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Visual Diagnosis of Tree Boosting Methods
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Fig. 1. BOOSTVis: (a) the temporal confusion matrix shows the evolution of model performance at the class-level; (b) the instance view
reveals the relationships between instances using the t-SNE projection; (c) the classifier view provides an overview of all the decision
trees and displays the selected one; (d) the feature view displays the feature distributions on the selected subsets of instances.

Abstract— Tree boosting, which combines weak learners (typically decision trees) to generate a strong learner, is a highly effective
and widely used machine learning method. However, the development of a high performance tree boosting model is a time-consuming
process that requires numerous trial-and-error experiments. To tackle this issue, we have developed a visual diagnosis tool, BOOSTVis,
to help experts quickly analyze and diagnose the training process of tree boosting. In particular, we have designed a temporal confusion
matrix visualization, and combined it with a t-SNE projection and a tree visualization. These visualization components work together to
provide a comprehensive overview of a tree boosting model, and enable an effective diagnosis of an unsatisfactory training process.
Two case studies that were conducted on the Otto Group Product Classification Challenge dataset demonstrate that BOOSTVis can
provide informative feedback and guidance to improve understanding and diagnosis of tree boosting algorithms.

Index Terms—tree boosting, model analysis, temporal confusion matrix, tree visualization.

1 INTRODUCTION

Tree boosting, a combination of a set of moderately accurate weak
learners (e.g., decision trees), has been demonstrated to be powerful
and effective in many applications, such as classification and rank-
ing [59]. Due to its practical effectiveness, tree boosting is one of
the most popular methods in data science competitions. For example,
the gradient boosting decision tree (GBDT) was used in the winning
solution [43] at KDD Cup 2016. In Kaggle competitions, tree boosting
has been used in 9 of the 14 first place winning solutions published
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since 2016 [62]. In comparison, deep neural networks was used in 2.
Indeed, tree boosting has comparable popularity to deep learning due
to its reputation of being accurate, flexible, and robust, while requir-
ing less computational resources. In addition to the great success in
competitions, tree boosting models are also widely used in commercial
products, such as web search engines Yahoo [11] and Yandex [68],
IBM Watson [61], IBM SPSS predictive analytics software [60], and
Microsoft Azure Machine Learning Studio [66].

Despite the popularity and success of tree boosting methods, the
development of a high performance tree boosting model still involves
an inefficient trial-and-error process. The difficulties arise from three
aspects. The first stems from the fact that the development of a good
model requires comprehensive performance analysis. Insufficient or
misleading information on performance can lead to premature quiting
of training or overfitting. The second is caused by the complexity of a
tree boosting model. Tree boosting works by sequentially growing new
trees. The model’s size increases over time (iteration), and its perfor-
mance depends on the structures of individual trees, and changes with
addition of more trees. The intertwining of the temporal and spatial
changes makes it difficult to interpret the model’s behavior and identify
the underlying reasons of an unsatisfactory training process. The third
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difficulty lies in feature engineering. “Applied machine learning is
basically feature engineering” [36]. The performance of a tree boosting
model greatly depends on the features used at the splitting nodes.
However, coming up with suitable features is still a time-consuming
iterative manual process that requires expert knowledge.

Previous studies [30, 39] have pointed out that interactive debugging
is critical to overcoming the difficulties in the development of statistical
machine learning models. Following this suggestion, in this paper, we
develop BOOSTVis, an interactive visual analytics tool that aims to
help machine learning experts better understand the training process of
tree boosting, diagnose the underlying reasons for good or bad perfor-
mances, and make informed improvements. A demo of the prototype
is available at http://shixialiu.com/boostvis/demo/. A
multi-view visualization, as shown in Fig. 1, is at the core of BOOST-
Vis, which aims to show a variety of performance information at (a)
the class-level; (b) the instance-level; (c) the classifier-level; and (d)
the feature-level. The views can be put into two categories according
to their functionalities. The first two views provide an overview of the
model’s performance at the class- and instance-levels. In particular,
we have developed a temporal confusion matrix to reveal the complex
changes of confusing classes along with the iterations in training. We
also use a t-SNE projection [32] to visualize instances and their rela-
tionships. Following a comprehensive performance analysis, an expert
can select the instances and times of interest. The last two views then
allow performance diagnosis on the selected subsets. A node-link tree
visualization is used to visualize the structure of a selected tree and the
distribution of instances on it. A feature view further reveals the impor-
tant features for the selected subsets. These two views work together to
facilitate the examination of feature distributions on trees, and inspire
the addition of new features and the use of feature subsampling.

To support our research, we used a previous Kaggle competition,
Otto Group Product Classification Challenge [67], as an example, and
conducted two case studies with experts. The case studies have shown
that BOOSTVis helps better explore the training process and gain novel
insights into the influence of tree structures. Moreover, experts can
diagnose underlying reasons for unsatisfactory results more efficiently
and precisely, which facilitates faster and more effective improvements
of models. One of our case studies has demonstrated that by leveraging
BOOSTVis, the experts built a model whose performance is better than
that of the best single boosting model in the Kaggle competition.

The key technical contributions of this work are:
• A visual diagnosis tool that provides a comprehensive perfor-

mance analysis of tree boosting models from multiple perspec-
tives, and thus helps experts efficiently understand the whole
picture of the training process and effectively diagnose an unsat-
isfactory performance.

• A temporal confusion matrix visualization that visually illus-
trates the complex performance changes of the model throughout
the training process.

• A combination of a tree visualization with the feature view
that helps identify the key features and examine the feature distri-
bution on decision trees, so experts can combine the key features
to create new ones, or apply a feature subsampling method.

2 RELATED WORK

Machine learning experts are familiar with using performance metrics,
such as accuracy, precision, recall, and F-scores, to evaluate the perfor-
mance of a learned model [14]. Diagrams such as P-R curve and ROC
curve are also widely used to visually compare the performance of
several models [13]. Another popular tool is confusion matrix, which
reveals the class-level distribution of data and predictions by using a
contingency table to contrast actual and predicted classes [47]. Such
metrics help users quickly get an overview of the model performance.
However, they do not provide detailed information at the instance-,
classifier-, and feature-levels, which is useful for thoroughly under-
standing and diagnosing the model and its training process.

To address this inadequacy, many visualization tools have been
developed [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 19, 21, 22, 23, 24, 26, 27,
28, 33, 35, 37, 38, 40, 41, 42, 45, 48, 49, 50, 51, 52, 53, 54, 57, 58].

Pertinent to BOOSTVis are: 1) visualization of decision trees [4, 26,
50, 54] and ensemble models [21, 26, 48, 49, 53, 58]; 2) visualization
tools that facilitates model diagnosis [1, 2, 3, 10, 15, 19, 23, 37, 38, 41];
and 3) visualization of dynamic training processes [5, 17, 21, 40, 57].
Visualization of decision trees and ensemble models. To visualize
a decision tree, PaintingClass [50] uses a variation of icicle plots to
reveal the local tree structure centered at the node of interest. Baob-
abView [54] uses a node-link tree visualization aided by confusion
matrices and interactively displayed features to support interactive con-
struction and analysis of decision trees. The node-link tree visualization
is also used in BOOSTVis because of its intuitiveness. In addition to
the visualization of a single tree in [50, 54], BOOSTVis takes into
consideration the visualization of the ensemble of trees.

For visualization of ensemble models, EnsembleMatrix [49] presents
an interactive visualization of confusion matrices to allow users to com-
pare different classifiers at the class-level. The cascaded scatterplot [21]
visualizes the class distribution of data in each stage of Adaboosting.
The Transparent Boosting Tree (TBT) [58] is probably the most per-
tinent to BOOSTVis. It lists the feature groups and the names of all
individual trees, visualizes the structures of the selected trees, and pro-
vides prediction results local to a selected path. BOOSTVis extends
TBT to provide performance overview at both class- and instance-
levels, enrich the information provided at the feature-level, and reveal
the model evolution more explicitly.
Visualization for model diagnosis. Besides the visualization of spe-
cific machine learning models, many visualization tools have been
developed to assist the analysis of prediction results and help experts
find potential directions to improve a model. Many such visualization
tools allow users to drill down into the instance- and feature-levels.
A typical example is the visual analysis tool developed by Alsallakh
et al. [2]. This tool provides a confusion wheel to display the score
distribution for each class in a radial layout. In addition, it allows users
to connect performance metrics at the class-level to data at the instance-
and feature-levels. Such a connection helps infer the underlying rea-
sons for a poor performance, and is also established in BOOSTVis via
the use of a linked multi-view visualization. Upon gaining insights
into the potential reasons for a poor performance, users often want
to improve the model based on the knowledge gained. To this end,
Paiva et al. [37] propose an approach to interactively select training
samples, modify their labels, and incrementally improve the classifica-
tion model towards users’ expectation. Although the aforementioned
visual diagnosis tools can achieve some success in improving a model,
they do not provide a comprehensive analysis of the training process.
Visualization of dynamic training process. In the area of deep learn-
ing visualization, in addition to analyzing a snapshot from the training
process [12, 27, 28, 33, 51], there have been some efforts to investigate
the dynamic training process based on multiple snapshots [17, 40, 57].
Matrix cube, a stacked matrix representation of networks, has been
developed to visualize dynamic networks [5]. In the visualization of
boosting models, the cascaded scatterplot [21] shows the model evolu-
tion in terms of data distribution using horizontally aligned scatterplots.
BOOSTVis also uses horizontally aligned segments to represent time
steps, but reveals evolution not only at the instance-level, but also at the
class- and classifier-levels.

3 BACKGROUND

Boosting methods belong to the family of ensemble methods that train
multiple base learners and combine their predictions to obtain better
performance. In tree boosting, specifically gradient boosting decision
tree (GBDT), the base learners are decision trees, and they are trained
sequentially with the later trees focusing more on the mistakes made
by the earlier ones. This makes the decision trees complementary
to each other, and hence their ensemble greatly reduces the bias in
each individual tree. A cousin of GBDT is random forest (RF) whose
base learners are also decision trees, but they are trained in parallel
on different data subsets and using random features. This randomness
makes the individual trees less dependent. As a result, their ensemble
reduces the variance when applying to different data, but cannot reduce
the bias. Large individual trees are usually generated in RF to alleviate

the bias. The dependence of the individual trees in GBDT makes it
generally perform better than RF, but also makes it harder to understand
the relationships between the trees and properly tune the performance.
Thus, an analysis of the trees and their evolution would be of great help
in building high performance tree boosting models. Parallel computing
is non-trivial for tree boosting, but has been achieved in two popular
tree boosting systems, i.e., XGBoost [9] and LightGBM [65], which
have been chosen to be the underlying boosting systems in BOOSTVis.

XGBoost has achieved great success in data science competitions.
LightGBM has been available for only a few months, but initial experi-
ments have demonstrated impressive speed boosts. In recent 4 Kaggle
competitions, at least 3 first place winning teams have employed Light-
GBM in their solutions. This indicates its potential widespread use in
real-world applications. As a newly available system, LightGBM is
still undergoing the exploration stage. It is therefore of great interest to
investigate LightGBM first, then compare it with XGBoost.

