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ABSTRACT
The rise of crowdsourcing brings new types of malpractices
in Internet advertising. One can easily hire web workers
through malicious crowdsourcing platforms to attack other
advertisers. Such human generated crowd frauds are hard
to detect by conventional fraud detection methods. In this
paper, we carefully examine the characteristics of the group
behaviors of crowd fraud and identify three persistent pat-
terns, which are moderateness, synchronicity and dispersiv-
ity. Then we propose an effective crowd fraud detection
method for search engine advertising based on these pat-
terns, which consists of a constructing stage, a clustering
stage and a filtering stage. At the constructing stage, we
remove irrelevant data and reorganize the click logs into a
surfer-advertiser inverted list; At the clustering stage, we
define the sync-similarity between surfers’ click histories
and transform the coalition detection to a clustering prob-
lem, solved by a nonparametric algorithm; and finally we
build a dispersity filter to remove false alarm clusters. The
nonparametric nature of our method ensures that we can
find an unbounded number of coalitions with nearly no hu-
man interaction. We also provide a parallel solution to make
the method scalable to Web data and conduct extensive
experiments. The empirical results demonstrate that our
method is accurate and scalable.

Categories and Subject Descriptors
I.5.3 [Computing Methodologies]: Pattern Recogni-
tion—Clustering ; K.4.4 [Computers and Society]: Elec-
tronic Commerce—Payment schemes, Security
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1. INTRODUCTION
As a way to use the Internet to deliver promotional mar-

keting message to consumers, Internet advertising differs
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from broadcast and television advertising by its ability to
carry out precision marketing. While at the same time it
is exposed to greater risks of being influenced by precisely
targeted attacks. For search engine advertising, advertisers
can present their message to specific individual surfers se-
lected according to their search queries or browsing histo-
ries. These advertisements are usually charged by the vol-
ume of clicks. However, this pay-per-click billing mechanism
increases the risk of fraud since malicious ones can easily
raise traffics on specific targets by technological means.

Conventional advertising frauds, such as malwares, auto
clickers, etc, usually show specific characteristics on their
individual behavior patterns, such as empty cookies, repeti-
tive clicks or hit bursts. These phenomena can be effectively
detected by well-studied anomaly detection methods [4, 16,
17]. Unfortunately, when new detection rules are proposed,
fraudulent means evolves. Recently, crowdsourcing plat-
forms that can distribute enormous tasks to a large group
of web workers provide a more efficient way to handle vari-
ous tasks including data collection and analysis [8, 10, 21].
Meanwhile, a new type of fraud clicks in Internet adver-
tising has appeared on malicious crowdsourcing platforms1,
where attackers publish micro-tasks of searching and click-
ing advertisements on a certain search engine, and then
web workers accomplish these tasks and are paid per task
through the platform.

According to the statistics, expensive adwords on
Google, such as insurance, loans, mortgage, etc, could cost
an advertiser more than 50 US Dollars per click [11], while
malicious platforms only need to pay about 0.1 US Dollars
per click to the web workers. This big price gap has lead
to a murky business of Internet advertising that attackers
publish crowdsourced attacking tasks against competitors to
raise their advertising expenses. We refer to these malicious
behaviors as crowd fraud.

Since simple fraudulent means is well-studied and can
usually be filtered out by search engine’s anti-fraud mech-
anisms, crowd fraud has became one of the main sources
of customer complaints to search engines and has caused
tremendous damage to the marketing environment. There
are many differences between the human-generated crowd
fraud and the fraudulent behaviors automatically generated
by machines, which pose new challenges to crowd fraud de-
tection. For example, crowd fraud often arises from a vast
number of attacking sources, but with low fraudulent traffic
from each source. The fraudulent behaviors of web workers

1For example: http://www.adclickingjobs.com/;
http://www.5iads.cn/ (in Chinese).
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Figure 1: Example of the raw data, the constructed bipartite graph and the surfer-advertiser inverted list.

are noisy and have no distinct regularity, and the fraudulent
traffic induced by each worker is often buried in his nor-
mal traffic. These differences mean that the short-term or
individual behaviors of crowd fraud are almost normal. So
conventional anti-fraud systems usually fail to detect crowd
fraud. Current commercial crowd fraud detection strategies
rely heavily on human interventions, such as the prior knowl-
edge of suspicious queries and complicated artificial filtering
rules. Such methods are labor intensive and become invalid
rapidly since web workers can easily change their behavior
patterns to avoid being detected.

