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Abstract—Learning salient representations of multiview data is an essential step in many applications such as image classification,

retrieval, and annotation. Standard predictive methods, such as support vector machines, often directly use all the features available

without taking into consideration the presence of distinct views and the resultant view dependencies, coherence, and complementarity

that offer key insights to the semantics of the data, and are therefore offering weak performance and are incapable of supporting view-

level analysis. This paper presents a statistical method to learn a predictive subspace representation underlying multiple views,

leveraging both multiview dependencies and availability of supervising side-information. Our approach is based on a multiview latent

subspace Markov network (MN) which fulfills a weak conditional independence assumption that multiview observations and response

variables are conditionally independent given a set of latent variables. To learn the latent subspace MN, we develop a large-margin

approach which jointly maximizes data likelihood and minimizes a prediction loss on training data. Learning and inference are

efficiently done with a contrastive divergence method. Finally, we extensively evaluate the large-margin latent MN on real image and

hotel review datasets for classification, regression, image annotation, and retrieval. Our results demonstrate that the large-margin

approach can achieve significant improvements in terms of prediction performance and discovering predictive latent subspace

representations.

Index Terms—Latent subspace model, large-margin learning, classification, regression, image retrieval and annotation

Ç

1 INTRODUCTION

MODERN data analytic problems in social media,
information technology, and natural sciences often

involve rich data consisting of multiple information
modalities. For example, in a moment-sharing social
network such as Instagram, a photo record would include
image, text (status updates and viewer opinions), and
various meta-information such as user demographics, geo-
tags, time stamps, etc.; in a biomedical data repository, a
clinical sample record may include gene expression
intensity, protein activity status, clinical traits, and patient
information with family history. These different modalities
represent different angles to reveal the fundamental
characteristics and properties of the study subjects and is
often referred as views of the subjects.

Proper integration of multiple views present in multi-

modal data is of paramount importance for seeking accurate

distillation of salient semantic representations of the study

objects; therefore numerous efforts along this direction can be

found in the literature. To name a few, Blum and Mitchell [6]
studied co-training scheme of a classification model for
webpages based on both content and link anchor text; Xing
et al. [44] proposed a dual view latent space model for video
shot based on both color/shape of the keyframe and the
corresponding closed captions; and this list continues to
grow, under various contexts and addressing a diverse range
of data forms [17], [11], [34], [35], [14]. However, most of these
approaches for multiview integration and distillation do not
go hand-in-hand with mainstream predictive methods such
as support vector machines (SVMs) [8] or Boosting algo-
rithms [19] to form a unified system that allows strongly
predictive latent semantic representations of multiview data
to be extracted. Typically, standard predictive methods
would use one of the following strategies: 1) build a single
classifier on observed features from all views, without taking
into consideration the presence of distinct views; 2) build a
set of classifiers defined on each view, regardless of the
relationships among views; and 3) let a latent space model
such as a multiview topic model to distill the latent
representations of data without considering the predictive
information,1 and then apply a downstream classifier on
such representations [44]. While offering many insights on
how multiview data can be worked with, these approaches
appear to enjoy limited practical benefits from the extra
information present in multiview data in terms of predictive
performance [7], computational cost [35], and power for view-
level analysis [14] such as predicting tags for image annotation
or analyzing the underlying relationships among views.

Moreover, with the rapid increase of free online
information such as user tagging, ratings, etc., various
forms of side-information that can potentially offer “free”
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supervision over the media data have led to a need for new
models and training schemes that can make effective use of
such information to achieve better results, such as more
discriminative latent representations of image contents and
more accurate image classifiers. In this paper, we develop a
new statistical framework that enables one to learn a
predictive latent space representation shared by multiview
data by leveraging supervising side information, and to
perform both view-level analysis (e.g., image annotation)
and response-level predictions (e.g., classification) based on
the learned representation.

Our method builds on a probabilistic latent subspace
model that relates features of perceivable entities (e.g.,
images) to abstract concepts (e.g., latent topics) in a
probabilistic way which allows flexible and efficient
statistical reasoning and inference. Our model is a generic
multiview latent space Markov network (MN) that builds on a
weak conditional independence assumption that the data
from different views and the response variables are
conditionally independent given a set of latent variables.
This conditional independence is weaker than the typical
assumption (e.g., in the seminal work of co-training [6]) that
multiview data are conditionally independent given the
very low dimensional response variables [18]. Although in
principle a directed Bayesian network (BN) (e.g., latent
Dirichlet allocation (LDA) [5], [4], [48]) can be extended to
handle multiview data, its conditional dependency proper-
ties could make it hard to perform posterior inference
because all latent variables are coupled given observed
variables [41]. In contrast, undirected latent variable
models, such as ours and those presented in [41], [32],
[44], could be very efficient in inference because of the
conditional independence.

One critical limitation of existing paradigms for learning
probabilistic latent subspace models, as discussed in [48], is
that the commonly used likelihood-based methods are often
not discriminative enough to leverage the supervising side
information accompanying the multiview data to extract a
strongly predictive representation, and is prone to undesir-
able effects such as overfitting to small data [41], [44], [45],
[28]. To overcome such limitations, we use a completely
different and arguably more desirable learning paradigm
based on the maximum margin principle. More specifically,
we develop a new discriminative learning approach for the
proposed latent space Markov network which jointly
maximizes the likelihood of multiview data and minimizes
a prediction loss on the labels from side information (e.g.,
hinge-loss for classification or �-insensitive loss [33] for
regression) to discover a strongly predictive subspace
representation and learn a prediction model thereupon.
The learning and inference problems are efficiently solved
with an extension of the contrastive divergence method
[40]. Extensive experiments show that the proposed large-
margin approach can achieve significant improvements in
terms of prediction performance and semantic saliency of
the predictive latent subspace representations. Moreover,
the inference in the latent space MN is much faster and
easier compared with the directed counterpart models, e.g.,
MedLDA [48].

The remainder of the paper is organized as follows: Section
2 reviews related work. Section 3 presents the multiview
latent subspace MN. Section 4 presents the large-margin
training methods for both classification and regression.

Section 5 presents extensive empirical evaluation on
various datasets. Finally, Section 6 concludes with future
research directions discussed.

2 RELATED WORK

The literature of discovering latent representations from
large collections of data consists of both deterministic (e.g.,
canonical correlation analysis (CCA) [24], [26], [1] and Fisher
discriminant analysis (FDA) [15]) and probabilistic (e.g.,
directed LDA [5], [39], [50] and undirected Harmoniums
[41], [32], [44]) methods. A deterministic method cannot be
easily extended to perform view-level predictions, such as
image annotation, and it would also need a density
estimator in order to apply the information criterion [11]
to detect view disagreement. Thus, we choose the probabil-
istic framework and base our approach on an undirected
multiview latent space model, which enjoys nice properties,
as discussed.