4 BOOSTVIS

4.1 Requirement Analysis

The design of BOOSTVis is grounded by interviewing three groups
of machine learning experts and practitioners. The first group consists
of four major developers (E1, E2, E3, E4) of LightGBM [65]. One of
the developers, Guolin Ke (E1), contributes to 60% commits of Light-
GBM on GitHub. The second group contains the initial starter and
main contributor of XGBoost [9], Tianqi Chen (E5), at the University
of Washington. The last group consists of three researchers (E6, E7,
E8) at Microsoft Research Asia, who often use AdaBoost [59] and
RealBoost [44] for face detection and alignment. The interviews were
semi-structured with a focus on the processes of the participants’ model
analysis and diagnosis. In addition, we also examined 129 blogs related
to the Kaggle competition, including the winner’s blogs as well as
competition discussion blogs. Based on the interviews with the experts,
experiences shared in the blogs, and our previous research experience,
we have identified the following requirements for BOOSTVis.
R1. Examining the model performance for each class and its evo-
lution through the iteration process. A model’s performance is the
ultimate concern of experts, and is examined at the beginning of any
model analysis. The experts said that they usually examine the per-
formance for each class to identify the confusing classes to debug
into. This was echoed in some blogs pertaining to Kaggle competi-
tions, where competitors shared their experiences of shaping the reason
behind the model construction by using confusion matrices [63, 64]. Be-
cause boosting is a sequential process, the experts also wanted to know
how the performance evolved through the process. For example, expert
E5 mentioned the need to observe the model performance through the

iterative process in order to apply early stopping to avoid overfitting.
R2. Conveying relationships between instances and several impor-
tant types of instances. Previous research [2, 8, 29, 37, 57] has demon-
strated that displaying relationships between instances is useful in con-
firming known facts and revealing unseen patterns of a model. Expert
E1 also considered such information useful for the identification of
important instances such as outliers (e.g., instances whose class labels
change among neighboring weak learners in the late training phase)
and representative instances, which could enhance the understanding of
the model and provide insights for improvements. This consideration
has been supported by a recent research study [40], which showed
how instance-level information helped experts explore training effects,
understand mis-classifications, and improve the model.
R3. Exploring the structures of classifiers (decision trees) and in-
stance distribution on tree structures. A tree boosting model often
contains hundreds and thousands of decision trees. To better understand
the model, the experts expressed the need to analyze and summarize the
tree structures. From the discussions, we collected what they wanted to
explore, including the types of tree structures, the most important trees,
the evolution of tree size, and the features used in each tree. Expert
E5 gave an example where an end-user would like to explore the tree
structures to find important patterns in identifying fraud in his domain.
In addition to the tree structures, how instances distributed on the trees
is also of concern to the experts. “Unbalanced distribution can cause
problems,” said expert E6, which indicate the use of this distribution
in model diagnosis.
R4. Examining and comparing important features for the class of
interest. All the experts mentioned that they examined feature impor-
tance when trying to improve a trained model. “Feature importance
gives insights into where we should endeavor to refine a model,” said
expert E5. Expert E1 pointed out that examining feature importance
could provide useful feedback for effective feature engineering. After
identifying confusing classes in R1, the experts emphasized the need
of examination at the feature-level to find the underlying reasons. A
typical technique they adopted is to rank the features according to their
importance in separating the classes. Expert E1 further mentioned that
the distributions of features helped in finding appropriate split values
to generate the decision trees.
R5. Connecting model performance with the class, the instance,
the classifier, and the feature. All four aspects are important to a
model’s performance. Expert E1, E2, E5, E7, and E8 described the
process to improve a boosting model as an iterative rectification of data,
features, and classifiers. However, as pointed out in [39], a lot of cur-
rent tools encapsulate only a portion of the process, which can mislead
developers to become over focused on one aspect. In our discussions,
the experts clearly expressed the need for an interactive diagnosis tool
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Fig. 2. System pipeline. The training data, the decision tree, and prediction scores at each iteration of training are used to generate the multi-view
visualization. The visualization provides four levels of information to allow in-depth examination of the model performance and the training process.
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difficulty lies in feature engineering. “Applied machine learning is
basically feature engineering” [36]. The performance of a tree boosting
model greatly depends on the features used at the splitting nodes.
However, coming up with suitable features is still a time-consuming
iterative manual process that requires expert knowledge.

Previous studies [30, 39] have pointed out that interactive debugging
is critical to overcoming the difficulties in the development of statistical
machine learning models. Following this suggestion, in this paper, we
develop BOOSTVis, an interactive visual analytics tool that aims to
help machine learning experts better understand the training process of
tree boosting, diagnose the underlying reasons for good or bad perfor-
mances, and make informed improvements. A demo of the prototype
is available at http://shixialiu.com/boostvis/demo/. A
multi-view visualization, as shown in Fig. 1, is at the core of BOOST-
Vis, which aims to show a variety of performance information at (a)
the class-level; (b) the instance-level; (c) the classifier-level; and (d)
the feature-level. The views can be put into two categories according
to their functionalities. The first two views provide an overview of the
model’s performance at the class- and instance-levels. In particular,
we have developed a temporal confusion matrix to reveal the complex
changes of confusing classes along with the iterations in training. We
also use a t-SNE projection [32] to visualize instances and their rela-
tionships. Following a comprehensive performance analysis, an expert
can select the instances and times of interest. The last two views then
allow performance diagnosis on the selected subsets. A node-link tree
visualization is used to visualize the structure of a selected tree and the
distribution of instances on it. A feature view further reveals the impor-
tant features for the selected subsets. These two views work together to
facilitate the examination of feature distributions on trees, and inspire
the addition of new features and the use of feature subsampling.

To support our research, we used a previous Kaggle competition,
Otto Group Product Classification Challenge [67], as an example, and
conducted two case studies with experts. The case studies have shown
that BOOSTVis helps better explore the training process and gain novel
insights into the influence of tree structures. Moreover, experts can
diagnose underlying reasons for unsatisfactory results more efficiently
and precisely, which facilitates faster and more effective improvements
of models. One of our case studies has demonstrated that by leveraging
BOOSTVis, the experts built a model whose performance is better than
that of the best single boosting model in the Kaggle competition.

The key technical contributions of this work are:
• A visual diagnosis tool that provides a comprehensive perfor-

mance analysis of tree boosting models from multiple perspec-
tives, and thus helps experts efficiently understand the whole
picture of the training process and effectively diagnose an unsat-
isfactory performance.

• A temporal confusion matrix visualization that visually illus-
trates the complex performance changes of the model throughout
the training process.

• A combination of a tree visualization with the feature view
that helps identify the key features and examine the feature distri-
bution on decision trees, so experts can combine the key features
to create new ones, or apply a feature subsampling method.

2 RELATED WORK

Machine learning experts are familiar with using performance metrics,
such as accuracy, precision, recall, and F-scores, to evaluate the perfor-
mance of a learned model [14]. Diagrams such as P-R curve and ROC
curve are also widely used to visually compare the performance of
several models [13]. Another popular tool is confusion matrix, which
reveals the class-level distribution of data and predictions by using a
contingency table to contrast actual and predicted classes [47]. Such
metrics help users quickly get an overview of the model performance.
However, they do not provide detailed information at the instance-,
classifier-, and feature-levels, which is useful for thoroughly under-
standing and diagnosing the model and its training process.

To address this inadequacy, many visualization tools have been
developed [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 19, 21, 22, 23, 24, 26, 27,
28, 33, 35, 37, 38, 40, 41, 42, 45, 48, 49, 50, 51, 52, 53, 54, 57, 58].

Pertinent to BOOSTVis are: 1) visualization of decision trees [4, 26,
50, 54] and ensemble models [21, 26, 48, 49, 53, 58]; 2) visualization
tools that facilitates model diagnosis [1, 2, 3, 10, 15, 19, 23, 37, 38, 41];
and 3) visualization of dynamic training processes [5, 17, 21, 40, 57].
Visualization of decision trees and ensemble models. To visualize
a decision tree, PaintingClass [50] uses a variation of icicle plots to
reveal the local tree structure centered at the node of interest. Baob-
abView [54] uses a node-link tree visualization aided by confusion
matrices and interactively displayed features to support interactive con-
struction and analysis of decision trees. The node-link tree visualization
is also used in BOOSTVis because of its intuitiveness. In addition to
the visualization of a single tree in [50, 54], BOOSTVis takes into
consideration the visualization of the ensemble of trees.

For visualization of ensemble models, EnsembleMatrix [49] presents
an interactive visualization of confusion matrices to allow users to com-
pare different classifiers at the class-level. The cascaded scatterplot [21]
visualizes the class distribution of data in each stage of Adaboosting.
The Transparent Boosting Tree (TBT) [58] is probably the most per-
tinent to BOOSTVis. It lists the feature groups and the names of all
individual trees, visualizes the structures of the selected trees, and pro-
vides prediction results local to a selected path. BOOSTVis extends
TBT to provide performance overview at both class- and instance-
levels, enrich the information provided at the feature-level, and reveal
the model evolution more explicitly.
Visualization for model diagnosis. Besides the visualization of spe-
cific machine learning models, many visualization tools have been
developed to assist the analysis of prediction results and help experts
find potential directions to improve a model. Many such visualization
tools allow users to drill down into the instance- and feature-levels.
A typical example is the visual analysis tool developed by Alsallakh
et al. [2]. This tool provides a confusion wheel to display the score
distribution for each class in a radial layout. In addition, it allows users
to connect performance metrics at the class-level to data at the instance-
and feature-levels. Such a connection helps infer the underlying rea-
sons for a poor performance, and is also established in BOOSTVis via
the use of a linked multi-view visualization. Upon gaining insights
into the potential reasons for a poor performance, users often want
to improve the model based on the knowledge gained. To this end,
Paiva et al. [37] propose an approach to interactively select training
samples, modify their labels, and incrementally improve the classifica-
tion model towards users’ expectation. Although the aforementioned
visual diagnosis tools can achieve some success in improving a model,
they do not provide a comprehensive analysis of the training process.
Visualization of dynamic training process. In the area of deep learn-
ing visualization, in addition to analyzing a snapshot from the training
process [12, 27, 28, 33, 51], there have been some efforts to investigate
the dynamic training process based on multiple snapshots [17, 40, 57].
Matrix cube, a stacked matrix representation of networks, has been
developed to visualize dynamic networks [5]. In the visualization of
boosting models, the cascaded scatterplot [21] shows the model evolu-
tion in terms of data distribution using horizontally aligned scatterplots.
BOOSTVis also uses horizontally aligned segments to represent time
steps, but reveals evolution not only at the instance-level, but also at the
class- and classifier-levels.

3 BACKGROUND

Boosting methods belong to the family of ensemble methods that train
multiple base learners and combine their predictions to obtain better
performance. In tree boosting, specifically gradient boosting decision
tree (GBDT), the base learners are decision trees, and they are trained
sequentially with the later trees focusing more on the mistakes made
by the earlier ones. This makes the decision trees complementary
to each other, and hence their ensemble greatly reduces the bias in
each individual tree. A cousin of GBDT is random forest (RF) whose
base learners are also decision trees, but they are trained in parallel
on different data subsets and using random features. This randomness
makes the individual trees less dependent. As a result, their ensemble
reduces the variance when applying to different data, but cannot reduce
the bias. Large individual trees are usually generated in RF to alleviate

the bias. The dependence of the individual trees in GBDT makes it
generally perform better than RF, but also makes it harder to understand
the relationships between the trees and properly tune the performance.
Thus, an analysis of the trees and their evolution would be of great help
in building high performance tree boosting models. Parallel computing
is non-trivial for tree boosting, but has been achieved in two popular
tree boosting systems, i.e., XGBoost [9] and LightGBM [65], which
have been chosen to be the underlying boosting systems in BOOSTVis.

