.

Video Colourization and Video Super-resolution: To mea-
sure the similarity between predicted videos and the ground-truth
videos, we use the PSNR (Peak Signal to Noise Ratio). PSNR is an
approximation to human perception of reconstruction quality. A
higher PSNR generally indicates that the predicted video frame is
of higher quality.

4.3 Results and Discussions
We compare with four different experimental settings and report
their corresponding results. The first one is the image-to-image
method [9], where we regard all the video frames in the dataset
as discrete images and train the model. In the testing phase, the
trained image2image model is performed on each video frame in-
dependently, and then all the predicted frames are concentrated
into a video. The second one is the proposed video-to-video frame-
work introduced in section 3.2, while giving up the global and local
temporal consistency. The third one is adding the local temporal
consistency on the basis of the second one. The forth one is the
whole proposed framework, i.e., the video-to-video method with
simultaneous global and local temporal consistency.

The final experimental results are listed in Table 1. From the
table, we can draw the following conclusions: 1. The image2image
method shows the worst performance on all the three tasks. This
is reasonable because image2image is designed for image trans-
lation. The temporal interactions between frames are not consis-
dered, and thus it is not suitable for the video-to-video transla-
tion. 2. As a contrast, the video2video uses the RNN to encode the
temporal interactions between frames, and obtain a remarkable
improvement in the evaluation metrics over the image2image. 3.
To ensure the temporal consistency, we add the temporal loss (lo-
cal temporal consistency) into the optimization process. The table
shows that video2video+local obtains a slight improvement over
the video2video method, which demonstrates the limited power of
temporal loss in the supervised tasks. Noted, in the super-resolution
task, the performance of video2video+local is even worse than the
video2video. This shows that although local temporal consistency
works well in the unsupervised task like video stylization, it is
not suitable to the supervised tasks like video segmentation, video
super-resolution. The reason for this is that in the supervised tasks,
minimizing the loss between predicted frames and the ground-truth
frames has made the video stable, which limits the effect of tempo-
ral loss. While in the unsupervised tasks, the ground-truth data is
absent. In this case, the temporal loss is important to the temporal
consistency. 4. The proposed global+local consistency obtains the
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Table 1: The performance of the proposed video-to-video framework in different settings and tasks on DAVIS2017 dataset.

Tasks Segmentation Gray2color Super-Resolution
Models J F T P P

image2image 0.5066 0.4617 0.3494 33.0289(dB) 30.1813(dB)
video2video 0.7290 0.7813 0.2006 33.3417(dB) 30.7219(dB)

video2video+local 0.7359 0.7932 0.1767 34.8182(dB) 30.5414(dB)
video2video+local+global 0.9229 0.9589 0.0537 37.8843(dB) 33.0043(dB)
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Figure 5: The performance for each class in the testing set versus local and global+local consistency, respectively. The used
dataset has 30 classes in the testing set, we list these 30 classes in the x-coordinate, and their corresponding performance in
the y-coordinate. Noted for the temporal stability, a lower value is better.

best performance, and furthermore, achieves a major improvement
(Specifically, 0.187 versus J , 0.1657 versus F , and 0.0239 versus T
for segmentation. For gray2color and super-resolution, it adds 3.06
dB and 2.46 dB, respectively), which shows the effectiveness of our
method.

We also give the performance for each class in the testing set in
Fig. 5. For each figure, the performance of local and global+local are
illustrated. Fig. 5 also shows advantage of the proposed global+local
consistency.

In addition, the qualitative results on the three tasks are given
in Fig. 6-8. In each figure, besides the original frames, we list
the results of image2image, video2video+local consistency, and
video2video+global consistency, respectively. Form each figure, we
see that on all the three tasks, the temporal inconsistency of the
predicted frames of image2image method are obvious and easily
captured by human eyes. With the adding local and global temporal

consistency, the video quality is increasing remarkably. Specifi-
cally, In Fig. 6, for image2image method, the tails of goose are not
segmented completely and each frame shows slightly different ap-
pearance. This is reasonable because the segmentation is performed
by frames. As a comparison, the outputs with local consistency are
more accurate owing to the frame-wise temporal consistency. How-
ever, there still exits some mutation like the head of goose in the
third frame. With the adding global temporal consistency, the seg-
mentation results are further refined, and the appearance of varying
frames are smooth. Figure. 7-8 also show the same trend (see the
color in Fig. 7, and the image quality in Fig. 8). Our video2video
framework achieves a major improvement on all the three tasks,
which demonstrates that the proposed architecture can learn a
good mapping between the input video and the output video, and
is regardless of the types of the video content.
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Figure 6: The qualitative results on the video segmenta-
tion versus image2image, video2vide+local consistency, and
video2video+global consistency. The original frames are
listed in the top row.
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Figure 7: The qualitative results on the video colouriza-
tion versus image2image, video2vide+local consistency, and
video2video+global consistency. The original frames are
listed in the top row.

5 CONCLUSIONS
In this paper, we proposed an unified video-to-video translation
framework to accomplish three tasks: video super-resolution, video
colourization, and video segmentation. To overcome the temporal
inconsistency and obtain stable videos, a residual error based mech-
anism was presented to ensure the local and global consistency of
the same location in different frames. Our method is based on the
widely used GAN framework. We adapted the video generation
into this framework and integrated the residual error based mecha-
nism. Extensive experiments conducted on different video-to-video
translation tasks verified the effectiveness and flexibleness of the
proposed method.
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Figure 8: The qualitative results on the video super-
resolution versus image2image, video2vide+local consis-
tency, and video2video+global consistency. The original
frames are listed in the top row.
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