To consider supervising side information, supervised
latent space models have been developed, including
supervised LDA [4], [39], [48] and supervised Harmoniums
[45], [28]. However, almost all these models are learned
using likelihood-based estimation, which often involves
dealing with an intractable normalization factor [39], [50]
and may not yield improvements compared with the
standard prediction tools based on purely discriminative
ideas (e.g., SVM) [45]. The recent work of MedLDA [48] has
shown a promising direction of applying the large-margin
principle to learn predictive latent space representations
which could be more suitable for prediction (e.g., classifica-
tion). Other developments along this line include the large-
margin upstream scene understanding models [49] and the
conditional topic models with features [50]. However, these
methods are all directed Bayesian networks, which may
involve a hard inference problem, as we have discussed.
The present work represents an important contribution of
deploying the large-margin principle to learn undirected
latent space models.

The large-margin principle has also been applied to learn
Markov networks with latent variables [51], [16], [46].
However, their goals are mainly to use latent variables to
capture residual and high-order dependency for improving
prediction performance, essentially different from ours of
learning predictive latent representations of the data. Our
approach is also different from much of the existing research
that has been done on exploring multiview information to
alleviate semi-supervised learning [6], [14], [2], [18], [26],
unsupervised clustering [9], and structured output problems
[21]. Other work that relates to ours includes the hybrid
generative/discriminative learning [31], which uses like-
lihood-based estimation, and the sufficient dimensionality
reduction methods [20]. Finally, this paper is a systematic
extension of the preliminary conference version [10].

3 MULTIVIEW LATENT SUBSPACE MNS

In this section, we present a multiview latent subspace
Markov network by incorporating complex structures on
each view. We will start with an unsupervised latent
subspace MN and then present a supervised latent sub-
space MN based on maximum likelihood estimation (MLE).
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3.1 Unsupervised Multiview Latent Subspace MNs

Fig. 1 shows the structure of a two-view latent subspace

MN which consists of two types of input data X ¼4 fXigNi¼1

and Z ¼4 fZjgMj¼1, each corresponding to a view, and a set of

latent variables H ¼4 fHkgKk¼1, corresponding to the latent

representations one desires to infer. We encode the

structure of the variables on each view using a Markov

network. Purely for simplicity of presentation, we focus on

the case of pairwise interactions between variables within

each view. We emphasize that our results easily extend to

more general cases of higher order dependencies. Let Ex
denote the set of edges2 between the input variables X, and

likewise for Ez. We will use e to denote one individual edge

and use Xe to denote the variables associated with e.
A constructive way to define the joint distribution of a

latent subspace MN is as follows: First, we define the

distribution of the data on each view and the latent

variables separately. For each view, we use an exponential

family distribution:

pðxÞ ¼ rðxÞ exp
X
e2Ex

�>e �ðxeÞ �Að�Þ
( )

;

pðzÞ ¼ sðzÞ exp
X
e2Ez

�>e  ðzeÞ �Bð�Þ
( )

;

ð1Þ

where � and  are vectors of feature functions, � and � are

weights, and A and B are log partition functions. Like [41],

we will treat logðrðxÞÞ and logðsðzÞÞ as additional features

multiplied by a constant. For the latent variables H, each

component Hk has an exponential family distribution and

pðhÞ ¼
Y
k

pðhkÞ ¼
Y
k

exp
�
�>k ’ðhkÞ � Ckð�kÞ

�
;

where ’ðhkÞ is the vector of features of hk. Ck is another log-

partition function.
Then, the joint model distribution is defined by combin-

ing the above components in the log-domain and introdu-

cing additional terms that couple the random variables X,

Z, and H. Specifically, we have

pðx; z;hÞ / exp
X
e2Ex

�>e �ðxeÞ þ
X
e2Ez

�>e  ðzeÞ þ
X
k

�>k ’ðhkÞ
(

þ
X
e2Ex;k

�ðxeÞ>Wk
e’ðhkÞ þ

X
e2Ez;k

 ðzeÞ>Uk
e’ðhkÞ

)
;

ð2Þ

where W and U are feature weights. From the joint
distribution, we can derive the conditional distributions
on each view with shifted parameters ð�̂; �̂; �̂Þ

pðxjhÞ ¼ exp
X
e2Ex

�̂>e �ðxeÞ �Að�̂Þ
( )

;

pðzjhÞ ¼ exp
X
e2Ez

�̂>e  ðzeÞ �Bð�̂Þ
( )

;

pðhjx; zÞ ¼
Y
k

exp
�
�̂>k ’ðhkÞ � Ckð�̂kÞ

�
;

where �̂e ¼ �e þ
P

k Wk
e’ðhkÞ, �̂e ¼ �e þ

P
k Uk

e’ðhkÞ, and

�̂k ¼ �k þ ð
P

e2Ex �ðxeÞ
>Wk

e þ
P

e2Ez  ðzeÞ
>Uk

eÞ
>. We can

see that conditioned on the latent variables, both pðxjhÞ
and pðzjhÞ define a Markov network, which is known as

conditional random fields (CRFs) [27], where h correspond

to global conditions and x or z correspond to structured

prediction variables in CRFs.
Reversely, one can start with defining the local condi-

tional distributions as above and directly write the
compatible joint distribution, which is of the log-linear
form as in (2). In the sequel, we use � to denote all the
parameters ð�; �; �;W;UÞ. It is worth noting that both the
exponential family Harmonium (EFH) [41] and its extension
of dual-wing Harmonium (DWH) [44] are special cases of
multiview latent subspace MNs when the generalized edge
sets Ex and Ez contain only singleton vertices. Therefore, it
is not surprising to see that multiview MNs inherit the
widely advocated property of EFH that the model distribu-
tion can be constructively defined based on local condi-
tionals on each view.

We briefly introduce DWH here as it sets up the ground
for our experiments in Section 5. As in [44], DWH has a
two-view structure, where X is a vector of discrete word
features (e.g., image tags) and Z is a vector of real-valued
features (e.g., color histograms). We assume that each Xi is
a Bernoulli variable that denotes whether the ith term of a
dictionary appears or not in an image, and each Zj is a real
number that denotes the normalized color histogram of an
image. Each real-valued Hk follows a univariate Gaussian
distribution. Therefore, the conditional distributions can be
defined as

pðxi ¼ 1jhÞ ¼ Logisticð�i þWi�hÞ;
pðzjjhÞ ¼ N

�
zjj�2

j ð	j þUj�hÞ; �2
j

�
;

pðhkjx; zÞ ¼ N
�
hkjx>W�k þ z>U�k; 1

�
;

where Wi� and W�k denote the ith row and kth column of
W, respectively. Likewise for Uj� and U�k.