XGBoost has achieved great success in data science competitions.
LightGBM has been available for only a few months, but initial experi-
ments have demonstrated impressive speed boosts. In recent 4 Kaggle
competitions, at least 3 first place winning teams have employed Light-
GBM in their solutions. This indicates its potential widespread use in
real-world applications. As a newly available system, LightGBM is
still undergoing the exploration stage. It is therefore of great interest to
investigate LightGBM first, then compare it with XGBoost.

4 BOOSTVIS

4.1 Requirement Analysis

The design of BOOSTVis is grounded by interviewing three groups
of machine learning experts and practitioners. The first group consists
of four major developers (E1, E2, E3, E4) of LightGBM [65]. One of
the developers, Guolin Ke (E1), contributes to 60% commits of Light-
GBM on GitHub. The second group contains the initial starter and
main contributor of XGBoost [9], Tianqi Chen (E5), at the University
of Washington. The last group consists of three researchers (E6, E7,
E8) at Microsoft Research Asia, who often use AdaBoost [59] and
RealBoost [44] for face detection and alignment. The interviews were
semi-structured with a focus on the processes of the participants’ model
analysis and diagnosis. In addition, we also examined 129 blogs related
to the Kaggle competition, including the winner’s blogs as well as
competition discussion blogs. Based on the interviews with the experts,
experiences shared in the blogs, and our previous research experience,
we have identified the following requirements for BOOSTVis.
R1. Examining the model performance for each class and its evo-
lution through the iteration process. A model’s performance is the
ultimate concern of experts, and is examined at the beginning of any
model analysis. The experts said that they usually examine the per-
formance for each class to identify the confusing classes to debug
into. This was echoed in some blogs pertaining to Kaggle competi-
tions, where competitors shared their experiences of shaping the reason
behind the model construction by using confusion matrices [63, 64]. Be-
cause boosting is a sequential process, the experts also wanted to know
how the performance evolved through the process. For example, expert
E5 mentioned the need to observe the model performance through the

iterative process in order to apply early stopping to avoid overfitting.
R2. Conveying relationships between instances and several impor-
tant types of instances. Previous research [2, 8, 29, 37, 57] has demon-
strated that displaying relationships between instances is useful in con-
firming known facts and revealing unseen patterns of a model. Expert
E1 also considered such information useful for the identification of
important instances such as outliers (e.g., instances whose class labels
change among neighboring weak learners in the late training phase)
and representative instances, which could enhance the understanding of
the model and provide insights for improvements. This consideration
has been supported by a recent research study [40], which showed
how instance-level information helped experts explore training effects,
understand mis-classifications, and improve the model.
R3. Exploring the structures of classifiers (decision trees) and in-
stance distribution on tree structures. A tree boosting model often
contains hundreds and thousands of decision trees. To better understand
the model, the experts expressed the need to analyze and summarize the
tree structures. From the discussions, we collected what they wanted to
explore, including the types of tree structures, the most important trees,
the evolution of tree size, and the features used in each tree. Expert
E5 gave an example where an end-user would like to explore the tree
structures to find important patterns in identifying fraud in his domain.
In addition to the tree structures, how instances distributed on the trees
is also of concern to the experts. “Unbalanced distribution can cause
problems,” said expert E6, which indicate the use of this distribution
in model diagnosis.
R4. Examining and comparing important features for the class of
interest. All the experts mentioned that they examined feature impor-
tance when trying to improve a trained model. “Feature importance
gives insights into where we should endeavor to refine a model,” said
expert E5. Expert E1 pointed out that examining feature importance
could provide useful feedback for effective feature engineering. After
identifying confusing classes in R1, the experts emphasized the need
of examination at the feature-level to find the underlying reasons. A
typical technique they adopted is to rank the features according to their
importance in separating the classes. Expert E1 further mentioned that
the distributions of features helped in finding appropriate split values
to generate the decision trees.
R5. Connecting model performance with the class, the instance,
the classifier, and the feature. All four aspects are important to a
model’s performance. Expert E1, E2, E5, E7, and E8 described the
process to improve a boosting model as an iterative rectification of data,
features, and classifiers. However, as pointed out in [39], a lot of cur-
rent tools encapsulate only a portion of the process, which can mislead
developers to become over focused on one aspect. In our discussions,
the experts clearly expressed the need for an interactive diagnosis tool

Multi-View Visualization

XGBoost

LightGBM

Boosting Class View Classifier View

Instance View

Feature View

Segmentation Tree Matching
Feature Importance
       Calculation

Explore

Explore

Drill InDrill In

Explore Explore

Log Data

Fig. 2. System pipeline. The training data, the decision tree, and prediction scores at each iteration of training are used to generate the multi-view
visualization. The visualization provides four levels of information to allow in-depth examination of the model performance and the training process.
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that can support their exploration of all aspects in model diagnosis,
including a variety of information at the class-, instance-, classifier-,
and feature-levels.

4.2 System Overview

Motivated by the identified requirements, we have developed BOOST-
Vis, a visual analytics tool that combines the following features:

• A class view that discloses confusions between classes, shows
the performance evolution of each class, and displays prediction
scores for instances within a specific class (R1).

• An instance view that displays the relationships between instances
as well as instance clusters based on the prediction scores (R2).

• A classifier view that unfolds the structures of the boosted trees.
It provides summary information about the model structure, de-
picts the node-link structure of a specific tree and the instances’
distribution on it (R3).

• A feature view that lists the important features for discriminating
instances in different instance subsets (R4).

• Rich interactions that allow experts to smoothly switch between
the four levels of information (e.g., class-level and feature-level)
and help users more effectively understand and diagnose the tree
boosting model (R5).

The system pipeline is shown in Fig. 2. BOOSTVis takes the
classification training data as the input. The training data is fed into
XGBoost or LightGBM to learn a tree boosting model. At each iteration
of training, the tree structures and the prediction scores are obtained
and recorded in the log data. Both the input and the log data are used
to generate the multi-view visualization. The visualization is supported
by several mining techniques, such as time series segmentation and tree
matching, and provides four levels of information and rich interactions
that enable experts to effectively understand and diagnose the model
and the training process.

5 VISUALIZATION

Since using a familiar visual metaphor enables experts to focus directly
on the task itself [34], the basic design principle is to exploit or augment
familiar visual metaphors to guide analysis. Based on this principle and
the design requirements, we develop four visualizations that convey
various diagnosis-related information at the class-, instance-, classifier-,
and feature-levels. In particular, a temporal confusion matrix is
designed to visually illustrate the performance changes of the model
within a training process. A tree visualization is developed to facilitate
the understanding of the structures of the classifiers The t-SNE projec-
tion and grouped bar charts are employed to display the information at
instance- and feature-levels. Furthermore, we also illustrate how these
four views work together in the understanding and diagnosis tasks.

5.1 Class-Level as Temporal Confusion Matrix
The training process produces a set of time series at the class-level,
which is very useful for performance analysis. The time series data can
be classified into two categories: 1) the temporal confusion statistics
that measure the rate of the class being confused; and 2) the temporal
prediction scores of instances within a selected class. In this section, we
describe the visualization design for conveying the confusion statistics
over time as well as the non-linear segmentation method for quickly
identifying the time ranges of interest.
Design of temporal confusion matrix. In the field of machine learn-
ing, a confusion matrix is commonly used to present the accuracy of a
learning algorithm. As shown in Fig. 3(a), each column of the confu-
sion matrix represents the instances in a predicted class while each row
represents the instances in an actual class. A confusion matrix provides
a very convenient way to compare the predicted labels with the actual
ones, which can be easily understood by machine learning researchers
and practitioners. As a result, we use the confusion matrix as the base
of our class-level visualization.

Although the confusion matrix works very well for performance
analysis of a single classifier, it fails to convey the temporal perfor-
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Fig. 3. Design of the temporal confusion matrix. (a) Confusion matrices are organized along the training iterations. (b) Each column is represented
by a stacked bar with the solid class color for true positives (TPs, the diagonal cell), transparent and the shaded class colors for false positives (FPs,
the non-diagonal cells), and the bar height representing the instance number in the cell. (c) Stacked bars at different iterations are connected to form
a stripe. (d) All the stripes are stacked to form the temporal confusion matrix that reveals the changes of TP and FP for each class over iterations.

mance changes of the weak learners in the training process of a boosting
model. To tackle this issue, we represent each column/row as a stacked
bar. Without loss of generality, we take representation of the column
as an example to illustrate the basic idea of the visualization design.
First, we create a stacked bar where each bar item corresponds to a cell
in the column (the predicted class) of the confusion matrix (Fig. 3(b)).
The height of each bar item encodes the instance number of the corre-
sponding cell. Next, for each predicted class, we connect its stacked
bars at different time points to form a class stripe (Fig. 3(c)). Within
each predicted class stripe (e.g., class C1), the true positives (TPs) are
displayed with their actual class color; while the false positives (FPs)
are displayed with their actual class color with increased transparency,
shaded by oblique lines. In Fig. 3, taking class C1 as an example, a
true positive is a C1 instance that is correctly classified as C1; a false
positive is an instance in C2 or C3 that is incorrectly classified as C1.

Finally, as shown in Fig. 3(d), all the class stripes are stacked together
to form the temporal confusion matrix. The class stripes are arranged in
ascending order of class-wise performance with the most problematic
class on top. When an expert selects a specific predicted class, the
temporal prediction scores of its instances is represented by a line chart
(Fig. 10(a)). To reduce the visual clutter, we use K-means, a commonly
used clustering method, to cluster the instances with the same actual
label according to the adjacencies of their score lines. Fig. 10(a) shows
the temporal prediction scores of the instances in the predicted class C1.
Here, the line color encodes the actual label of the cluster of instances.
It is easy to see that there is an instance cluster with a higher prediction
score during the iteration (Fig. 10A). However, its actual label is C2.
This is an anomaly cluster in this predicted class. As a result, the
temporal prediction scores help identify anomalies quickly.
Segmentation. A tree boosting model often contains hundreds of
weak learners. Accordingly, the temporal confusion matrix consists
of a set of time series with hundreds of time points. To help experts
quickly identify the time points of interest, we need to segment the time
series produced in the training process. The segmentation is primarily
based on the temporal confusion matrix, because of its importance for
understanding. To simplify the calculation, we use a vector to represent
the confusion matrix at each time point. Specifically, for each time
point, we transform its confusion matrix into a vector by taking its
columns one by one. With this transformation, the temporal confusion
matrix is transformed into a time series with vector x(i) representing
the sample at time i.

We assume a time series s consists of n vectors x(1), x(2), . . . , x(n)
along the time dimension. We denote s(i,j) to be a segment of s: x(i),
x(i+1), . . . , x(j). A k-segmentation of s is a sequence s1, s2, . . . , sk,
which divides s into k consecutive segments and each si is non-empty.
The major objective of time series segmentation is to find k segments
that minimize the intra-segment variances. To this end, we formulate
time series segmentation as a dynamic-programming problem [20].
Specifically, the cost function to measure the internal variance of each
segment is defined as:

cost(a,b) =
b

∑
l=a

‖ x(l)−µab ‖2 (1)

where µab is the average of the vectors between indexes a and b.
Let f (i, j) be the best j-segmentation for the first i samples. Then

we have:

f (i, j) = min
l
{ f (l, j−1)+ cost(l +1, i)} l = j−1, j, . . . , i−1. (2)

The above recursive function can be efficiently solved using dynamic
programming. f (n,k) is the best k-segmentation for time series s.

