
Revisit Long Short-Term Memory: An Optimization
Perspective

Qi Lyu, Jun Zhu
State Key Laboratory of Intelligent Technology and Systems (LITS)

Tsinghua National Laboratory for Information Science and Technology (TNList)
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China

qilyu.pub@gmail.com, dcszj@mail.tsinghua.edu.cn

Abstract

Long Short-Term Memory (LSTM) is a deep recurrent neural network archi-
tecture with high computational complexity. Contrary to the standard practice
to train LSTM online with stochastic gradient descent (SGD) methods, we pro-
pose a matrix-based batch learning method for LSTM with full Backpropagation
Through Time (BPTT). We further solve the state drifting issues as well as im-
proving the overall performance for LSTM using revised activation functions for
gates. With these changes, advanced optimization algorithms are applied to LSTM
with long time dependency for the first time and show great advantages over SGD
methods. We further demonstrate that large-scale LSTM training can be greatly
accelerated with parallel computation architectures like CUDA and MapReduce.

1 Introduction

Long Short-Term Memory (LSTM) [1] is a deep recurrent neural network (RNN) well-suited to
learn from experiences to classify, process and predict time series when there are very long time
lags of unknown size between important events. LSTM consists of LSTM blocks instead of (or in
addition to) regular network units. A LSTM block may be described as a “smart” network unit that
can remember a value for an arbitrary length of time. This is one of the main reasons why LSTM
outperforms other sequence learning methods in numerous applications such as achieving the best
known performance in speech recognition [2], and winning the ICDAR handwriting competition
in 2009. However, since each LSTM block has multiple nodes, with recurrent and cross connec-
tions between them, LSTM with many layers of blocks (and/or many blocks in one layer) will be
extremely slow to train. This problem becomes more serious when trained with long sequences.

While the architecture of LSTM is continually evolving, the training methods have remained largely
the same, i.e., the stochastic gradient descent (SGD) methods 1. The momentum method is naturally
incorporated into SGD methods later and remains the standard training regime for LSTM till now.
Batch learning methods, which are popular in machine learning, are considered inapplicable for
LSTM [3]. Despite the ease of implementation, SGD methods have several disadvantages that
might limit the further improvements of training speed. One key disadvantage is that they require
much manual tuning of hyper-parameters such as learning rate and convergence criteria. The second
weakness is that unlike batch learning, SGD methods have little room left for serious optimization
because the noisy nature of one sample per iteration renders the result unreliable to be utilized for
further optimization. Most well-developed optimization algorithms such as Limited memory BFGS
(L-BFGS) and Conjugate gradient (CG) methods can only work with batch learning. The third

1We stick to the notion of one sample at a time for stochastic gradient descent (SGD) methods, and use
batch gradient descent methods to refer to others (including mini-batch gradient descent methods).

1

(a)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

(b)

Figure 1: (a)An illustration of the layer-wise architecture of a LSTM block, where the dense lines
denote cross connections between blocks in one layer; and the dashed lines denote peephole con-
nections within a block.; (b)An illustration of the error flow through time in LSTM (forget gate
omitted).

weakness is that SGD methods are inherently sequential: It is very difficult to parallelize them using
GPUs or distribute them with a computer cluster.

In this paper, we propose to train LSTM with full Backpropagation Through Time (BPTT) under a
matrix-based batch learning paradigm. Experiments show that our method enjoys faster convergence
rate and better convergence performance than SGD methods. We further solve the state drifting
issues as well as improving the overall performance for LSTM using revised activation functions
for gates. With these changes, we make advanced optimization algorithms applicable to LSTM with
long time dependency. Finally, our experiments with GPU and computer cluster demonstrate that
large-scale LSTM training can be greatly accelerated with parallel computation architectures like
CUDA and MapReduce using our matrix-based batch learning method.

2 LSTM Architecture

LSTM is a recurrent neural network (RNN) that can store and retrieve information from input
streams and do complicated tasks like classifying, processing and predicting time series when there
are very long time lags of an unknown size between important events. As illustrated in Fig. 1(a),
LSTM is enabled to do so by utilizing memory cells that use logistic and linear units with multi-
plicative interactions with input and output gates. The information gets into (out of) the memory cell
whenever a logistic input (output) gate is turned on. The memory cell state is kept from irrelevant
information by keeping the input gate off, thus LSTM can have long term memory compared with
simple recurrent networks without such kind of design.