To learn the unsupervised multiview latent subspace
MNs, a natural method is the maximum likelihood
estimation, which has been widely used to train directed
[39], [47] and undirected latent variable models [41], [32],
[44], [45]. To deal with the intractable log-likelihood
log pðx; zÞ, an approximation method such as mean field
or contrastive divergence [44] is usually applied. More
details will be provided, along with the algorithm devel-
opment for large-margin learning.
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Fig. 1. An unsupervised two-view latent subspace MN.



To use the unsupervised multiview MN for prediction
(e.g., classification), a naive method is a two-stage proce-
dure: 1) using the latent subspace MN to discover latent
representations, and 2) feeding the latent representations
into a downstream prediction model (e.g., SVM). This two-
step procedure can be rather suboptimal for prediction
because supervising information is ignored in discovering
the latent representations. Moreover, as we have stated,
supervising side information can be almost “free” to obtain;
thus, it is desirable to develop new models and learning
methods to consider such information for improving
performance. Below, we present supervised latent subspace
MNs which incorporate supervising side information into
the procedure of discovering latent subspace representa-
tions. As we shall see, if learned appropriately, e.g., using
large-margin training, a supervised latent subspace MN can
achieve significant improvements in discovering predictive
latent subspace representations and prediction performance.

3.2 Supervised Multiview Latent Subspace MNs

Similar to learning an unsupervised latent subspace MN,
MLE is the natural method to learn a supervised latent
subspace MN. In this section, we present the MLE-based
supervised latent subspace MN, which would motivate our
development of a large-margin approach.

In order to perform MLE, we need to define a likelihood
model for observed data, including input features and
response variables in the supervised case. Specifically, let Y
be the response variable and V be the parameters of a
response variable model. Then, we need to define the joint
distribution pðx; z;h; yÞ. We consider univariate prediction,
where Y can be a discrete variable for classification or a
continuous variable for regression. Based on the constructive
definition, we need to specify the conditional distribution of
Y given H in order to define pðx; z;h; yÞ. For the general
multiclass classification, where y 2 f1; . . . ; Tg, we define the
conditional distribution using a softmax function:3

pðyjhÞ ¼ expfV>fðy;hÞgP
y0 expfV>fðy0;hÞg

; ð3Þ

where fðy;hÞ is the feature vector whose elements from ðy�
1ÞK þ 1 to yK are those of h and all others are 0. V is a
stacking parameter vector of T subvectors Vy, of which
each one corresponds to a class label y. Then, the joint
distribution pðx; z;h; yÞ has the same form as in (2), but with
an additional term of V>fðy;hÞ ¼ V>y h in the exponential.
For regression, where y 2 IR, we define the conditional
distribution as a normal distribution

pðyjhÞ ¼ N ðyjV>h; �2Þ; ð4Þ

where V is now a K-dim vector. Then, the joint distribution
pðx; z;h; yÞ has a similar form as in (2) with an additional
term of � 1

2�2 ðy2 � yV>hÞ in the exponential.
Note that the supervised hierarchical (or tri-wing)

Harmonium (TWH) [45] is a special case of the supervised
latent subspace MN for classification. With the above joint

likelihood function, we can perform standard MLE by using
contrastive divergence or mean field approximation to learn
the parameters.4 The procedure is generally similar to that
in learning TWH [45]. The major difference lies in posterior
inference, which will be clear after we have presented the
large-margin learning.

4 LARGE-MARGIN SUPERVISED MULTIVIEW LATENT

SUBSPACE MNS

As stated above, the MLE-based supervised latent subspace
MN requires defining a normalized distribution as in (3), of
which the normalization factor could make the inference
hard, especially in directed models [39], [50]. Moreover, as
shown in [45] and our empirical studies, the MLE-based
model may not obtain improvements over the naive two-
step method discussed at the end of Section 3.1. These
motivate us to develop a more discriminative procedure for
learning supervised latent subspace MNs. In this section,
we present a large-margin supervised latent subspace MN
for discovering predictive latent subspace representations
from multiview data by incorporating the widely available
supervising side information, which can be discrete for
classification or continuous for regression.

4.1 Classification

We first present the classification model. For brevity, we
consider the general multiclass classification. The binary
case can be similarly derived.

4.1.1 Problem Definition

Similar to the log-linear model in (3), we define the latent
discriminant function F ðy;h; VÞ as linear when latent
variables H are given, that is, F ðy;h; VÞ ¼ V>fðy;hÞ, where
f and V are defined the same as in (3). Now, the problem is
how to consider the uncertainty of H in the deterministic
large-margin principle. Here, we take the expectation (i.e.,
first moment) of the latent variables H and define the
expected prediction rule:

y� ¼4 arg max
y

IEpðhjx;zÞ½F ðy;h; VÞ�

¼ arg max
y

V>IEpðhjx;zÞ½fðy;hÞ�;
ð5Þ

where the expectation can be efficiently computed with the
factorized form of pðhjx; zÞ when x and z are fully
observed. If missing values exist in x or z, an inference
procedure is needed to compute the expectation of the
missed components, as detailed below in (7).

Then, learning is to find an optimal V� that minimizes a
loss function. Here, we minimize the hinge loss, as used in
the very successful large-margin SVMs. Specifically, given
training data D ¼ fðxd; zd; ydÞgDd¼1, the hinge loss of the
expected predictive rule (5) is

RhingeðVÞ ¼4
X
d

max
y
½�‘dðyÞ �V>IEpðhjxd;zdÞ½�fdðyÞ��;
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4. A discriminative method that maximizes the conditional likelihood
pðyjx; zÞ could be developed as in [28], but it could be inferior to a hybrid
generative/discriminative method.



where �‘dðyÞ is a loss function (e.g., 0=1-loss) that measures
how different a candidate prediction y is compared to the
true label yd, and IEpðhjxd;zdÞ½�fdðyÞ� ¼ IEpðhjxd;zdÞ½fðyd;hÞ� �
IEpðhjxd;zdÞ½fðy;hÞ�. It can be proven that the hinge loss is an
upper bound of the empirical error Remp ¼4

P
d �‘dðy�dÞ.

Applying the principle of regularized risk minimization, we
define the joint problem of learning a prediction model V

and a likelihood model � for fitting the input data as solving

P1 : min
�;V

Lð�Þ þ 1

2
C1kVk2

2 þ C2RhingeðVÞ; ð6Þ

where Lð�Þ ¼4 �
P

d log pðxd; zdÞ is the negative data like-
lihood and C1 and C2 are nonnegative constants which can
be selected via cross validation. Note that Rhinge is also a
function of �.