5.2 Classifier-Level as Tree Visualization
As discussed in Sec. 4.1, experts are interested in: 1) the types of
tree structures as well as the most important tree in each type; 2)
tree size changes; 3) instance distribution and features used on the
tree. To support the analysis of the aforementioned information, we
have designed a tree visualization that consists of three coordinated
components corresponding to the experts’ interests. A core challenge

here is to deal with hundreds and thousands of trees generated through
the iterations. To solve this problem, we have proposed a tree matching
algorithm that efficiently and effectively detect the major tree clusters
(types) from many decision trees.
Design of the tree visualization. The tree visualization consists of
three components, each of which corresponds to one type of informa-
tion the experts are interested in. The tree cluster component (Fig. 1F)
provides an overview of the tree structures by displaying the structure
clusters. For each cluster (e.g., Fig. 1G), we display its most represen-
tative tree (clustering center) as a node-link diagram. The node-link
diagram is used here due to experts’ familiarity with this representation.
To effectively display trees with hundreds of nodes, we follow the idea
of “focus + context” and use a tree cut algorithm [31] to highlight the
layers of interest, and gray out the others. The tree size component
(Fig. 1H) shows how tree size changes during the training process. Here
tree size refers to the number of nodes in the tree. In this component,
the horizontal axis represents time (iteration) and each bar corresponds
to the tree size at one iteration. When a user selects a cluster of interest,
the bars that correspond to the trees in the cluster will be highlighted.
Users can also interact with the bars to select a decision tree of interest.
The decision tree component (Fig. 1I) then presents the instance dis-
tribution on the tree and the features used to split the set of instances.
Specifically, the label on the internal tree node shows the feature name
and the corresponding split value. For leaf nodes, we follow the sugges-
tions of the experts to display their gradient values. The distribution of
the instances on the tree is encoded by using the edge thickness, which
is proportional to the number of instances that flow through this edge.
In this component, the TPs and selected instances are represented by
using the color of their actual class while others are colored gray.
Tree matching. The goal of the tree matching algorithm is to estimate
the distances between the tree structures. Based on the distances, the
tree clusters can be easily derived by using k-medoid [25]. In BOOST-
Vis, we extend the widely used tree edit distance [7] to derive a distance
more desirable in our application and more computationally efficient.

Given two trees T1 and T2, the tree edit distance computes a matching
M = {(v,w)}, where v ∈ T1, w ∈ T2 are tree nodes and (v,w) indicates
v is matched to w. Taking the matching costs between tree nodes as
input, the tree edit distance finds the M with the smallest total cost.
Two problems arise when applying this distance. First, calculating the
tree edit distance has been shown to be an NP-complete problem [7]. It
is very time consuming to calculate the distances between trees with
hundreds of tree nodes. Second, in our application, the experts consider
the level of a tree node is important. Thus, it is not desirable to match a
node at the top of the tree to a node at the bottom.

To solve the aforementioned problems, we extend the original model
by adding a level constraint and propose an efficient algorithm to solve
the extended model. Specifically, our model is formulated as

d(T1,T2) = min
Mc

( ∑
(v,w)∈Mc

γ(v �→ w)+ ∑
v∈T1

γ(v �→ λ )+ ∑
w∈T2

γ(λ �→ w))

Mc = {(v,w)| |l(v)− l(w)| ≤ lth}. (3)

Here Mc represents a match with level constraint, l(v) denotes the level
of v on the tree, and lth is the maximum level difference allowed for two
matching nodes (lth = 1 in BOOSTVis). By adding the level constraint,
the solution space is largely reduced and the problem can be solved
more efficiently. γ(v �→w) is the cost of replacing v by w, γ(v �→ λ ) and
γ(λ �→ w) measure the costs of matching tree nodes to a null node λ .
In BoostVis, γ(v �→ w) = 0.5(dKL(v,w)+dKL(w,v)), where dKL(v,w)
is the KL-divergence between v and w, each of which is represented by
the instance distributions among different classes.

To minimize Eq. (3), we leverage the idea of beam search [16],
in which a predefined number (m) of partial solutions are kept as
candidates. Specifically, We start by matching the tree nodes at the first
level. The top m matches that minimize the cost at this level are stored
as candidates. When processing the next level, all matches consistent
with the stored matches are calculated and sorted according to their
costs. Again, the m-matches with the lowest costs are stored before
going to the next level. In our experiment, we found m = 20 well
balances both efficiency and effectiveness.



LIU ET AL.: VISUAL DIAGNOSIS OF TREE BOOSTING METHODS 167

that can support their exploration of all aspects in model diagnosis,
including a variety of information at the class-, instance-, classifier-,
and feature-levels.

4.2 System Overview

Motivated by the identified requirements, we have developed BOOST-
Vis, a visual analytics tool that combines the following features:

• A class view that discloses confusions between classes, shows
the performance evolution of each class, and displays prediction
scores for instances within a specific class (R1).

• An instance view that displays the relationships between instances
as well as instance clusters based on the prediction scores (R2).

• A classifier view that unfolds the structures of the boosted trees.
It provides summary information about the model structure, de-
picts the node-link structure of a specific tree and the instances’
distribution on it (R3).

• A feature view that lists the important features for discriminating
instances in different instance subsets (R4).

• Rich interactions that allow experts to smoothly switch between
the four levels of information (e.g., class-level and feature-level)
and help users more effectively understand and diagnose the tree
boosting model (R5).

The system pipeline is shown in Fig. 2. BOOSTVis takes the
classification training data as the input. The training data is fed into
XGBoost or LightGBM to learn a tree boosting model. At each iteration
of training, the tree structures and the prediction scores are obtained
and recorded in the log data. Both the input and the log data are used
to generate the multi-view visualization. The visualization is supported
by several mining techniques, such as time series segmentation and tree
matching, and provides four levels of information and rich interactions
that enable experts to effectively understand and diagnose the model
and the training process.

5 VISUALIZATION

Since using a familiar visual metaphor enables experts to focus directly
on the task itself [34], the basic design principle is to exploit or augment
familiar visual metaphors to guide analysis. Based on this principle and
the design requirements, we develop four visualizations that convey
various diagnosis-related information at the class-, instance-, classifier-,
and feature-levels. In particular, a temporal confusion matrix is
designed to visually illustrate the performance changes of the model
within a training process. A tree visualization is developed to facilitate
the understanding of the structures of the classifiers The t-SNE projec-
tion and grouped bar charts are employed to display the information at
instance- and feature-levels. Furthermore, we also illustrate how these
four views work together in the understanding and diagnosis tasks.

5.1 Class-Level as Temporal Confusion Matrix
The training process produces a set of time series at the class-level,
which is very useful for performance analysis. The time series data can
be classified into two categories: 1) the temporal confusion statistics
that measure the rate of the class being confused; and 2) the temporal
prediction scores of instances within a selected class. In this section, we
describe the visualization design for conveying the confusion statistics
over time as well as the non-linear segmentation method for quickly
identifying the time ranges of interest.
Design of temporal confusion matrix. In the field of machine learn-
ing, a confusion matrix is commonly used to present the accuracy of a
learning algorithm. As shown in Fig. 3(a), each column of the confu-
sion matrix represents the instances in a predicted class while each row
represents the instances in an actual class. A confusion matrix provides
a very convenient way to compare the predicted labels with the actual
ones, which can be easily understood by machine learning researchers
and practitioners. As a result, we use the confusion matrix as the base
of our class-level visualization.

Although the confusion matrix works very well for performance
analysis of a single classifier, it fails to convey the temporal perfor-
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Fig. 3. Design of the temporal confusion matrix. (a) Confusion matrices are organized along the training iterations. (b) Each column is represented
by a stacked bar with the solid class color for true positives (TPs, the diagonal cell), transparent and the shaded class colors for false positives (FPs,
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mance changes of the weak learners in the training process of a boosting
model. To tackle this issue, we represent each column/row as a stacked
bar. Without loss of generality, we take representation of the column
as an example to illustrate the basic idea of the visualization design.
First, we create a stacked bar where each bar item corresponds to a cell
in the column (the predicted class) of the confusion matrix (Fig. 3(b)).
The height of each bar item encodes the instance number of the corre-
sponding cell. Next, for each predicted class, we connect its stacked
bars at different time points to form a class stripe (Fig. 3(c)). Within
each predicted class stripe (e.g., class C1), the true positives (TPs) are
displayed with their actual class color; while the false positives (FPs)
are displayed with their actual class color with increased transparency,
shaded by oblique lines. In Fig. 3, taking class C1 as an example, a
true positive is a C1 instance that is correctly classified as C1; a false
positive is an instance in C2 or C3 that is incorrectly classified as C1.

Finally, as shown in Fig. 3(d), all the class stripes are stacked together
to form the temporal confusion matrix. The class stripes are arranged in
ascending order of class-wise performance with the most problematic
class on top. When an expert selects a specific predicted class, the
temporal prediction scores of its instances is represented by a line chart
(Fig. 10(a)). To reduce the visual clutter, we use K-means, a commonly
used clustering method, to cluster the instances with the same actual
label according to the adjacencies of their score lines. Fig. 10(a) shows
the temporal prediction scores of the instances in the predicted class C1.
Here, the line color encodes the actual label of the cluster of instances.
It is easy to see that there is an instance cluster with a higher prediction
score during the iteration (Fig. 10A). However, its actual label is C2.
This is an anomaly cluster in this predicted class. As a result, the
temporal prediction scores help identify anomalies quickly.
Segmentation. A tree boosting model often contains hundreds of
weak learners. Accordingly, the temporal confusion matrix consists
of a set of time series with hundreds of time points. To help experts
quickly identify the time points of interest, we need to segment the time
series produced in the training process. The segmentation is primarily
based on the temporal confusion matrix, because of its importance for
understanding. To simplify the calculation, we use a vector to represent
the confusion matrix at each time point. Specifically, for each time
point, we transform its confusion matrix into a vector by taking its
columns one by one. With this transformation, the temporal confusion
matrix is transformed into a time series with vector x(i) representing
the sample at time i.

We assume a time series s consists of n vectors x(1), x(2), . . . , x(n)
along the time dimension. We denote s(i,j) to be a segment of s: x(i),
x(i+1), . . . , x(j). A k-segmentation of s is a sequence s1, s2, . . . , sk,
which divides s into k consecutive segments and each si is non-empty.
The major objective of time series segmentation is to find k segments
that minimize the intra-segment variances. To this end, we formulate
time series segmentation as a dynamic-programming problem [20].
Specifically, the cost function to measure the internal variance of each
segment is defined as:

cost(a,b) =
b

∑
l=a

‖ x(l)−µab ‖2 (1)

where µab is the average of the vectors between indexes a and b.
Let f (i, j) be the best j-segmentation for the first i samples. Then

we have:

f (i, j) = min
l
{ f (l, j−1)+ cost(l +1, i)} l = j−1, j, . . . , i−1. (2)

The above recursive function can be efficiently solved using dynamic
programming. f (n,k) is the best k-segmentation for time series s.