Originally the gate is a logistic neuron that is activated by input units, memory cell outputs, gate
units, or even conventional hidden units if there are any. With the extension of peephole connections,
which are the direct connections from memory cell states to gates, the performance of LSTM is
generally improved [4]. The other extension of forget gates is crafted to address the state drifting
issues caused by inputs with a long time span. Because when inputs have a very long time span, the
memory cell state often tends to grow (from initial status) linearly due to the leakage of information
through a half-closed input gate. And in situations where the inputs are continuous streams, the
memory cell states may grow in an unbounded fashion, leading to a saturation of the cell output
squashing function, which apparently makes the memory cell defunct. This could be avoided if the
memory cell state is controlled by a forget gate that will reset the cell state when it is turned off.
Nevertheless we find this state drifting problem could be solved with a more closed input gate in
Sec. 4. The true benefit of forget gates is resetting the network to do continuous prediction, so that
the memory cells can keep the information when it is useful and forget the information when it is
useless to leave space for new information to come in.

2

3 Batch Learning Methods for LSTM

There are two types of gradient-based techniques for LSTM training: truncated BPTT [1] and full
BPTT [5]. Although they both can be applied to LSTM training with various architecture modifi-
cations in general, they are different in many ways. We analyze their differences in detail and then
present our proposal of using full BPTT for LSTM under a batch learning paradigm.

3.1 Activation Dynamics

For clarity, we assume the LSTM network is densely connected without peephole connections or
forget gates, and each block has only one memory cell (it is straightforward to generalize to other
configurations). Vectors and matrices are in bold fonts. We will consider the LSTM blocks with
five layers, including layer of the inputs (c), the input gates (l), the memory cells (s), the output
gates (ω) and the cell outputs (θ). We will denote the final output layer by o. n is the imaginary
layer consisting of the nodes that have direct connections with the nodes in question between time
steps. For example, for layer l, n consists of l, ω, θ of the last time step, and input units, shown in
the connections in Fig. 1(b) (one can get n for other layers similarly). wab denote the connection
weights (in a matrix form) from layer b to layer a. For layer λ, xλ are its inputs, fλ is its activation
function and yλ are its outputs. s denote the statuses of the memory cell blocks. Unless stated
otherwise, all network inputs, activations and partial derivatives are evaluated at time t, e.g. y ≡ yt.
The activation dynamics of an LSTM model at time step t ∈ {t0, · · · , tn} can be summarized as:

xλ = wλnynt−1, for λ ∈ {l, c, ω, o} (1)

yλ = fλ(xλt−1), for λ ∈ {l, c, ω, o}, (2)

s = st−1 + yl ◦ yc, (3)

yθ = yω ◦ fs(s), (4)
where ◦ denotes Hadamard product (entrywise product) and f(x) is a vector of the function values
when applying f to each element of the vector x. We can see that Eq.s (1) and (2) are similar to the
standard computations in feedforward neural networks, while the activation dynamics for memory
cell statuses and outputs are very different (Eq.s (3) and (4)). Specifically, the inputs to each memory
cell block are multiplied with the according input gates for that block, and the final output of a cell
block is the activation of the cell status multiplied by the output gate.

3.2 Learning Rules for Truncated BPTT

In truncated BPTT, the number of time steps considered for backpropagation is limited to a fixed
number. For LSTM particularly, the number is 1. So errors arriving at input layer of memory blocks
and their gates do not get propagated back further in time, although they do serve to change the
incoming weights. Despite the truncation of a small fraction of errors, the temporal error information
could be propagated forward by hybriding truncated BPTT with Real Time Recurrent Learning
(RTRL) [6] for memory cells, as follows:

∂s

∂wcn
=
∂st−1
∂wcn

+

(
∂yc

∂xc
◦ yl

)>
yn, (5)

∂s

∂wln
=
∂st−1
∂wln

+

(
∂yl

∂xl
◦ yc

)>
yn. (6)

Eqs. (5) and (6) should be calculated at every time step continually. They are essentially a measure
of the sensitivity of unit s at time t to a small change in the value of weights, taking into account the
effect of such a change in the weight over the entire network trajectory from t0 to t. When the target
signal O arrive, the error E (we assume mean squared error ||yo −O||2/2) will then be calculated
and back propagated through the network to get the following error responsibilities δ for each layer:

δo = (yo −O) ◦ (fo)′(xo) (7)

δθ = (woθ)T δo (8)

δω = (fω)′(xω) ◦ fs(s) ◦ δθ (9)

δλ = (fs)′(s) ◦ yω ◦ δθ for λ ∈ {l, c}. (10)

3

The calculated gradients are as follows :

∆wλn = diag
(
δλ
) ∂s

∂wλn
, for λ ∈ {l, c}, (11)

∆wλn =
(
δλ
)>
yn, for λ ∈ {ω, o}, (12)

while diag(x) denotes the diagonal matrix with the diagonal entries being x. If we want to do batch
learning for truncated BPTT, memory cell statuses for different samples will be mixed in Eqs. (5)
and (6). However, each samples should be calculated in parallel in matrix and independently before
Eqs. (11). This very fact determines that the truncated BPTT for LSTM could not be vectorized2

for thousands or millions of samples at the same time. If we want to apply batch learning to LSTM
trained with the truncated BPTT, we have to loop through the samples in a batch, which can be much
slower than vectorized operations (see Fig. 3(b) for an empirical justification).

3.3 Learning Rules for Full BPTT

The BPTT approach could be clearly derived by unfolding the temporal operation of a network into
a multi-layer feedforward network that grows by one layer at each time step. However, LSTM,
with the LSTM block specifically, is hierarchical (Fig. 1(a)), which is manifested in the connections
in the same time layer (Fig. 1(b)), so the backpropagation is different from normal BPTT: the
backpropagation through time cannot be calculated at once for each time layer, but sequentially as
follows (E and δo are calculated at first, same as before):

δθ =
(
woθ

)>
δo +

(
wnθ

)>
δnt+1, (13)

δω = (fω)′(xω) ◦
(
fs(s) ◦ δθ + (wnω)

>
δnt+1

)
, (14)

∂E

∂s
= δθ ◦ yw ◦ (f c)′(xc) +

∂Et+1

∂s
(15)

δc = (f c)′(xc) ◦ yl ◦ ∂E
∂s

, (16)

δl = (f l)′(xl) ◦
(
∂E

∂s
◦ f c(xc) +

(
wnl

)>
δnt+1

)
. (17)

The error responsibilities δs are calculated in the reverse direction of error flow. The error of next
time step backpropagated via the outcoming weights, together with the error of this time step (prob-
ably zero if no target is present at this time step), gives the summed full error of this very time step.
The above equations can be derived directly from the connections given in Fig. 1(b). For continual
prediction tasks, the target O is present at time step t ∈ {t1, · · · , tn}, and the according error at
every time step should be included into error responsibilities at each time step. Using the standard
BPTT equation to accumulate the δs of different time steps, we get the gradients for weights updates:

∆wλn =

tn∑
t=t0+1

(
δλ
)>
ynt−1, for λ ∈ {l, c, ω, o}. (18)

We can see that the full BPTT maintains the network’s nodes statuses (Eq. 18) at every time step,
hence no matrices but vectors are needed for each sample. We can place different nodes in separate
rows and different samples in separate columns, and use the resulted matrix to do the vectorized
calculation for each layer. For samples with different lengths, we can simply fill zeros to make
the length of samples in batch the same as the longest sample, and use a mask matrix to select the
effective samples. The gradient in Eq. 18 should be divided by the number of samples. For tasks
involving continuous prediction, the length of samples should also be divided individually to get the
average gradient for one time step. In this way batch learning can work for LSTM learned with full
BPTT for various tasks.

2Vectorization refers to a powerful way to speed up algorithms For example, if x ∈ Rn and w ∈ Rn are
vectors and one need to compute their inner product z, one can iterate each element of x and w and add their
products to z, or simply calculate w′x with vector-vector multiplication. Numerical computing and parallel
computing researchers have put decades of work (packages like Basic Linear Algebra Subprograms (BLAS)
etc.) into making certain vectorized numerical operations (e.g. matrices and vectors multiplications) fast.

4

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α = 1
α = 4
α = 10
α = 20

(a)

0 200 400 600 800
0

0.005

0.01

0.015

0.02

0.025

time(seconds)

te
st

 e
rro

r

α = 1
α = 1.5
α = 2
α = 3
α = 3.5
α = 3.75
α = 4

(b)
Figure 2: (a) Logistic sigmoid functions with different sharpness and their corresponding deriva-
tives; (b) Experiments on multiplication tasks (Sec. 5.1) with different sigmoid functions (trained
with L-BFGS).