Since problem (6) jointly maximizes the data likelihood
and minimizes a training loss, it can be expected that by
solving this problem we can find a predictive latent
subspace representation (i.e., IEpðhjx;zÞ½h�) and a prediction
model (represented by the parameter V), which on one
hand tend to predict as accurately as possible on the
training data, while on the other hand tend to explain the
data well. More insights will be provided in the next
section, along with the algorithm development.

4.1.2 Optimization with Contrastive Divergence

Since the data likelihood Lð�Þ is generally intractable to
compute, we use an efficient variational inference method
(i.e., contrastive divergence) [23], [40], [41], [44] to approx-
imate the joint likelihood. Specifically, we derive a varia-
tional approximation Lvðq0; q1Þ to represent the negative
log-likelihood Lð�Þ:

Lvðq0; q1Þ ¼4 Rðq0ðx; z;hÞ; pðx; z;hÞÞ
�Rðq1ðx; z;hÞ; pðx; z;hÞÞ;

where Rðq; pÞ is the relative entropy between distributions q
and p, q0 is a variational distribution with x and z clamped
to their observed values, while q1 is a distribution with all
the variables free. For q (either q0 or q1), we employ the
structured mean field assumption [43] that5 qðx; z;hÞ ¼
qðxÞqðzÞqðhÞ.

Substituting the variational approximation Lvðq0; q1Þ into
problem (6), we get an approximate objective function
Lð�;V; q0; q1Þ. Then, we can develop an alternating
minimization method which iteratively minimizes
Lð�;V; q0; q1Þ over (q0; q1) and ð�;VÞ. The problem of
solving q0 and q1 is posterior inference. Specifically, for a
variational distribution q (can be q0 or q1), we keep ð�;VÞ
fixed and update each marginal as

qðxÞ ¼ pðxjIEqðhÞ½h�Þ; qðzÞ ¼ pðzjIEqðhÞ½h�Þ;
qðhÞ ¼

Y
k

pðhkjIEqðxÞ½x�; IEqðzÞ½z�Þ: ð7Þ

For q0, ðx; zÞ are clamped at their observed values and only
q0ðhÞ is updated, which can be very efficiently done due to
its factorized form. The distribution q1 is achieved by

performing the above updates starting from q0, and several
iterations (e.g., 5 used in our experiments) can yield a good
q1. Note that (7) holds for exponential family models where h

enters linearly in ln pðx; zjhÞ. Please see [40] for more details.
Again, we can observe that both qðxÞ and qðzÞ are CRFs, with
the expectation of H as the condition. Therefore, for linear-
chain models, we can use a message passing scheme [27] to
infer their marginal distributions as needed for parameter
estimation and view-level prediction (e.g., image annota-
tion), as we shall see. For generally structured models,
approximate inference techniques [37] can be applied.

After we have inferred q0 and q1, parameter estimation
can be solved with coordinate descent by alternating the
following two steps: 1) estimating V with � fixed: this
problem is learning a multiclass SVM [13], which can be
efficiently done with existing solvers; and 2) estimating �
with V fixed: this can be solved with subgradient descent.
By defining �IE½�� ¼4 IEq1

½�� � IEq0
½��, we can compute the

subgradient as follows: For �, we have 8e 2 Ex, @�e ¼
�IE½�ðxeÞ�; for �, we have 8e 2 Ez, @�e ¼ �IE½ ðzeÞ�; for �,
we have 8k, @�k ¼ �IE½’ðhkÞ�; and for W and U, we have

@Wk
e ¼ �IE

�
�ðxeÞ’ðhkÞ>

�
� C2

X
d

ðVydk �V�ydkÞ
@IEq0

½hk�
@Wk

e

;

@Uk
e ¼ �IE

�
 ðzeÞ’ðhkÞ>

�
� C2

X
d

ðVydk �V�ydkÞ
@IEq0

½hk�
@Uk

e

;

where �yd ¼ arg maxy½�‘dðyÞ þV>IEq0
½fðy;hÞ� is the loss-

augmented prediction. The expectation IEq0
½�ðxeÞ� is actually

the count frequency of �ðxeÞ on the training data D; likewise
for IEq0

½ ðzeÞ�. With the above subgradients, we apply
L-BFGS [29], which uses line search to choose a step size, to
iteratively solve for the optimum � until convergence.

Note that in our integrated large-margin formulation, the
subgradients corresponding to W and U contain an
additional term (i.e., the third term) compared to the
standard DWH [44] with contrastive divergence approx-
imation. This additional term introduces a regularization
effect to the latent subspace model. If the loss-augmented
prediction �yd differs from the true label yd, this term will be
nonzero and it will bias the model toward discovering a
better representation for prediction. As we shall see, this
bias term will make the large-margin-based multiview
latent subspace model tend to discover a latent representa-
tion that is more predictive.

4.2 Regression

In this section, we present the large-margin latent subspace
MN for regression.

4.2.1 Problem Definition

Similarly to the classification model, we define the linear
expected prediction rule for regression as

y� ¼4 V>IEpðhjx;zÞ½h�; ð8Þ

where V is aK-dim vector. To learn the prediction model V,
we need to devise a loss function that integrates the large-
margin principle for prediction with latent subspace
discovery. Here, for prediction, we choose to minimize
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5. The parametric form assumptions of q, as employed in previous work
[44], [45], are not needed.



the �-insensitive loss, which is used in standard support
vector regression (SVR) [33]:

R�ðVÞ ¼4
X
d

max
�
0;
��yd �V>IE½hd�

��� ��;
where � 2 IRþ is the precision parameter, which is usually
small, and we have defined IE½hd� ¼ IEpðhjxd;zdÞ½h� for
notation simplicity. Similarly, following the regularized risk
minimization principle, we learn the entire model for
regression and fitting the observed input data by solving
the joint optimization problem:

P2 : min
�;V

Lð�Þ þ 1

2
C1kVk2

2 þ C2R�ðVÞ; ð9Þ

where Lð�Þ is the negative log likelihood of input data as
we have defined in classification.

Similarly to the classification model, by jointly minimiz-
ing the negative log likelihood and the regression loss, we
can expect to learn a latent subspace representation as well
as a prediction model which, on the one hand, tends to
predict the data accurately, while, on the other hand,
attempts to interpret the data well.

4.2.2 Optimization with Contrastive Divergence

Although in principle we can use a similar procedure as in
the classification model to solve problem P2 by employing a
subgradient descent method to learn the parameters �, here
we use a Lagrangian method to solve an equivalent
constrained formulation of P2. One reason is that the loss
R� is a bit more complicated than Rhinge because of the
nondifferentiable absolution operator within the max
function. Specifically, problem P2 can be equivalently
written as

P20 : min
�;V;
;
?