5.2 Classifier-Level as Tree Visualization
As discussed in Sec. 4.1, experts are interested in: 1) the types of
tree structures as well as the most important tree in each type; 2)
tree size changes; 3) instance distribution and features used on the
tree. To support the analysis of the aforementioned information, we
have designed a tree visualization that consists of three coordinated
components corresponding to the experts’ interests. A core challenge

here is to deal with hundreds and thousands of trees generated through
the iterations. To solve this problem, we have proposed a tree matching
algorithm that efficiently and effectively detect the major tree clusters
(types) from many decision trees.
Design of the tree visualization. The tree visualization consists of
three components, each of which corresponds to one type of informa-
tion the experts are interested in. The tree cluster component (Fig. 1F)
provides an overview of the tree structures by displaying the structure
clusters. For each cluster (e.g., Fig. 1G), we display its most represen-
tative tree (clustering center) as a node-link diagram. The node-link
diagram is used here due to experts’ familiarity with this representation.
To effectively display trees with hundreds of nodes, we follow the idea
of “focus + context” and use a tree cut algorithm [31] to highlight the
layers of interest, and gray out the others. The tree size component
(Fig. 1H) shows how tree size changes during the training process. Here
tree size refers to the number of nodes in the tree. In this component,
the horizontal axis represents time (iteration) and each bar corresponds
to the tree size at one iteration. When a user selects a cluster of interest,
the bars that correspond to the trees in the cluster will be highlighted.
Users can also interact with the bars to select a decision tree of interest.
The decision tree component (Fig. 1I) then presents the instance dis-
tribution on the tree and the features used to split the set of instances.
Specifically, the label on the internal tree node shows the feature name
and the corresponding split value. For leaf nodes, we follow the sugges-
tions of the experts to display their gradient values. The distribution of
the instances on the tree is encoded by using the edge thickness, which
is proportional to the number of instances that flow through this edge.
In this component, the TPs and selected instances are represented by
using the color of their actual class while others are colored gray.
Tree matching. The goal of the tree matching algorithm is to estimate
the distances between the tree structures. Based on the distances, the
tree clusters can be easily derived by using k-medoid [25]. In BOOST-
Vis, we extend the widely used tree edit distance [7] to derive a distance
more desirable in our application and more computationally efficient.

Given two trees T1 and T2, the tree edit distance computes a matching
M = {(v,w)}, where v ∈ T1, w ∈ T2 are tree nodes and (v,w) indicates
v is matched to w. Taking the matching costs between tree nodes as
input, the tree edit distance finds the M with the smallest total cost.
Two problems arise when applying this distance. First, calculating the
tree edit distance has been shown to be an NP-complete problem [7]. It
is very time consuming to calculate the distances between trees with
hundreds of tree nodes. Second, in our application, the experts consider
the level of a tree node is important. Thus, it is not desirable to match a
node at the top of the tree to a node at the bottom.

To solve the aforementioned problems, we extend the original model
by adding a level constraint and propose an efficient algorithm to solve
the extended model. Specifically, our model is formulated as

d(T1,T2) = min
Mc

( ∑
(v,w)∈Mc

γ(v �→ w)+ ∑
v∈T1

γ(v �→ λ )+ ∑
w∈T2

γ(λ �→ w))

Mc = {(v,w)| |l(v)− l(w)| ≤ lth}. (3)

Here Mc represents a match with level constraint, l(v) denotes the level
of v on the tree, and lth is the maximum level difference allowed for two
matching nodes (lth = 1 in BOOSTVis). By adding the level constraint,
the solution space is largely reduced and the problem can be solved
more efficiently. γ(v �→w) is the cost of replacing v by w, γ(v �→ λ ) and
γ(λ �→ w) measure the costs of matching tree nodes to a null node λ .
In BoostVis, γ(v �→ w) = 0.5(dKL(v,w)+dKL(w,v)), where dKL(v,w)
is the KL-divergence between v and w, each of which is represented by
the instance distributions among different classes.

To minimize Eq. (3), we leverage the idea of beam search [16],
in which a predefined number (m) of partial solutions are kept as
candidates. Specifically, We start by matching the tree nodes at the first
level. The top m matches that minimize the cost at this level are stored
as candidates. When processing the next level, all matches consistent
with the stored matches are calculated and sorted according to their
costs. Again, the m-matches with the lowest costs are stored before
going to the next level. In our experiment, we found m = 20 well
balances both efficiency and effectiveness.
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5.3 Interactive Understanding and Diagnosis Context
Understanding and diagnosing a boosting model is usually a trial-
and-error process. To aid experts with this process, we provide an
interactive exploration environment with four coordinated views, i.e.,
class view, instance view, classifier view, and feature view (Fig. 2). We
first introduce the instance view and the feature view; then we illustrate
how these views work together through coordinated interactions.
Instance view. The instance view employs the well-known t-SNE pro-
jection to demonstrate the relationships between instances of different
classes. Each instance is represented by a m-dimensional score vector.
Here m is the number of the classes and the i-th component corresponds
to the prediction score of the i-th class. As shown in Fig. 1(b), instance
points are colored according to their actual classes. The color-coding
scheme is shown in Fig. 1C. In addition to normal points, instance
view allows users to investigate outliers, such as instances that move
between different classes in the late training phase (Fig. 1E). To effi-
ciently handle a large number of instances, we employ an outlier-based
random sampling method to improve scalability. Specifically, we set a
higher sampling rates for the outliers than that of the normal instances.
Although sampling can reduce visual clutter effectively, it may also
lose some important instances. To address this issue, we employ an in-
cremental t-SNE projection method. Particularly, for each new instance
to be visualized, its initial position is determined by several already
placed instances, which are close to this instance. All the instances
with their positions are input to t-SNE for their final projection result.
Feature view. As shown in Fig. 1(d), the feature view consists of a
set of grouped bar charts to illustrate the feature distribution. Experts
are interested in the role that features play in separating the selected
subset of instances from others. Accordingly, for each feature (e.g.
Fig. 4A), we display its distribution on the selected subset of interest
(colored bars) as well as its distribution on other instances (grey bars).
To rank the features, we leverage the feature importance metric adopted
by LightGBM [65] and XGBoost [9], which measures the importance
by the increase of purity after splitting instances by using the feature.
Interactive analysis. The coordinated interactions among the four
views facilitate the examination of a variety of information at different
granularities, thus forming a convenient process of hypothesis genera-
tion and verification. Particularly, the confusion matrix and prediction
scores in the class view, as well as t-SNE projection in the instance
view, provide an overview of the model’s performance at the class-
and instance-levels. Based upon the examination of the model’s per-
formance at different instance subsets, an expert can easily discover
the subset(s) of interest. After selecting an instance subset, their distri-
butions on different decision trees are displayed in the classifier view
(Fig. 1(c)). In addition, the feature distribution within these subsets is
displayed in the feature view (Fig. 1(d)). With such information, an
expert further analyzes and diagnoses the training process. Examples
of the interactive analysis will be given in the case studies (section 6).

6 CASE STUDY

In this section, we demonstrate the usefulness of BOOSTVis by
conducting two case studies on a real-world dataset used in the Kaggle
competition - Otto Group Product Classification Challenge [67]. The
dataset contains 206,246 products sold by the Otto Group, one of

the world’s biggest e-commerce companies. The products belong
to nine categories and are described by 93 obfuscated numerical
features. In addition, the instance distribution over the nine categories
is imbalanced. As a result, this dataset is very difficult to tackle. The
competitors were asked to train a model for the classification of the
products. The model’s performance was measured using the multi-class
logarithmic loss function (denoted as LogLoss for simplicity’s sake):

L =− 1
n

n

∑
i

m

∑
j

yi j log(pi j). (4)

Here n is the number of products in the test set, m = 9 represents the
number of classes, yi j is 1 if and only if product i belongs to class
j, and pi j denotes the predictive probability that product i belongs to
class j. Smaller L indicates better model performance.

6.1 Understanding the Training Process
This case study was collaborated on with the major developers of
LightGBM (E1,E2,E3,E4). The evaluations were mainly based on
LightGBM, and focused on evaluating the effectiveness of BOOSTVis
in terms of delivering useful and innovative information about a model
and its training process. The experts emphasized exploring all aspects
of a training process to enhance understanding, which would in turn
facilitate subsequent model diagnosis. A comparison between the train-
ing processes using LightGBM and using XGBoost was also conducted
by the experts.
Performance for each class (R1). The experts began the analysis by
observing the performance for each class. After looking at the temporal
confusion matrix (Fig. 1(a)), they immediately realized that the most
problematic class was the orange one. As shown in Fig. 1A, throughout
the training process, most of the misclassified instances were incorrectly
assigned to the orange class. Among all the misclassified instances,
those belonging to the green class were the most confused with the
orange class (Fig. 1B).
Relating performance to features (R4). The performance for each
class differed significantly from each other. To find possible explana-
tions, the experts turned their attention to the feature view.

Expert E1 first selected the violet class, which had good classifi-
cation results, and examined its important features (Fig. 4(a)). He
immediately noticed feature F34, which had a disproportionally large
importance value. Looking further into the histograms, he noticed that
F34 apparently had different distributions on instances of the violet
class (violet) and on instances of other classes (gray). Thus, E1 believed
F34 had an important role in discriminating the violet class from the
others. For verification, he checked the corresponding tree in the first
iteration of training (Fig. 5). He found that F34 was used in the top
layers of the tree, and the first layer already separated most instances of
the violet class from the others, which explained the good classification
results for the violet class.

E1 also examined the features for the orange and green classes in
the feature view (Figs. 4(b)(c)). No features with dominant importance
were observed for the two classes. The distributions of important
features on instances of the orange or green class did not differentiate
well from their distributions on instances of other classes. “This means,
unlike the violet class, there is no single feature that can separate

(a) (b) (c)

A

Fig. 4. Comparing feature distributions for (a) the violet class, (b) the orange class, (c) the green class with other classes (gray). Dominant feature
(F34) is found in (a) because of the apparently different distributions. Overlapping features (F15 and F86) are found in (b) and (c).
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Fig. 5. Decision tree for the violet class in iteration 1. Feature F34 at the
top layer can separate most instances of the violet class from the others.
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Fig. 6. Changes of tree size throughout the training process for (a) the
violet class, (b) the orange class. (a) is more “top-heavy” than (b). (c)
and (d) highlight the sizes of trees in the 1st and 4th clusters (Fig. 1F) for
the orange class respectively. Trees in the 1st cluster are more centered
at the beginning of training than trees in the 4th cluster.

the orange or green instances from the others,” said E1. He further
discovered important features that overlapped between the two classes,
such as features F15 and F86, and reasoned it to be the cause of the
confusion between the two classes, “because their important features
are not distinct enough.”
Exploring iterative classifier updates (R3). In addition to examining
the features, the experts also wanted to explore the series of classifiers
to better understand the training process.

E1 examined the classifiers for the violet class. Fig. 6(a) shows a
bar chart showing how the tree size changed throughout the training
process. It can be seen from the bar chart that larger trees occurred at the
beginning of the training process, while the later iterations generated
trees that were smaller. Tree size is an indicator of fitting ability;
larger trees with more node splittings are more important to training.
This “top-heavy” bar chart made it clear to the expert that a successful
training process tended to have important classifiers centered at the
beginning. E2 observed a similar “top-heavy” bar chart for the orange
class (Fig. 6(b)). However, unlike the violet class, large trees still
occurred during the middle and later iterations of training, which was
considered by E2 as an indicator of struggles to separate some orange
instances from the instances of other classes.

The experts then looked at the clusters of trees for the orange class
(Fig. 1F). The first cluster had a more balanced distribution of instances
on the leaf nodes. Highlighting this cluster of trees in the bar chart
(Fig. 6(c)), the experts found that these trees were larger and mostly
occurred at the beginning of the training process. The fourth cluster, on
the other hand, consisted of trees with one prominent leaf node contain-
ing the majority of the instances. The bar chart (Fig. 6(d)) showed that
these trees were smaller and occurred in later stages of training. This ex-
ploration revealed that trees with more balanced instance distributions
tended to be generated at the beginning of a training process.