From the above analysis, we can easily see that the update complexity per weight and time step is
the same for the two methods, namely O(1). Yet the full BPTT needs memory in proportion to the
maximum time steps of training sequences, while the truncated BPTT only needs a fixed amount
of memory. The truncated BPTT for LSTM is more suitable in online learning scenario, where the
weights can be updated efficiently as the input stream flows in (no backpropagating through time
is needed), and even an infinite length of input steps will not be a problem either. But there are
more downsides of truncated BPTT that makes full BPTT a better choice. In the first place, the
truncated BPTT actually hampers LSTM’s ability to learn due to the loss of gradient information
caused by truncation. Neither can LTSM with the truncated BPTT generalize to a deeper network
with multiple layers of memory blocks, because the backpropagated error is truncated and will
never reach the earlier layers of memory blocks. In practice, since the full gradient can be checked
numerically, its implementation is also easier to debug. The most important attribute of the full
BPTT for LSTM is that it can be learned with matrix-based batch learning. With truncated BPTT
however, simply looping is the only choice for batch learning, which tends to be slower than SGD
when a large batch (mini-batch) size is used. Besides, the time needed for tuning batch size can be
intimidating. For these reasons, SGD turns out to be a better choice for LSTM trained with truncated
BPTT. For tasks with large volumes of already collected data for training, SGD will be considerably
slower compared to batch learning with all the accelerating extensions that will be discussed in Sec.
5.2, 5.3, and 5.4.

4 Increasing Sharpness of Gates’ Activation Functions

The input gates, forget gates and output gates, as they are so named, should behave like gates that
are either open or closed. Any leakage of unwanted information flow will interfere with the memory
cell states or directly changes output. However, a nonsmooth function like binary step function
should be avoided for improper derivative of back propagation learning algorithms. Like in ordinary
neural networks, the gates use the logistic sigmoid function f(x) = 1

1+e−α∗x as their activation
functions, whose response is ranged from 0 to 1. Here α is the sharpness (slope parameter), which is
usually set to 1. Fig. 2(a) shows the logistic sigmoid function with different α and the corresponding
derivatives. We can see that the standard practice to assign 1 for α has a quite wide region that will
return values far away from 0 and 1. To avoid this problem, we can increase α of the gate excitation
function to make it more like a binary step function. We tried different values of α and found that
for long term dependency problems that have sequence lengths more than tens or hundreds of time
steps, bigger α can lead to faster and better convergence (Fig. 2(b)). It is important to note that when
dealing with samples that have a long time span, optimization algorithms in Sec. 5.3 cannot progress
with a small α such as 1. However, too large an α will contribute to the exploding gradient problem
in backpropagation (e.g. if the sharpness is above 4, the derivatives may exceed 1), and sometimes
can even cause severe numerical problems. A large value of α will also impede the error signal from
getting into the cell and getting out to the output, which will make the gradient value small and slow
down the learning process at the beginning on the contrary. If necessary, we can gradually increase
the α (which is an adaptive parameter that could be tuned) by training epochs, and use the previous
parameters as initialization. In theory the upper bound of α could be infinity when the network is

5

0 2000 4000 6000 8000 10000
0

0.01

0.02

0.03

0.04

0.05

0.06

time(seconds)

te
st

 e
rr

or

1
10
100
1000

(a)

0 300 600 900 1200 1500 18002000
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

time(seconds)

te
st

 e
rr

or

matrix−based
looping through each
sample in batch

0 10 20 30 40 50
0

2

4

6

x 10
−3 Zoom in

(b)

0 200 400 600 800 1000 1200
0

0.005

0.01

0.015

0.02

0.025

0.03

time(seconds)

te
st

 e
rr

or

CG minibatch
LBFGS minibatch
GD momentum
GD linesearch
P−Hessian−Free

(c)
Figure 3: (a) batch learning with gradient descent; (b) vectorization comparison for (mini-)batch
learning, where the batch size is 100 and samples of 10 time steps; and (c) comparison with opti-
mization algorithms.

perfectly trained on noiseless data and no error is backpropagated. In practice we can simply keep
using the initial setting for stability against noises in data.