Lð�Þ þ 1

2
C1kVk2

2 þ C2

X
d

ð
d þ 
�dÞ

s:t:8d :

yd �V>IE½hd� � �þ 
d
�yd þV>IE½hd� � �þ 
�d

d; 


�
d � 0;

8><
>:

ð10Þ

where 
d and 
�d are slack variables.
The constrained problem P20 is generally intractable

because the likelihood Lð�Þ is intractable to evaluate. As in
the classification model, we approximate Lð�Þ with the
contrastive divergence approximation Lvðq0; q1Þ. Then, we
introduce Lagrange multipliers �d; �

�
d; vd; v

�
d for the four

constraints associated with data d, and define the Lagran-
gian function L with the approximate likelihood Lvðq0; q1Þ:

L ¼ Lvðq0; q1Þ þ
1

2
C1kVk2

2 þ C2

X
d

ð
d þ 
�dÞ

�
X
d

ðvd
d þ v�d
�dÞ �
X
d

�
�d
�
�þ 
d � yd þV>IE½hd�

�
þ ��d

�
�þ 
�d þ yd �V>IE½hd�

��
:

Now, we optimize the Lagrangian function L by alterna-
tively performing the following steps:

1. Inferring q0 and q1. This step is the same as in the
classification model.

2. Estimating � with �d and ��d fixed. This can be
solved with gradient descent (e.g., using L-BFGS [29]
as in the classification model), where the gradients
for ð�; �; �Þ are as before and for ðW;UÞ we have

@Wk
e ¼ �IE½�ðxeÞ’ðhkÞ>�

�
X
d

�
�d � ��d

�
Vk

@IEq0
½hk�

@Wk
e

;

@Uk
e ¼ �IE

�
 ðzeÞ’ðhkÞ>

�
�
X
d

�
�d � ��d

�
Vk

@IEq0
½hk�

@Uk
e

:

ð11Þ

3. Estimating the Lagrange multipliers f�d; ��dg. By
setting @L=@
d; @L=@


�
d; @L=@V ¼ 0 and exploring

the KKT conditions, we can get

V ¼ 1

C1

X
d

ð�d � ��dÞIE½hd�: ð12Þ

Plugging (12) into the Lagrangian function L, we get
the dual problem

max
�;��
� 1

2C1
k
X
d

ð�d � ��dÞIE½hd�k
2
2

�
X
d

½�ð�d þ ��dÞ � ydð�d � ��dÞ�

s:t: 8d : �d; �
�
d 2 ½0; C2�;

which can be solved using an existing algorithm like
SVM-light [25] to obtain �d and ��d.

Again, we can see that in this integrated large-margin
formulation for regression, the gradients of W and U

contain an additional term encoded with �d and ��d.
Similarly as in the classification model, this additional term
introduces a regularization effect to the latent subspace
model. If the prediction V>IE½hd� differs from the true value
yd with the absolute gap larger than �, the Lagrangian
multipliers �d or ��d (at most one is nonzero because of the
KKT conditions) will be nonzero and will bias the model
toward discovering a better representation for prediction.

4.3 Special Case: Maximum Margin Harmonium

We have developed the large-margin learning framework
on a general multiview latent subspace MN for classifica-
tion and regression. In order to fully examine the basic
learning principle and compare with existing Harmonium
models [41], [44], [45], we introduce a specialized but very
rich instantiation of our supervised latent subspace MN
where the data on each view are not structured. We denote
the specialized model by max-margin Harmonium (MMH).
We emphasize that this simplification does not restrict our
ability to demonstrate the generability of the framework
because both the problem definition and optimization
algorithm are general to any structured input data, as we
have presented. Specifically, MMH uses the DWH model
detailed at the end of Section 3.1 as the probabilistic
likelihood model to fit the input data ðx; zÞ, where x is a
vector of discrete word features (e.g., image tags) and z is a
vector of real-valued features (e.g., color histograms). We
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can follow the same procedure as above to do parameter
estimation. For inferring q0 and q1, the distributions of x, z,
and h are all fully factorized. Therefore, the subgradients in
classification or gradients in regression can be easily
computed. Details are deferred to Appendix A.1, which can
be found in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2012. 64.

4.4 Time Complexity on Testing

Before ending this section, we discuss the time complexity
of applying the supervised latent subspace MN on various
applications, including classification, regression, image
retrieval and annotation.

The commonality among using a latent subspace MN for

classification, regression, and retrieval is that all these

applications rely on inferring the latent representations (i.e.,

IEpðhjx;zÞ½h�) only without missing information on the input

data. For the large-margin latent subspace MN, since it

defines a partial likelihood function, that is, the likelihood

on input data ðx; zÞ only, we can infer these latent

representations in a single-round manner. More precisely,

the latent representation is IEpðhjx;zÞ½h� ¼ �, where �k ¼P
e2Ex �ðxeÞ

>Wk
e þ

P
e2Ez  ðzeÞ

>Uk
e , 81 � k � K, which can

be very efficiently computed in a linear complexity in terms

of the dimensionality of the input features. In contrast, for

the MLE-based supervised latent subspace MN, it defines a

full likelihood function pðx; z; yÞ over the input data ðx; zÞ
and response value y. In testing where Y is not observed,

the inference involves an interactive procedure which

iteratively infers the (approximate) posterior distribution

of Y and the latent representation. Therefore, the testing

time of using the MLE-based supervised latent subspace

MN is typically a constant times more expensive than that

of the large-margin-based method. But, in general, these

undirected models are much more efficient than their

directed counterpart models, as we will show in Section 5.5.
For image annotation, let us use x to represent tags

which are observed in training. In testing, we infer the
posterior distribution pðxjzÞ, which can be approximately
computed by running the update (7) with z clamped at its
observed values. Then, tags with high probabilities are
selected as the annotation results. As we can see, the
inference procedure is similar as the iterative one of using a
MLE-based latent subspace MN for classification. There-
fore, the time complexities of the unsupervised and
supervised (both large-margin and MLE-based) multiview
MNs are almost the same.

5 EXPERIMENTS

Now we present qualitative as well as quantitative
evaluation on three real datasets to demonstrate the
advantages (e.g., effectiveness and time efficiency) of
large-margin supervised multiview latent subspace MNs.
We first extensively evaluate the specialized but rich MMH
model and compare with extant latent subspace models for
classification, regression, image annotation, and retrieval in
Section 5.3. Then, we present a structured latent subspace

MN for modeling paragraph ordering information on hotel
review data in Section 5.4.

5.1 Data Sets and Features

The datasets6 are TRECVID2003 [44], 13class-animal Flickr
image data, and hotel review data [50]. These datasets are
quite rich and diverse in terms of feature types and
dimensionality, as detailed below.

TRECVID2003 contains 1,078 manually labeled video
shots that belong to five categories. Each shot is represented
as a 1,894-dim vector of text features and a 165-dim vector
of HSV color histogram which is extracted from the
associated keyframe. We evenly split this dataset into
training and testing sets.