The two explorations indicated some correlation between a tree’s
“importance” and “balance”. Expert E4 selected the representative
decision tree for the 4th cluster, namely the 551th tree, to investigate
further into this matter. Fig. 1I shows the tree for the orange class
at the 551th iteration. The expert checked the leaf node where the
most instances were centered (Fig. 1J), and found that the value added
to these instances was only −0.00015, insignificant compared to the
values (magnitudes larger than 0.01) added at other leaf nodes. This
finding verified there was little contribution from this classifier to the
majority of the instances passed through it. Checking the main path
that the instances followed, expert E4 noticed the very high threshold
value at each node on the path. “It is a very useful finding”, claimed

(a) LightGBM (b) XGBoost

Fig. 7. Comparing performances of LightGBM and XGBoost models. The
black lines mark the 620th iteration in (a) and (b), where (b) has better
performance and faster convergence than (a).
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(a) LightGBM
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(b) XGBoost

Fig. 8. Comparing classifiers of LightGBM and XGBoost models. (b) has
bigger average tree size than (a). Larger trees are more centered at the
beginning of training in (b) than in (a).

E4, “...highest value is favored in LightGBM when there is not a good
threshold...an issue I haven’t noticed before.”
Comparing LightGBM and XGBoost (R5). The above evaluations
were based on the models in LightGBM. At the request of the experts
another model trained on the same data in XGBoost with comparable
settings was also passed into BOOSTVis to facilitate a comparison
between the two. For simplicity’s sake, we will refer to the two models
as the LightGBM model and the XGBoost model.

Fig. 7 shows the temporal confusion matrices conveying the perfor-
mances of the two models. After close observation, the experts agreed
that the training in XGBoost converged faster than the training in Light-
GBM. For example, at the marked 620th and the final 800th iterations,
the shaded green or red stripes adjoining the orange one were notice-
ably narrower in XGBoost than in LightGBM. The narrower shaded
stripes means less misclassified instances. The experts also noticed
the smaller time segments in the training of the XGBoost model. The
marked 620th iteration was in the 20th segment in training the Light-
GBM model, but was in the 21st in training the XGBoost model. Based
on the segmentation objective (Eq. 1), smaller segments result from
bigger variance over time, which indicated the training of the XGBoost
model had faster performance change, i.e., faster convergence.

To investigate the underlying reasons for this, expert E4 examined
the two models’ tree clusters (the glyphs). Fig. 8 shows the tree clusters
for the orange class. Expert E4 noticed that the average tree sizes of
the XGBoost model were bigger than those of the LightGBM model.
Highlighting the cluster with the biggest average size in the bar chart,
he further observed that large trees were more centered at the beginning
of training the XGBoost model. The same observations were made for
the other classes. As larger trees usually indicate stronger fitting ability,
this observation gave an explanation for the faster convergence of the
training in XGBoost. But on the other hand, XGBoost’s stronger fitting
ability may have a more adverse effect on its generalization ability.
This was confirmed from the LogLoss on the validation set, which was
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5.3 Interactive Understanding and Diagnosis Context
Understanding and diagnosing a boosting model is usually a trial-
and-error process. To aid experts with this process, we provide an
interactive exploration environment with four coordinated views, i.e.,
class view, instance view, classifier view, and feature view (Fig. 2). We
first introduce the instance view and the feature view; then we illustrate
how these views work together through coordinated interactions.
Instance view. The instance view employs the well-known t-SNE pro-
jection to demonstrate the relationships between instances of different
classes. Each instance is represented by a m-dimensional score vector.
Here m is the number of the classes and the i-th component corresponds
to the prediction score of the i-th class. As shown in Fig. 1(b), instance
points are colored according to their actual classes. The color-coding
scheme is shown in Fig. 1C. In addition to normal points, instance
view allows users to investigate outliers, such as instances that move
between different classes in the late training phase (Fig. 1E). To effi-
ciently handle a large number of instances, we employ an outlier-based
random sampling method to improve scalability. Specifically, we set a
higher sampling rates for the outliers than that of the normal instances.
Although sampling can reduce visual clutter effectively, it may also
lose some important instances. To address this issue, we employ an in-
cremental t-SNE projection method. Particularly, for each new instance
to be visualized, its initial position is determined by several already
placed instances, which are close to this instance. All the instances
with their positions are input to t-SNE for their final projection result.
Feature view. As shown in Fig. 1(d), the feature view consists of a
set of grouped bar charts to illustrate the feature distribution. Experts
are interested in the role that features play in separating the selected
subset of instances from others. Accordingly, for each feature (e.g.
Fig. 4A), we display its distribution on the selected subset of interest
(colored bars) as well as its distribution on other instances (grey bars).
To rank the features, we leverage the feature importance metric adopted
by LightGBM [65] and XGBoost [9], which measures the importance
by the increase of purity after splitting instances by using the feature.
Interactive analysis. The coordinated interactions among the four
views facilitate the examination of a variety of information at different
granularities, thus forming a convenient process of hypothesis genera-
tion and verification. Particularly, the confusion matrix and prediction
scores in the class view, as well as t-SNE projection in the instance
view, provide an overview of the model’s performance at the class-
and instance-levels. Based upon the examination of the model’s per-
formance at different instance subsets, an expert can easily discover
the subset(s) of interest. After selecting an instance subset, their distri-
butions on different decision trees are displayed in the classifier view
(Fig. 1(c)). In addition, the feature distribution within these subsets is
displayed in the feature view (Fig. 1(d)). With such information, an
expert further analyzes and diagnoses the training process. Examples
of the interactive analysis will be given in the case studies (section 6).

6 CASE STUDY

In this section, we demonstrate the usefulness of BOOSTVis by
conducting two case studies on a real-world dataset used in the Kaggle
competition - Otto Group Product Classification Challenge [67]. The
dataset contains 206,246 products sold by the Otto Group, one of

the world’s biggest e-commerce companies. The products belong
to nine categories and are described by 93 obfuscated numerical
features. In addition, the instance distribution over the nine categories
is imbalanced. As a result, this dataset is very difficult to tackle. The
competitors were asked to train a model for the classification of the
products. The model’s performance was measured using the multi-class
logarithmic loss function (denoted as LogLoss for simplicity’s sake):

L =− 1
n

n

∑
i

m

∑
j

yi j log(pi j). (4)

Here n is the number of products in the test set, m = 9 represents the
number of classes, yi j is 1 if and only if product i belongs to class
j, and pi j denotes the predictive probability that product i belongs to
class j. Smaller L indicates better model performance.

6.1 Understanding the Training Process
This case study was collaborated on with the major developers of
LightGBM (E1,E2,E3,E4). The evaluations were mainly based on
LightGBM, and focused on evaluating the effectiveness of BOOSTVis
in terms of delivering useful and innovative information about a model
and its training process. The experts emphasized exploring all aspects
of a training process to enhance understanding, which would in turn
facilitate subsequent model diagnosis. A comparison between the train-
ing processes using LightGBM and using XGBoost was also conducted
by the experts.
Performance for each class (R1). The experts began the analysis by
observing the performance for each class. After looking at the temporal
confusion matrix (Fig. 1(a)), they immediately realized that the most
problematic class was the orange one. As shown in Fig. 1A, throughout
the training process, most of the misclassified instances were incorrectly
assigned to the orange class. Among all the misclassified instances,
those belonging to the green class were the most confused with the
orange class (Fig. 1B).
Relating performance to features (R4). The performance for each
class differed significantly from each other. To find possible explana-
tions, the experts turned their attention to the feature view.

Expert E1 first selected the violet class, which had good classifi-
cation results, and examined its important features (Fig. 4(a)). He
immediately noticed feature F34, which had a disproportionally large
importance value. Looking further into the histograms, he noticed that
F34 apparently had different distributions on instances of the violet
class (violet) and on instances of other classes (gray). Thus, E1 believed
F34 had an important role in discriminating the violet class from the
others. For verification, he checked the corresponding tree in the first
iteration of training (Fig. 5). He found that F34 was used in the top
layers of the tree, and the first layer already separated most instances of
the violet class from the others, which explained the good classification
results for the violet class.

E1 also examined the features for the orange and green classes in
the feature view (Figs. 4(b)(c)). No features with dominant importance
were observed for the two classes. The distributions of important
features on instances of the orange or green class did not differentiate
well from their distributions on instances of other classes. “This means,
unlike the violet class, there is no single feature that can separate

(a) (b) (c)
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Fig. 4. Comparing feature distributions for (a) the violet class, (b) the orange class, (c) the green class with other classes (gray). Dominant feature
(F34) is found in (a) because of the apparently different distributions. Overlapping features (F15 and F86) are found in (b) and (c).
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Fig. 5. Decision tree for the violet class in iteration 1. Feature F34 at the
top layer can separate most instances of the violet class from the others.
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Fig. 6. Changes of tree size throughout the training process for (a) the
violet class, (b) the orange class. (a) is more “top-heavy” than (b). (c)
and (d) highlight the sizes of trees in the 1st and 4th clusters (Fig. 1F) for
the orange class respectively. Trees in the 1st cluster are more centered
at the beginning of training than trees in the 4th cluster.

the orange or green instances from the others,” said E1. He further
discovered important features that overlapped between the two classes,
such as features F15 and F86, and reasoned it to be the cause of the
confusion between the two classes, “because their important features
are not distinct enough.”
Exploring iterative classifier updates (R3). In addition to examining
the features, the experts also wanted to explore the series of classifiers
to better understand the training process.

E1 examined the classifiers for the violet class. Fig. 6(a) shows a
bar chart showing how the tree size changed throughout the training
process. It can be seen from the bar chart that larger trees occurred at the
beginning of the training process, while the later iterations generated
trees that were smaller. Tree size is an indicator of fitting ability;
larger trees with more node splittings are more important to training.
This “top-heavy” bar chart made it clear to the expert that a successful
training process tended to have important classifiers centered at the
beginning. E2 observed a similar “top-heavy” bar chart for the orange
class (Fig. 6(b)). However, unlike the violet class, large trees still
occurred during the middle and later iterations of training, which was
considered by E2 as an indicator of struggles to separate some orange
instances from the instances of other classes.

The experts then looked at the clusters of trees for the orange class
(Fig. 1F). The first cluster had a more balanced distribution of instances
on the leaf nodes. Highlighting this cluster of trees in the bar chart
(Fig. 6(c)), the experts found that these trees were larger and mostly
occurred at the beginning of the training process. The fourth cluster, on
the other hand, consisted of trees with one prominent leaf node contain-
ing the majority of the instances. The bar chart (Fig. 6(d)) showed that
these trees were smaller and occurred in later stages of training. This ex-
ploration revealed that trees with more balanced instance distributions
tended to be generated at the beginning of a training process.

The two explorations indicated some correlation between a tree’s
“importance” and “balance”. Expert E4 selected the representative
decision tree for the 4th cluster, namely the 551th tree, to investigate
further into this matter. Fig. 1I shows the tree for the orange class
at the 551th iteration. The expert checked the leaf node where the
most instances were centered (Fig. 1J), and found that the value added
to these instances was only −0.00015, insignificant compared to the
values (magnitudes larger than 0.01) added at other leaf nodes. This
finding verified there was little contribution from this classifier to the
majority of the instances passed through it. Checking the main path
that the instances followed, expert E4 noticed the very high threshold
value at each node on the path. “It is a very useful finding”, claimed

(a) LightGBM (b) XGBoost

Fig. 7. Comparing performances of LightGBM and XGBoost models. The
black lines mark the 620th iteration in (a) and (b), where (b) has better
performance and faster convergence than (a).
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(b) XGBoost

Fig. 8. Comparing classifiers of LightGBM and XGBoost models. (b) has
bigger average tree size than (a). Larger trees are more centered at the
beginning of training in (b) than in (a).