5 Experiments

5.1 Experiment Settings

For hardware, we use an AMD CPU at 4.33GHz 3 and a GeForce GTX 770 GPU. We perform ex-
periments using MATLAB and its built-in GPU computing implementation in MATLAB’s Parallel
Computing Toolbox. For experiment with computer cluster we use the toolbox as in [7]. Since the
vanilla LSTM is a non-generative model, and the lack of good benchmarks for measuring a recurrent
network’s ability, we focus here on LSTM’s primary goal, i.e., the memorization of information. It
can be integrated with other models as a memory module to improve their performances, or be com-
bined with probabilistic layers directly for outputs as in [8] as an enhanced model, which we leave as
future extensions. All the experiments are conducted on the classical multiplication problem, which
can only be solved with RNN with HF and LSTM (see some other experiments in Supplementary
Material4). In this problem, the input to the RNN is a sequence of random numbers, and its target
output, which is located at the end of the sequence, is the multiplication of the two marked numbers.
The marked numbers are far from the end of the sequence. Moreover, they are distant from each
other with various positions. We refer to [1] for a formal description of the multiplication problem.
In all experiments we use 10,000 training samples and 3,000 testing samples generated according
to the task with a minimal length of 100. α for the gate activation function is set to 3.75, and the
(mini-)batch size is set to 1,000 and 100 for optimization algorithms and gradient descent methods
with momentum respectively. The stopping criterion is that the mean absolute test set error is below
0.01. The LSTM network uses 2 memory cell blocks, each with 2 memory cells, and all the gates are
densely connected. We use peephole connections but omit forget gates since this task is not a con-
tinual prediction task as discussed in Sec. 4. This is the general settings for all the experiments if not
specified otherwise. It is significant that while RNN with HF need 50,000,000 and original LSTM
need 1,273,000 training samples respectively, with revised gate activations and batch learning, our
experiments only need 10,000 training samples or less and produce better performance.

5.2 Gradient Descent

We conduct experiments to compare the SGD method (one sample per iteration) with gradient de-
scent methods with various mini-batch sizes for LSTM, using a fixed learning rate of 0.1 as in [1]
and a momentum of 0.9. We can see that with batch learning, the learning curve will be steadier
and less error-prone, and the convergence can be much faster because of the robust estimate of gra-
dient. An appropriately tuned batch size (e.g., 100 in this case) could make the learning even faster
(Fig. 3(a)). In this comparison, we used matrix-based batch learning for vectorization. If not, we

3We ran experiments on one core for fair comparison because matrix-base batch learning will be further
speed up in proportion to number of cores in CPU by multithreading in MATLAB.

4https://bitbucket.org/huashiyiqike/nips-workshop/src

6

https://bitbucket.org/huashiyiqike/nips-workshop/src

have to loop through each sample in a batch for batch learning, which can be slower in proportional
to the number of samples in a batch, as shown in Fig. 3(b). With mini-batch size of 100, matrix-
based batch learning is about 100 times faster than simply looping, which is the only way of batch
learning for truncated BPTT for LSTM.

5.3 Beyond Gradient Descent

Batch methods, such as Limited memory BFGS (L-BFGS) or Conjugate Gradient (CG), with the
presence of a line search procedure, are usually much more stable to train and easier to check for
convergence. This has already been testified in deep learning [7]. LSTM with its complicated
hierarchical architecture, however, can be harder to train than deep learning with the same number
of nodes. For sequences of a long time span, a large α for activation function of gates as described
in section 4 is a premise for fast convergence. The results in Fig 3(c) show that batch optimization
algorithms like L-BFGS and CG5 indeed have a prominent gain in learning speed.

Hessian Free (HF) greatly alleviate the exploding/vanishing gradient problems for the training of
standard RNN, and even endowed it with some ability of long term memory with structural damp-
ing for hidden layer [3]. It is interesting to investigate whether LSTM learning will benefit from
the second order gradient information of HF. For investigation purpose, we use numerical com-
puted Hessian-Vector products instead of approximation like Gauss-Newton matrix and discard
negative curvatures, at price of higher computational complexity. We adopt L-BFGS matrix as
pre-conditioner for speeding up CG in the inner loop of HF. Even with these as the best settings,
HF does not perform better in convergence: the mean absolute test set error is below 0.01 only 4
times in 15 runs, while L-BFGS and CG can succeed in each run. HF also did not show advan-
tages in solving extremely hard problems like XOR problem (see Supplementary Materials) with
long dependencies. However, there is possibility by setting up a special damping scheme taking into
consideration LSTM’s layer-wise structure with gate functionality, LSTM can converge better when
the weights are close to optimum with HF.