The Flickr dataset is a subset selected from NUS-WIDE
[12], which is constructed from Flickr web images. This
dataset contains 3,411 images of 13 animals—squirrel, cow,
cat, zebra, tiger, lion, elephant, whales, rabbit, snake, antlers,
hawk, and wolf. See Fig. 8 for example images from each
category. For each image, six types of low-level features [12]
are extracted, including 634-dim real-valued features (i.e.,
64-dim color histogram, 144-dim color correlogram, 73-dim
edge direction histogram, 128-dim wavelet texture, and 225-
dim blockwise color moments) and 500-dim bag-of-word
SIFT [30] features. We randomly select 2,054 images for
training and use the rest for testing. The 1,000-dim online
tags are also downloaded for evaluating image annotation.

The hotel review dataset consists of 5,000 hotel reviews
randomly collected from TripAdvisor.7 Each review docu-
ment is associated with two-view features (i.e., 12,000-dim
bag-of-word features and 14-dim contextual features [50])
as well as a global rating score and five aspect rating scores.
The global ratings rank from 1 to 5. In our experiment, we
predict the global rating scores for reviews and uniformly
partition the dataset into training and testing sets. Note that
the bag-of-words features (e.g., text or SIFT) are treated as
binary and modeled using the Bernoulli view.

5.2 Predictive Latent Subspace Representations

To demonstrate the power of our method in discovering
predictive subspace representations, in this section we
examine various characteristics of the latent subspace
representations for modeling both image and text.

5.2.1 Image Modeling

We first take a holistic view of the entire latent representa-
tions. Fig. 2 shows the 2D embedding of the discovered 10-
dim latent representations by MMH, DWH, and TWH on
the video keyframes in the TRECVID dataset. Here, we use
the t-SNE stochastic neighborhood embedding algorithm
[36] to embed the latent representations in a 2D space. The
results clearly show that the latent subspace representa-
tions discovered by MMH exhibit a strong grouping
pattern for the images belonging to the same category,
while images from different categories tend to be separated
from each other on the 2D embedding space. In contrast,
the latent subspace representations discovered by the
likelihood-based DWH and TWH do not show a clear
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grouping pattern, except for the first category, and images
from different categories tend to mix together. These
observations suggest that the large-margin-based MMH
can discover more discriminative latent subspace repre-
sentations, which will result in better prediction perfor-
mance, as we shall see. We have similar observations on the
Flickr dataset.

Now, we take a closer examination of each dimension in
the discovered latent subspace. We take the Flickr data as
an example. Fig. 3 shows five example topics (each topic
corresponds to one dimension in the latent subspace)
discovered by the large-margin MMH on the Flickr image
data. Due to space limitation, for each topic Tk, we show the
five top-ranked images that yield a high expected value of
Hk, together with the associated tags. Please see Fig. 11 in
Appendix A.3, available in the online supplemental
material, for the five bottom-ranked images for each topic.
Also, to qualitatively visualize the discriminative power of
each topic among the 13 categories, we show the average

probability8 of each category distributed on the particular

topic, as shown in the right part of Fig. 3. From the results,

we can see that many of the discovered topics are predictive

for one or several categories. For example, topics T3 and T4

are discriminative in predicting the categories hawk and

whales, respectively. Similarly, topics T1 and T5 are good at

predicting squirrel and zebra, respectively. We also have

some topics which are good at discriminating a subset of

categories against another subset. For example, topic T2 is

good at discriminating {squirrel, wolf, rabbit} against {tiger,

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. X, XXXXXXX 2012

Fig. 2. t-SNE 2D embedding of the discovered latent subspace representation by (left) MMH, (middle) DWH, and (right) TWH on the TRECVID video
dataset (better viewed in color).

Fig. 3. Example topics discovered by a 60-topic MMH on the Flickr animal dataset. For each topic, we show five topic-ranked images as well as the
average probabilities of that topic on representing images from the 13 categories.

8. To compute the distribution, we first turn the expected value of H to
be nonnegative by subtracting each element by the smallest value and then
normalize it into a distribution over the K topics. The per-class average is
computed by averaging the topic distributions of the images within the
same class. Then, we show the topic distribution on 13 categories specified
by different topic. Note that our transformation (i.e., shift-normalization)
doesn’t affect our interpretation of the discriminative power, which is
visually reflected as the (normalized) difference of the average values
between categories. Using the raw values of IE½H� will produce the similar
visualization patterns.



whales, zebra}, but it is not very discriminative between
squirrel and wolf.

To quantitatively evaluate the predictiveness of the
discovered latent subspace representations, we compute
the pair-wise average KL-divergence between the per-class
average distribution over latent topics.9 As shown on the
top of each plot in Fig. 2, the large-margin-based MMH
obtains a larger average KL-divergence score than like-
lihood-based methods. This again suggests that the latent
subspace representations by MMH are more discriminative
or predictive. We obtain similar observations on the Flickr
dataset (see Fig. 3 for some example topics), where the
average KL-divergence scores of 60-topic MMH, DWH, and
TWH are 1.62, 1.28, and 0.232, respectively. This is
consistent with our intuitive observations that the latent
subspace representations (see Fig. 3) by MMH are more
discriminative.

5.2.2 Text Modeling

Now, we examine the properties of latent subspace MN on
text modeling. Again, we present both holistic and topic-
wise close examinations. Table 1 shows the topics discov-
ered by 5-topic MMH and DWH on the hotel review data.
As in [50], we denote the five rating scores from small to
large by R1, R2; . . .R5. We also show the per-rating average
distributions over topics in the left part, which are

computed in a similar way as the per-class average
distributions in the above section. The right side of Table 1
shows the top 15 words for each topic Tk.

Similarly to the observations in image modeling, we can
see that the latent subspace representations discovered by
MMH are much more discriminative than those discovered
by DWH, as reflected from the much higher pairwise
average KL-divergence score and the quite different average
distributions over topics, and the individual dimensions (i.e.,
topics) of the latent subspace learned by MMH are very
expressive and discriminative, too. For example, topic T2 for
MMH has larger probabilities on representing documents
with high rating scores (e.g., R5 and R4), but has smaller
probabilities (drops to near zero) on documents with lower
rating scores (e.g., R1 and R2). Moreover, the probability of
topic T2 shows a smooth increasing trend on representing
documents with rating scores from low to high. If we look at
the top words of T2 (e.g., “great,” “fantastic,” “wonderful,”
“perfect,” etc.) as shown in the right part of Table 1, we can
see that T2 represents a positive aspect of a hotel. Therefore,
it is more likely to appear in representing a positive review.
In contrast, the negative topics T3, T4, and T5 (e.g., with
negative words “worst,” “dirty,” “poor,” etc.) show a
smooth decreasing trend on probabilities in representing
documents with rating scores fromR1 toR5. Topic T1 is kind
of neutral, which has the highest probability on representing
the documents with a neutral rating score (e.g.,R3 orR4) and
overall T1 has a much larger probability than any other
topics on representing a document. This is reasonable on the
hotel review data because most of the words in a review are
about the basic hotel information (e.g., “room,” “hotel,”
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TABLE 1
Average Distributions over the Topics for Documents with Different Rating Scores by a 5-Topic MMH and 5-Topic DWH

9. We first turn the expected value of H into a distribution over the K
topics. The per-class average is computed by averaging the topic
distributions of the images within the same class. For a pair of distributions
p and q, the average KL-divergence is 1=2ðRðp; qÞ þRðq; pÞÞ.