E4, “...highest value is favored in LightGBM when there is not a good
threshold...an issue I haven’t noticed before.”
Comparing LightGBM and XGBoost (R5). The above evaluations
were based on the models in LightGBM. At the request of the experts
another model trained on the same data in XGBoost with comparable
settings was also passed into BOOSTVis to facilitate a comparison
between the two. For simplicity’s sake, we will refer to the two models
as the LightGBM model and the XGBoost model.

Fig. 7 shows the temporal confusion matrices conveying the perfor-
mances of the two models. After close observation, the experts agreed
that the training in XGBoost converged faster than the training in Light-
GBM. For example, at the marked 620th and the final 800th iterations,
the shaded green or red stripes adjoining the orange one were notice-
ably narrower in XGBoost than in LightGBM. The narrower shaded
stripes means less misclassified instances. The experts also noticed
the smaller time segments in the training of the XGBoost model. The
marked 620th iteration was in the 20th segment in training the Light-
GBM model, but was in the 21st in training the XGBoost model. Based
on the segmentation objective (Eq. 1), smaller segments result from
bigger variance over time, which indicated the training of the XGBoost
model had faster performance change, i.e., faster convergence.

To investigate the underlying reasons for this, expert E4 examined
the two models’ tree clusters (the glyphs). Fig. 8 shows the tree clusters
for the orange class. Expert E4 noticed that the average tree sizes of
the XGBoost model were bigger than those of the LightGBM model.
Highlighting the cluster with the biggest average size in the bar chart,
he further observed that large trees were more centered at the beginning
of training the XGBoost model. The same observations were made for
the other classes. As larger trees usually indicate stronger fitting ability,
this observation gave an explanation for the faster convergence of the
training in XGBoost. But on the other hand, XGBoost’s stronger fitting
ability may have a more adverse effect on its generalization ability.
This was confirmed from the LogLoss on the validation set, which was
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0.45330 for the XGBoost model, slightly worse than the 0.45269 for
the LightGBM model.

6.2 Diagnosing an Unsatisfactory Training Process
This case study shows how BOOSTVis helps experts efficiently improve
an unsatisfactory base tree boosting model and make it perform better
than the best single boosting model in the Kaggle competition. The
base boosting model was trained by using grid search, which is a
traditional parameter optimization method. Specifically, we trained 35
tree boosting models by using different tree depths (d ∈ {2,3, ...,8})
and learning rates (η ∈ {0.01,0.05,0.1,0.5,1}). The model with the
lowest (best) LogLoss on the validation set (L = 0.45467) was chosen
as the base model. We then asked experts E1 and E7 to analyze the base
model by using BOOSTVis. Their findings were collected via emails
and phone meetings. We iteratively retrained the model by following
their suggestions. After the following first three steps, the LogLoss
of the model was decreased to 0.43777, which is better than the best
single boosting model in the competition (L = 0.43902).
Tuning parameters by connecting model performance with class-
level and classifier-level information (R3, R5). From the temporal
confusion matrix (Fig. 1(a)), the experts noticed the obvious confusion
between the orange and green classes. Curious about the underlying
reasons for this confusion, the experts selected instances that belonged
to the orange (IIIo) and green (IIIg) classes respectively and observed how
these instances were distributed in the decision trees (classifiers).

Fig. 9(a) shows the decision tree at the 50th iteration. After observ-
ing this tree, expert E1 realized that although some tree nodes (e.g.,
Fig. 9A) worked well when differentiating IIIo and IIIg from instances that
belonged to other classes (gray), no tree nodes could easily differentiate
IIIo from IIIg. As shown in Fig. 9B, IIIg is still mixed with IIIo even on
the leaf node. This phenomenon was also observed on other trees.
E1 speculated that to improve the purity of the corresponding clusters,
more features are needed. Accordingly, he suggested that we change
the control parameter of the tree size. To avoid overfitting, LightGBM
allows users to control the tree size by limiting the maximum depth
of the decision trees. Since the maximum tree depth was predefined, IIIo
and IIIg could only be differentiated by using a small number of features
(no larger than the maximum tree depth). To increase the number of
features used while still avoiding overfitting, E1 suggested that we limit
the number of leaf nodes on the tree rather than limit the tree depth.

Fig. 9(b) shows an example decision tree of the new model built by
following E1’s suggestion. The tree grew much deeper when its depth
was not limited and some tree nodes at the bottom (e.g., Fig. 9C) could
easily differentiate between IIIg and IIIo. After this step, the LogLoss was
decreased from 0.45467 to 0.44568.
Adding new features by examining and comparing feature distri-
butions (R4). Expert E7 then tried to tune the model by adding features.
It has been observed that adding interaction features (the combina-
tions of existing features) might be helpful in improving model perfor-
mance [56]. A limitation of tree boosting is that only one feature can be
used each time the instances are splitted. Adding interaction features
addresses this limitation and thus is useful in improving the model ac-
curacy. To find good interaction features, E7 tried three different strate-
gies, all of which were supported by BOOSTVis: 1) adding features to
shorten the distance between high-confidence TPs and low-confidence
TPs; 2) adding features to enlarge the distance between TPs and FPs;
and 3) adding features to shorten the distances between TPs and FNs.

Fig. 10 shows how the interaction feature F64 + F9 was discovered.
Since the orange class was the most problematic, expert E7 first
examined the prediction scores for the instances classified to the orange
class (Fig. 10(a)). He then selected two instance clusters: IIIo1 whose
prediction scores were high during the iteration and IIIo2 whose predic-
tion scores were low. Although both IIIo1 and IIIo2 were TPs, instances in
IIIo1 were classified into the correct class with a high confidence while
instances in IIIo2 were classified into the class with a low confidence. To
shorten the distance between IIIo1 and IIIo2 (strategy 1), E7 examined the
important features of IIIo1 and IIIo2. As shown in Fig. 10(b), both feature
F64 and feature F9 have a similar distribution on IIIo1 and IIIo2, especially
for the part with larger feature values. Thus, he suggested that we try
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Fig. 9. Comparing tree structures constructed by (a) limiting the tree
depth, and (b) limiting the number of leaf nodes. The tree in (b) grows
much deeper and includes nodes with good differentiating ability, e.g. C.
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Fig. 10. Finding interaction features: (a) identifying high-confidence TPs
(IIIo1) and low-confidence TPs (IIIo2); (b) comparing distributions of impor-
tant features of IIIo1 and IIIo2. Both the features have similar distributions
on IIIo1 and IIIo2, suggesting a combination of them to shorten the distance
between the two orange lines in (a).

combining the two features to generate a new interaction feature. After
trying four combinations (i.e., F64 + F9, F64 - F9, F64 ÷ F9 and F64
× F9), we found F64 + F9 worked the best (LogLoss was decreased
to 0.44430), and thus added this feature to improve the model.

After trying the aforementioned three strategies, expert E7 finally
added four interaction features, and the LogLoss was decreased from
0.44568 to 0.44379 after this step. Although this improvement was not
very significant, the experts considered it reasonably good, considering
the meaning of all the features were obfuscated. Expert E1 commented,
“It is hard to add features when the meaning of the features was un-
known. What we usually do is analyze the meaning of the features and
add one that can increase the diversity of the feature set.”
Recognizing the need for subsampling by observing an evolution
pattern of decision trees (R3). To further improve the model, expert
E1 closely examined the evolution pattern of the tree structures. After
analyzing the tree structures generated at the first three iterations, he
realized that the features used on the top of the tree remained too stable.
Fig. 11(a) shows the top three levels of the three trees. The features
that did not appear at the top three levels of the previous tree were
highlighted. Only one new feature appeared in the second tree and
two new features appeared in the third tree. Since too much stability
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Fig. 11. Tree structures (top three levels) generated at the first three iterations before (a) and after (b) applying subsampling. New features added to
the top three levels at each iteration are highlighted. Far more new features are introduced by applying subsampling.

could result in poor generalization ability, to solve this problem, E1
suggested us to use feature subsampling. By using feature subsampling,
each decision tree is built with only a randomly chosen percentage of
the features. The trees built after applying subsampling are shown in
Fig. 11(b). As shown in the figure, the tree structures evolved more
rapidly, with four new features appearing in the second and third tree.
As a result, the generalization ability of the model is improved. After
applying subsampling, LogLoss decreased from 0.44379 to 0.43777.
Detecting outliers by analyzing relationships between instances
(R2). When observing the relationships between the instances, ex-
pert E7 detected some outliers. There were two types of outliers. The
first type corresponds to instances whose neighbors belonged to dif-
ferent classes. Examples of such outliers found by E7 was shown in
Fig. 1D. It has been observed that this kind of instances may easily be
misclassified [40] and may even be hard for humans to classify. The
second type includes instances that moved between two clusters during
the iteration process. This kind of outliers can be detected by observing
the trails of the instances. Examples of such outliers is given in Fig. 1E.
After exploring for a few minutes, E7 detected nine outliers, six of them
are of the first type and three of them are of the second type. After we
removed these outliers and retrained the model, the model accuracy
was not improved. Expert E1 commented that this is reasonable since
tree boosting is robust to outliers in the input space [18].

7 DISCUSSION

The case studies demonstrate the usefulness and effectiveness of
BOOSTVis in helping experts understand the inner workings of tree
boosting and diagnose an unsatisfactory training process. Intrigued by
BOOSTVis, the LightGBM team plans to integrate it with LightGBM.
Nevertheless, there is certainly room for improvements.
General applicability. Although BOOSTVis is designed for tree boost-
ing methods, it can be easily applied to other boosting methods that does
not employ tree learning methods as weak learners. The only change
needed is to design a new visualization for the new type of classifiers.
In addition, it is not difficult to apply the BOOSTVis visualizations to
other types of ensemble learning methods such as bagging. The major
change that must be made is: in the class view, the time points along the
time dimension are treated as classifier indexes in the bagging model.
Color scalability. In the class and instance visualizations, color-coding
is utilized to encode different classes. The experts said that they could
easily differentiate around ten classes with different colors. This is
also consistent with the previous findings that only a small number of
colors can be used effectively as category labels [55]. To compensate
for this, we only display at most ten different classes in these two
visualizations. A number of experiments have demonstrated that the
estimated limitations of human comparison capacity usually vary from
three to seven objects [46]. As a result, showing ten classes on the
screen works for most real-world analysis tasks.
Learning curve. The BOOSTVis visualizations are based on familiar
visual metaphors, such as the confusion matrix, line chart, t-SNE pro-
jection, tree visualization, and bar chart. As a result, the experts quickly

became familiar with these visualizations and the adopted encodings.
Because of the four coordinated views in the interactive exploration
environment, several types of interactions are provided in BOOSTVis.
We observed that the experts usually took from several minutes to a
dozen minutes to become thoroughly familiar with the interactions
between the views. The transition between a specific predicted class
in the temporal confusion matrix and the temporal prediction scores of
its instances (line chart) confused some of the experts. One expert said
that he did not realize the connection between these two components
until an unintentional clicking on one of the class stripes. The experts
suggested providing a quick tour function, which would illustrate how
to use this tool step by step. This will enable a wide adoption of this
tool among machine learning experts and practitioners.

8 CONCLUSION

In this paper, we have presented a visual analytics tool, BOOSTVis, to
help machine learning experts better understand the boosting process,
diagnose underlying problems, and make informed improvements. A
multi-view visualization, supported by time series segmentation, t-SNE,
tree matching, etc. allows experts to explore a model’s performance
from different aspects and track the training process. Two case studies
were conducted to demonstrate the usefulness of BOOSTVis for pro-
moting comprehensive understanding and facilitating experts’ diagnosis
and refinement of a tree boosting model.