5.4 Large-Scale LSTM Batch Training with Parallel Architectures

Now we turn to the hardware extensions for accelerating large-scale LSTM batch learning. In the
following experiments, the weight updates at every iteration are the same as before, yet the calcula-
tion is no longer done on a single CPU, but in multiple threads in GPU or with multiple machines
at the same time. The speed up for each iteration equals to the speed up for convergence, so we
compare not the convergence rate but the average running time (in seconds) per iteration. There
are also extra time costs for transferring data and network parameters. Because data transferring
only needs to be done at the beginning for once, we only consider the transfer time for network
weight parameters in our experiments. In GPU computation we can use global variables to trivial-
ize the transferring time between CPU and GPU rams, and in cluster computations we can reduce
the transferring time by additional layers of mergers as described in Map-Reduce-Merge [9]. The
parameter change is achieved by increasing the gate number (increasing input or output size works
the same way). However, a densely connected large-scale LSTM with the full BPTT batch training
can be very memory consuming because the memory of node statuses (plus mask variables if the
sequences are different in length) is proportional to the number of gates, batch size and maximum
sequence length. This problem could be alleviated with a large ram GPU, sliced training sequences,
distributed computation techniques to be presented in the Sec. 5.4.2, or multiple GPUs like in[10].
The sparse connected LSTM in [5] is another option. We reduced the minimal sequence length to
10 in the following experiments and report the average iteration time with 5 runs.

5.4.1 Training LSTM with CUDA

Our experience shows that MATLAB’s built-in GPU computing implementation in MATLAB’s Par-
allel Computing Toolbox with arrayfun function specifically for element-wise operation works even
better than Jacket6, and runs up to 6.5 times faster on the GTX 770 GPU than on the 4.33 GHz

5We used LBFGS and CG in minFunc by Mark Schmidt (http://www.di.ens.fr/˜mschmidt/
Software/minFunc.html), which are fairly optimized implementations.

6 http://www.accelereyes.com/. Jacket is no longer supported and is integrated into MATLAB’s Parallel
Computing Toolbox.

7

http://www.di.ens.fr/~mschmidt/Software/minFunc.html
http://www.di.ens.fr/~mschmidt/Software/minFunc.html

10
2

10
4

10
6

10
8

0

1

2

3

4

5

6

7

8

9

10

Parameter number in log scale

Ti
m

e
co

st
 p

er
 it

er
at

io
n

Average Running Time per Iteration on CPU
Average Running Time per Iteration on GPU

10
2

10
4

10
6

10
8

0

2

4

6

8

Parameter number
S

pe
ed

 g
ai

n
ra

tio

(a)

10
2

10
4

10
6

10
8

0

20

40

60

80

100

120

Parameter number in log scale

Ti
m

e
co

st
 p

er
 it

er
at

io
n

Combined
XEON 2.0GHz
XEON 2.0GHz
XEON 2.6GHz
Corei7 3.7GHz
AMD 4.3GHz

10
4

10
6

10
8

0

5

10

Parameter number in log scale

A
ve

ra
ge

 s
pe

ed
 g

ai
n

ra
tio

n

average gain
gain vs fastest

(b)
Figure 4: (a) Comparison of LSTM efficiency with CPU and GPU, where the minimal sample
length is 10 for GPU memory issue; (b) Comparison of LSTM efficiency with MapReduce, where
the batch size is 5,000 as the sum of 5 client with 1,000 samples each. The comparison is conducted
with the same batch size for each client alone. The minimal sample length is 10.

CPU (Fig. 4(a)). When the network is small the memory transfer cost counterbalanced the bene-
fit of parallel running on GPU. When network is larger, e.g., having more than 50 memory cells,
which is common in practice, the GPU surpasses by a large margin (Fig 4(a)). However, there are
certain issues we found in practice. The single float precision commonly used for GPU computa-
tion is not very stable when applying optimization algorithms to LSTM batch training. This can be
natural because the computed gradient will be backpropagated though a long time span and many
layers, making a small truncation error blow up easily. We did the experiment with double precision,
which actually slows down the GPU computation for jobs of converting between double and single
precisions inside CUDA kernels.