“food,” and “area”). For DWH, the topics are not very
discriminative, as demonstrated by the comparable prob-
abilities on representing documents with different rating
scores. Table 2 in Appendix A.3, available in the online
supplemental material, also shows the results on TWH,
which is comparable to DWH.

5.3 Prediction Performance

In this section, we provide quantitative results on classifica-
tion, regression, image annotation, and retrieval.

5.3.1 Classification

We first compare MMH with SVM, DWH, TWH, Gaussian
Mixture (GM-Mix), Gaussian Mixture LDA (GM-LDA), and
Correspondence LDA (CorrLDA) on the TRECVID dataset.
See [3] for the details of the last three models. We use
SVMmulticlass10 to solve the substep of learning V in MMH
and build the SVM baseline that uses all the available
features without distinguishing them in different views. For
the unsupervised models (i.e., DWH, GM-Mix, GM-LDA,
and CorrLDA), a downstream SVM classifier is built based
on the discovered latent representations. Fig. 4a shows the
classification accuracy of different models, where CorrLDA
is omitted because of its too low performance. We can see
that the max-margin-based multiview MMH performs
consistently better than any other competitors. In contrast,
the MLE-based TWH does not show any conclusive
improvements compared to the unsupervised DWH. If we
train a downstream SVM classifier using the representa-
tions by TWH, the classification performance (denoted by
TWHþ SVM11) will be improved, but still inferior to that of
MMH. These results show that supervising side informa-
tion can help in discovering predictive latent subspace
representations that are more suitable for prediction if the
model is appropriately learned, e.g., using the large-margin
method. The superior performance of MMH compared to
the flat SVM demonstrates the usefulness of modeling
multiview inputs for prediction. The reasons for the inferior
performance of other models (e.g., CorrLDA and GM-Mix)
are analyzed in [44], [45].

Fig. 4b shows the accuracy on the Flickr dataset. For
brevity, we compare MMH with the best performing DWH,
TWH, and SVM. We use the 500-dim SIFT and 634-dim real

features as two views of inputs for MMH, DWH, and TWH.
Also, we compare with the single-view MedLDA [48] and
discriminative restricted Boltzmann machine (DiscRBM)
[28], which use SIFT features only. To be fair, we also
evaluate a version of MMH that uses SIFT features, and
denote it by MMH (SIFT). Again, we can see that the large-
margin-based multiview MMH performs much better than
any other methods, including SVM, which ignores the
presence of multiview features. For the single-view MMH
(SIFT), it performs comparably with DiscRBM and the
large-margin MedLDA, which is a directed BN. As we have
stated, MMH represents an important extension of MedL-
DA to the undirected latent subspace models and for
multiview data analysis. For DiscRBM, since it performs
discriminative training (i.e., maximizing the conditional
likelihood of Y given input features) and doesn’t estimate
the model for generating input features, it can’t perform
view-level analysis (e.g., predicting image tags). In [28], a
hybrid generative/discriminative likelihood objective was
also discussed to learn RBM, which outperforms DiscRBM.
MMH is different from the hybrid method in three aspects:
1) Our generative likelihood Lð�Þ doesn’t include Y , 2) our
discriminative part is a hinge-loss instead of a conditional
log-likelihood, and 3) we use an explicit regularization
instead of the implicit regularization (i.e., early stopping)
used in [28].

5.3.2 Regression

Following [50], we treat the problem of predicting rating
scores on the hotel review dataset as a regression problem.
We compare the MMH regression model with DWH, TWH,
sCTRF (i.e., supervised conditional topic random fields)
[50], and MedLDA [48]. For DWH, we build a linear SVR as
the downstream regression model. Many other baselines
(e.g., supervised LDA) are not included because they are
inferior to sCTRFs, as reported in [50]. We consider two
views for each document, where one view X denotes the
bag-of-word features and the other view Z represents the
14 types of contextual features [50].

Fig. 5a shows the predictive R2 scores (please see [4] for
the definition). We can observe that by exploring super-
vising side information (i.e., rating score) in learning the
latent subspace model, MMH consistently outperforms the
decoupled two-step procedure that is adopted in unsuper-
vised DWH, but the MLE-based TWH does not show
improvements over the unsupervised DWH. This again
verifies that the large-margin learning plays a significant
role in discovering predictive latent subspace representa-
tions that are suitable for prediction tasks (e.g., regression).
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Fig. 4. Classification accuracy on the (a) TRECVID and (b) Flickr image
datasets.

Fig. 5. (a) Prediction R2. (b) Feature weights in MMH with 10 topics.

10. http://svmlight.joachims.org/svm_multiclass.html.
11. This naive combination uses supervision twice and is not an elegant

model compared to MMH. The similar naive combination MMH+SVM
wouldn’t outperform MMH in theory because both methods build SVM
classifiers using the same latent representations. See [48] for similar studies.



In addition, the reason why MMH achieves superior
performance than the single-view MedLDA is that MMH
can use multiview features simultaneously, which again
demonstrates the benefits of modeling multiview instead of
single-view input for prediction. In fact, the second-view
features play an important role in finding a predictive latent
subspace. We show the weights of four features on the
10 topics discovered by a 10-topic MMH in Fig. 5b, where
the four features as studied in [50] are: “Pos-Adj”—positive
adjective, “Re-Pos-Adj”—positive adjective that has a
denying word before it, “Neg-Adj”—negative adjective,
and “Re-Neg-Adj”—negative adjective that has a denying
word before it, respectively. We can see that both the
positive and negative adjective features tend to discover
topics that are more discriminative for rating prediction
(e.g., T4 and T9). The best performance of MMH is
comparable to that of sCTRF, which is a directed model.
As we shall see in Section 5.5, MMH is much more efficient
in training and testing.