There are several directions to follow in our future work to improve
BOOSTVis. First, we plan to conduct a formal user study and further
improve our system based on the collected feedback. Second, we are
interested in extending its application to a wider range of methods.
Currently, BOOSTVis is used for analysis of tree boosting models. An
immediate extension is the application to tree models trained using
other boosting methods, such as Adaboost. Looking further ahead, as
discussed in section 7, we aim to generalize BOOSTVis to analyze
other ensemble learning methods such as bagging. Third, we would
like to investigate how to support online analysis of the training pro-
cess. In the current pipeline, the model is pre-trained, and BOOSTVis
reproduces the training process from the log data. Experts expressed
the desire to monitor the real-time running results and stop the training
process if necessary. This requires the development of a set of visualiza-
tion and data mining algorithms that can effectively convey streaming
data, and automatically detect anomalies. Interactivity can be further
improved allowing experts to modify parameters and change settings
for additional tests.
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0.45330 for the XGBoost model, slightly worse than the 0.45269 for
the LightGBM model.

6.2 Diagnosing an Unsatisfactory Training Process
This case study shows how BOOSTVis helps experts efficiently improve
an unsatisfactory base tree boosting model and make it perform better
than the best single boosting model in the Kaggle competition. The
base boosting model was trained by using grid search, which is a
traditional parameter optimization method. Specifically, we trained 35
tree boosting models by using different tree depths (d ∈ {2,3, ...,8})
and learning rates (η ∈ {0.01,0.05,0.1,0.5,1}). The model with the
lowest (best) LogLoss on the validation set (L = 0.45467) was chosen
as the base model. We then asked experts E1 and E7 to analyze the base
model by using BOOSTVis. Their findings were collected via emails
and phone meetings. We iteratively retrained the model by following
their suggestions. After the following first three steps, the LogLoss
of the model was decreased to 0.43777, which is better than the best
single boosting model in the competition (L = 0.43902).
Tuning parameters by connecting model performance with class-
level and classifier-level information (R3, R5). From the temporal
confusion matrix (Fig. 1(a)), the experts noticed the obvious confusion
between the orange and green classes. Curious about the underlying
reasons for this confusion, the experts selected instances that belonged
to the orange (IIIo) and green (IIIg) classes respectively and observed how
these instances were distributed in the decision trees (classifiers).

Fig. 9(a) shows the decision tree at the 50th iteration. After observ-
ing this tree, expert E1 realized that although some tree nodes (e.g.,
Fig. 9A) worked well when differentiating IIIo and IIIg from instances that
belonged to other classes (gray), no tree nodes could easily differentiate
IIIo from IIIg. As shown in Fig. 9B, IIIg is still mixed with IIIo even on
the leaf node. This phenomenon was also observed on other trees.
E1 speculated that to improve the purity of the corresponding clusters,
more features are needed. Accordingly, he suggested that we change
the control parameter of the tree size. To avoid overfitting, LightGBM
allows users to control the tree size by limiting the maximum depth
of the decision trees. Since the maximum tree depth was predefined, IIIo
and IIIg could only be differentiated by using a small number of features
(no larger than the maximum tree depth). To increase the number of
features used while still avoiding overfitting, E1 suggested that we limit
the number of leaf nodes on the tree rather than limit the tree depth.

Fig. 9(b) shows an example decision tree of the new model built by
following E1’s suggestion. The tree grew much deeper when its depth
was not limited and some tree nodes at the bottom (e.g., Fig. 9C) could
easily differentiate between IIIg and IIIo. After this step, the LogLoss was
decreased from 0.45467 to 0.44568.
Adding new features by examining and comparing feature distri-
butions (R4). Expert E7 then tried to tune the model by adding features.
It has been observed that adding interaction features (the combina-
tions of existing features) might be helpful in improving model perfor-
mance [56]. A limitation of tree boosting is that only one feature can be
used each time the instances are splitted. Adding interaction features
addresses this limitation and thus is useful in improving the model ac-
curacy. To find good interaction features, E7 tried three different strate-
gies, all of which were supported by BOOSTVis: 1) adding features to
shorten the distance between high-confidence TPs and low-confidence
TPs; 2) adding features to enlarge the distance between TPs and FPs;
and 3) adding features to shorten the distances between TPs and FNs.

Fig. 10 shows how the interaction feature F64 + F9 was discovered.
Since the orange class was the most problematic, expert E7 first
examined the prediction scores for the instances classified to the orange
class (Fig. 10(a)). He then selected two instance clusters: IIIo1 whose
prediction scores were high during the iteration and IIIo2 whose predic-
tion scores were low. Although both IIIo1 and IIIo2 were TPs, instances in
IIIo1 were classified into the correct class with a high confidence while
instances in IIIo2 were classified into the class with a low confidence. To
shorten the distance between IIIo1 and IIIo2 (strategy 1), E7 examined the
important features of IIIo1 and IIIo2. As shown in Fig. 10(b), both feature
F64 and feature F9 have a similar distribution on IIIo1 and IIIo2, especially
for the part with larger feature values. Thus, he suggested that we try
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Fig. 9. Comparing tree structures constructed by (a) limiting the tree
depth, and (b) limiting the number of leaf nodes. The tree in (b) grows
much deeper and includes nodes with good differentiating ability, e.g. C.
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Fig. 10. Finding interaction features: (a) identifying high-confidence TPs
(IIIo1) and low-confidence TPs (IIIo2); (b) comparing distributions of impor-
tant features of IIIo1 and IIIo2. Both the features have similar distributions
on IIIo1 and IIIo2, suggesting a combination of them to shorten the distance
between the two orange lines in (a).

combining the two features to generate a new interaction feature. After
trying four combinations (i.e., F64 + F9, F64 - F9, F64 ÷ F9 and F64
× F9), we found F64 + F9 worked the best (LogLoss was decreased
to 0.44430), and thus added this feature to improve the model.

After trying the aforementioned three strategies, expert E7 finally
added four interaction features, and the LogLoss was decreased from
0.44568 to 0.44379 after this step. Although this improvement was not
very significant, the experts considered it reasonably good, considering
the meaning of all the features were obfuscated. Expert E1 commented,
“It is hard to add features when the meaning of the features was un-
known. What we usually do is analyze the meaning of the features and
add one that can increase the diversity of the feature set.”
Recognizing the need for subsampling by observing an evolution
pattern of decision trees (R3). To further improve the model, expert
E1 closely examined the evolution pattern of the tree structures. After
analyzing the tree structures generated at the first three iterations, he
realized that the features used on the top of the tree remained too stable.
Fig. 11(a) shows the top three levels of the three trees. The features
that did not appear at the top three levels of the previous tree were
highlighted. Only one new feature appeared in the second tree and
two new features appeared in the third tree. Since too much stability
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Fig. 11. Tree structures (top three levels) generated at the first three iterations before (a) and after (b) applying subsampling. New features added to
the top three levels at each iteration are highlighted. Far more new features are introduced by applying subsampling.

could result in poor generalization ability, to solve this problem, E1
suggested us to use feature subsampling. By using feature subsampling,
each decision tree is built with only a randomly chosen percentage of
the features. The trees built after applying subsampling are shown in
Fig. 11(b). As shown in the figure, the tree structures evolved more
rapidly, with four new features appearing in the second and third tree.
As a result, the generalization ability of the model is improved. After
applying subsampling, LogLoss decreased from 0.44379 to 0.43777.
Detecting outliers by analyzing relationships between instances
(R2). When observing the relationships between the instances, ex-
pert E7 detected some outliers. There were two types of outliers. The
first type corresponds to instances whose neighbors belonged to dif-
ferent classes. Examples of such outliers found by E7 was shown in
Fig. 1D. It has been observed that this kind of instances may easily be
misclassified [40] and may even be hard for humans to classify. The
second type includes instances that moved between two clusters during
the iteration process. This kind of outliers can be detected by observing
the trails of the instances. Examples of such outliers is given in Fig. 1E.
After exploring for a few minutes, E7 detected nine outliers, six of them
are of the first type and three of them are of the second type. After we
removed these outliers and retrained the model, the model accuracy
was not improved. Expert E1 commented that this is reasonable since
tree boosting is robust to outliers in the input space [18].

7 DISCUSSION

The case studies demonstrate the usefulness and effectiveness of
BOOSTVis in helping experts understand the inner workings of tree
boosting and diagnose an unsatisfactory training process. Intrigued by
BOOSTVis, the LightGBM team plans to integrate it with LightGBM.
Nevertheless, there is certainly room for improvements.
General applicability. Although BOOSTVis is designed for tree boost-
ing methods, it can be easily applied to other boosting methods that does
not employ tree learning methods as weak learners. The only change
needed is to design a new visualization for the new type of classifiers.
In addition, it is not difficult to apply the BOOSTVis visualizations to
other types of ensemble learning methods such as bagging. The major
change that must be made is: in the class view, the time points along the
time dimension are treated as classifier indexes in the bagging model.
Color scalability. In the class and instance visualizations, color-coding
is utilized to encode different classes. The experts said that they could
easily differentiate around ten classes with different colors. This is
also consistent with the previous findings that only a small number of
colors can be used effectively as category labels [55]. To compensate
for this, we only display at most ten different classes in these two
visualizations. A number of experiments have demonstrated that the
estimated limitations of human comparison capacity usually vary from
three to seven objects [46]. As a result, showing ten classes on the
screen works for most real-world analysis tasks.
Learning curve. The BOOSTVis visualizations are based on familiar
visual metaphors, such as the confusion matrix, line chart, t-SNE pro-
jection, tree visualization, and bar chart. As a result, the experts quickly

became familiar with these visualizations and the adopted encodings.
Because of the four coordinated views in the interactive exploration
environment, several types of interactions are provided in BOOSTVis.
We observed that the experts usually took from several minutes to a
dozen minutes to become thoroughly familiar with the interactions
between the views. The transition between a specific predicted class
in the temporal confusion matrix and the temporal prediction scores of
its instances (line chart) confused some of the experts. One expert said
that he did not realize the connection between these two components
until an unintentional clicking on one of the class stripes. The experts
suggested providing a quick tour function, which would illustrate how
to use this tool step by step. This will enable a wide adoption of this
tool among machine learning experts and practitioners.

8 CONCLUSION

In this paper, we have presented a visual analytics tool, BOOSTVis, to
help machine learning experts better understand the boosting process,
diagnose underlying problems, and make informed improvements. A
multi-view visualization, supported by time series segmentation, t-SNE,
tree matching, etc. allows experts to explore a model’s performance
from different aspects and track the training process. Two case studies
were conducted to demonstrate the usefulness of BOOSTVis for pro-
moting comprehensive understanding and facilitating experts’ diagnosis
and refinement of a tree boosting model.

There are several directions to follow in our future work to improve
BOOSTVis. First, we plan to conduct a formal user study and further
improve our system based on the collected feedback. Second, we are
interested in extending its application to a wider range of methods.
Currently, BOOSTVis is used for analysis of tree boosting models. An
immediate extension is the application to tree models trained using
other boosting methods, such as Adaboost. Looking further ahead, as
discussed in section 7, we aim to generalize BOOSTVis to analyze
other ensemble learning methods such as bagging. Third, we would
like to investigate how to support online analysis of the training pro-
cess. In the current pipeline, the model is pre-trained, and BOOSTVis
reproduces the training process from the log data. Experts expressed
the desire to monitor the real-time running results and stop the training
process if necessary. This requires the development of a set of visualiza-
tion and data mining algorithms that can effectively convey streaming
data, and automatically detect anomalies. Interactivity can be further
improved allowing experts to modify parameters and change settings
for additional tests.
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