5.4.2 Training LSTM with MapReduce

In MapReduce [11], every client machine only needs to process its fraction of the total samples.
The clients calculate their own gradients and send these values to the server via a local network.
The reducer then reduces the values to get an averaged gradient as the combined batch gradient
for adjusting model parameters. In this way, the computation time can be greatly reduced if one
has a large training set. We conduct the experiments on a cluster with heterogeneous computing
clients, i.e., the clients with different CPU architectures and speeds. The differences between clients
can make the synchronization difficult for parallelizing, because the faster computer has to wait
the slower clients for each update. With these unfavorable factors, the acceleration is still quite
satisfactory: With 5 clients, we achieve almost 3 times speed up compared to the fastest client
alone, and up to 8 times faster than average (Fig.4(b)). The achieved gain can be superimposed
on the gain of using GPU implementations demonstrated in the previous section. SGD methods
however, cannot benefit much from them, because GPU computation excels only when there are
lots of matrix manipulation, and in MapReduce the communications between client computers and
server take more time than processing for a sample per iteration. The distributed Downpour SGD
[12] may speak for SGD, but it only shows advantages with huge datasets at the expense of tens of
thousands of CPU cores, and applies to extremely large decomposable networks without hierarchy
in its architecture, which does not apply here.

6 Conclusions

In this paper, we propose a matrix-based batch learning method for LSTM with full Backpropaga-
tion Through Time (BPTT). We then solve the state drifting issues as well as improving the overall
performance for LSTM using revised activation functions for gates. With these changes, the ad-
vanced optimization algorithms can be applied to LSTM with long time dependency and show great
advantages over SGD methods. The experiments with CUDA and MapReduce show that there is
much room left for accelerating large-scale LSTM training. In all the experiments we also use sparse
initialization which generally helps, but further investigation is needed to reveal the best practice for
initialization.

8

Acknowledgements

The work is supported by National 973 Projects (2013CB329403, 2012CB316301), NSF of
China Projects (61322308, 61332007), and Tsinghua Initiative Scientific Research Program
(20121088071).

References

[1] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[2] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep
recurrent neural networks. In International Conference on Acoustics, Speech and Signal Pro-
cessing, pages 6645–6649. IEEE, 2013.

[3] James Martens and Ilya Sutskever. Learning recurrent neural networks with hessian-free op-
timization. In Proceedings of the 28th International Conference on Machine Learning, pages
1033–1040, 2011.

[4] Felix A Gers and Jürgen Schmidhuber. Lstm recurrent networks learn simple context-free and
context-sensitive languages. IEEE Transactions on Neural Networks, 12(6):1333–1340, 2001.

[5] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirectional
lstm and other neural network architectures. Neural Networks, 18(5):602–610, 2005.

[6] Ronald J Williams and David Zipser. A learning algorithm for continually running fully recur-
rent neural networks. Neural computation, 1(2):270–280, 1989.

[7] Jiquan Ngiam, Adam Coates, Ahbik Lahiri, Bobby Prochnow, Quoc V Le, and Andrew Y
Ng. On optimization methods for deep learning. In Proceedings of the 28th International
Conference on Machine Learning, pages 265–272, 2011.

[8] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[9] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D Stott Parker. Map-reduce-merge: sim-
plified relational data processing on large clusters. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data, pages 1029–1040. ACM, 2007.

[10] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. arXiv preprint arXiv:1409.3215, 2014.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[12] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V Le, Mark Z
Mao, Marc’Aurelio Ranzato, Andrew W Senior, Paul A Tucker, et al. Large scale distributed
deep networks. In Advances in Neural Information Processing Systems, pages 1232–1240,
2012.

9

	Introduction
	LSTM Architecture
	Batch Learning Methods for LSTM
	Activation Dynamics
	Learning Rules for Truncated BPTT
	Learning Rules for Full BPTT

	Increasing Sharpness of Gates' Activation Functions
	Experiments
	Experiment Settings
	Gradient Descent
	Beyond Gradient Descent
	Large-Scale LSTM Batch Training with Parallel Architectures
	Training LSTM with CUDA
	Training LSTM with MapReduce

	Conclusions