5.3.3 Image Retrieval

We apply MMH for image retrieval on the TRECVID and
Flickr datasets. Each test image is a query and training
images are ranked based on their cosine similarity12 with
the given query, which is computed based on the inferred
latent subspace representations using the learned models.
An image is considered relevant to the query if they belong
to the same category. We evaluate the performance by
drawing precision-recall curves and computing the average
precision (AP) score [44], [45].

Fig. 6 compares MMH with four other models when the
topic number K changes. Here, we show the precision-
recall curves when K is set at 15 and 20. Interestingly,
although MMH does not directly optimize a ranking-based
loss measure, the latent representations discovered by
MMH can result in higher retrieval performance than all
other methods in most cases. On the Flickr dataset, we
have similar observations. For instance, the AP scores of
the 60-topic MMH, DWH, and TWH are 0.163, 0.153, and
0.158, respectively.

5.3.4 Image Annotation

We also report the annotation results on the Flickr dataset,
with a dictionary of 1,000 unique tags. The average number
of tags per image is about 4.5. We compare MMH with DWH

and TWH with two views—X for tag and Z for all the 634-
dim real-valued features. We also compare with the sLDA
annotation model [39], which uses SIFT features. We use the
top-N F1-measure [39], denoted by F1@N . With 60 latent
topics, the top-N F-measure scores are shown in Fig. 7.
Again, we can see that although not directly minimizing an
annotation loss measure, the large-margin MMH outper-
forms other competitors, mainly because of its good latent
representations. Fig. 8 shows example images from all
13 categories, where for each category the left image is
generally of good annotation quality and the right one is
relatively worse.

5.4 Structured Latent Subspace MN on Modeling
Paragraph Ordering Information

We have extensively evaluated the advantages of large-
margin learning based on a specialized dual-wing model
(i.e., MMH). In this section, we present a structured latent
subspace MN for modeling paragraph ordering information
on hotel review data. As we mentioned, on TripAdvisor,
there are five predefined aspects (e.g., Location), which
could guide the users to compose their review contents.
Since these aspects are displayed in a particular order to
users, we can expect that the composed contents about each
aspect would present a similar ordering regularity.
Although other possible treatments (e.g., sentence-level
ordering) exist, we consider such ordering information
between paragraphs and design the structured latent
subspace MN, as follows.

We represent a document as aP �N observation matrix x,
where P is the number of paragraphs in this document and
N is the vocabulary size. Each row xp is a vector, of which
each element xpi denotes whether word i appears in
paragraph p. Each column x:i represents the appearance
pattern of word i in all paragraphs. To consider the
paragraph ordering information, we define a first-order
Markov chain on each x:i while assuming that different x:is
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Fig. 6. The average precision curve and the two precision-recall curves for image retrieval on TRECVID data.

Fig. 7. Top-N F1-measure.12. The cosine similarity between vectors x1 and x2 is
x>1 x2
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.



are conditional independent. More formally, we define the
conditional distribution pðxjhÞ ¼

QN
i¼1 pðx:ijhÞ, where each

pðx:ijhÞ is a linear chain CRF [27]. For this structured model,
which is in fact an N-view latent subspace Markov network,
we can perform efficient inference with message passing
whose complexity is also linear in terms of N . The details
are deferred to Appendix A.2, available in the online
supplemental material.

To evaluate the structured model, denoted by
structMMH, we build another dataset from the hotel
reviews on TripAdvisor, which contains 600 reviews for
each of the five rating scores. We randomly choose half as
training and test on the rest. The reason why we didn’t use
the dataset [50] is that it contains many reviews that have
only one paragraph. Here, while regression can be
performed too, we report the classification accuracy in
Fig. 9a. We observe that the large-margin structMMH
outperforms the unstructured MMH and the two-stage
method (denoted by structDWH) that uses a structured MN

as defined above to infer the latent representations and
learn a downstream SVM for classification. This observation
demonstrates that the paragraph ordering information is
helpful to discover more predictive latent subspace repre-
sentations for the hotel review data.

5.5 Running Time and Sensitivity Analysis

Fig. 9b compares the time efficiency of MMH with TWH
and directed models, including MedLDA and sCTRF [50],
on the hotel review dataset [50] for regression. For testing,
we can see that: 1) the undirected MMH and TWH are
much more efficient than the directed MedLDA, which
requires a relatively expensive iterative procedure to infer
the distributions of latent variables; 2) TWH is about several
times slower than MMH because of the reasons as we have
discussed in Section 4.4; and 3) sCTRF is about 10 times
slower than MedLDA or about 10,000 times slower than
MMH. The main reason for such slowness is that sCTRF
models every sentence in a document using a Markov
chain. Therefore, it spends most of the time on performing
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Fig. 8. Example images from the 13 categories on the Flickr animal dataset with predicted annotations. Tags in blue and bold are correct

annotations, while red and italic ones are wrong predictions. The other tags are neutral. We have repeated the categories “squirrel” and “cat” in the

right corner to fill the empty space.

Fig. 9. (a) Classification accuracy of structured MMH and DWH models, and (b) training and testing time on hotel review data [50] for regression.



message-passing. See [50] for more details. For training, we
can see that MMH takes comparable time as TWH and
MedLDA, and is much more efficient than sCTRF, whose
inference is much slower as shown in testing times.

Finally, as shown in Fig. 10, MMH is not very sensitive to
the regularization constant C2 on either the TRECVID or
Flickr dataset when the topic number K is set appropri-
ately. In all the above experiments, we fixed C1 at 0.5 and
chose C2 using cross validation during training.

6 CONCLUSIONS AND DISCUSSIONS

We have presented a large-margin learning framework for
discovering predictive latent subspace representations
shared by multiview data. Besides the proposed multiview
latent subspace Markov networks, the large-margin learning
method is generally applicable for the broad family of
undirected latent subspace models. The inference and
learning can be efficiently done with contrastive divergence
methods. Finally, we present extensive evaluation results on
various types of real datasets including both image and text
data to demonstrate the advantages of large-margin learning
for both predictive latent subspace discovery and prediction.

Compared to directed topic models, one drawback of
undirected latent subspace models is that their interpreta-
tion is generally hard because of the unidentifiability issue
[41]. Although our transformation retains the discriminative
power, more elegant methods (e.g., imposing nonnegative
constraints on parameter weights) are needed to improve
the interpretability. Another potential limitation of such
latent subspace models is that they do not have an explicit
control on the sparsity of the discovered latent representa-
tions. Sparsity is desirable for large-scale applications
where the dimensionality of the latent representations can
be tens of thousands. We plan to do systematic studies
along these lines. We are also interested in large-scale image
annotation and classification, as motivated by the very
exciting work [42], where dealing with noisy labeling
information is important and challenging in order to learn
a robust large-margin model. Finally, we plan to perform
more investigation of the large-margin learning method on
structured multiview data analysis, e.g., on text mining [38]
and computer vision [22] applications.
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