To address the above challenges, we explore the group
behaviors of crowd fraud. They are more persistent than
the individual behaviors of each worker which may contain
substantial randomness. By carefully analyzing the fraudu-
lent behaviors confirmed to be crowd fraud by a commer-
cial detection system, we find some general characteristics
about the feature distributions and the network structures of
crowd fraud: (1) Moderateness: Crowd fraud often aims
at advertisers or queries that have moderate hit frequen-
cies; (2) Synchronicity: Surfers involving in crowd fraud
can usually be grouped into coalitions; in each coalition they
usually attack a common set of advertisers; and most of
their clicks toward a certain advertiser happen within a
common short time period; and (3) Dispersivity: Crowd
fraud surfers may simultaneously search a series of unrelated
queries and click advertisements from different professions.

Based on the above characteristics, we investigate a novel
crowd fraud detection method for search engine adver-
tising. From the synchronicity characteristic we can see
that crowd fraud has similar properties with coalition at-
tacks. The success of graph based anomaly detection meth-
ods on detecting coalitions in many scenarios [13, 15] in-
spired us to develop our detection method based on the
feature-enhanced graph structure of the click-through net-
work. Our method consists of three major stages: (1) Con-
structing: we first remove the logs whose queries have ex-
tremely small or large hit frequencies based on the mod-
erateness condition, and then construct a surfer-advertiser
bipartite graph as in Fig. 1. Each edge of this graph rep-
resents one unique click log, and it contains features such
as the hit time and searching query. We also generate the
surfer to advertiser inverted list of this bipartite graph for
the use of next stage. Each entry of this inverted list repre-
sents the click history of one unique surfer. (2) Clustering:
to find surfer coalitions which exhibit synchronicity, we de-
fine a synchronization similarity between click histories and
transform the coalition detection problem to a clustering
problem. The number of clusters is determined using a non-

parametric clustering algorithm, which is inspired by DP-
means [12], a small-variance asymptotic version of Dirichlet
process (DP) mixtures. (3) Filtering: We will find three
types of coalitions after clustering, namely, small irrelevant
coalitions, fraudulent coalitions, as well as some normal but
large coalitions attracted by frequently-presented advertise-
ments. The frequently-presented advertisements in one coali-
tion come from similar business domains such as flight tick-
ets or hospitals. So we examine all large coalitions and re-
move those with domain centralized advertisers.

Each step of our detection method is scalable with ap-
propriate approximation, and the total number of detected
fraudulent clusters is unbounded due to the nonparametric
nature of our algorithm. We further implement a parallel
version of this method and conduct extensive experiments
to show its efficiency and accuracy.

To the best of our knowledge, this paper is the first to
formulate the problem of crowd fraud detection in Internet
advertising and provides a solution. Our main contributions
can be summarized as follows:

1. We formally analyze the crowd fraud problem for Inter-
net advertising, and identify three key characteristics,
i.e., moderateness, synchronicity and dispersivity;

2. We present a solution to detect crowd fraud, in which
we define a synchronization similarity between click
histories and transform the coalition detection prob-
lem into a clustering problem, solved by a nonpara-
metric clustering algorithm that automatically decides
the number of clusters;

3. We make the method scalable for large-scale search
engine advertising by parallelizing the nonparametric
clustering algorithm. Extensive experiments are pro-
vided to show its effectiveness.

The rest of the paper is organized as: Sec. 2 analyzes the
characteristics of crowd fraud; Sec. 3 and Sec. 4 present the
detection system for search engine advertising and its par-
allel implementation; Sec. 5 presents empirical results; Sec.
6 discusses related work; and Sec. 7 provides concluding
remarks.

2. CROWD FRAUD CHARACTERISTICS
We define crowd fraud as the phenomenon that a group of

people driven by economic benefits work together to increase
fraudulent traffic on certain targets. Crowd fraud differs
from automatically generated fraudulent behaviors in sev-
eral aspects: (1) The number of web workers involved in an
attacking event from crowdsourcing platforms can be very
large, while most conventional ways start from much fewer
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Figure 2: Characteristics of crowd fraud: (a) The histogram of the hit frequencies of various queries for
both normal traffics and crowd fraud traffics; (b) A corner of the surfer-advertiser bipartite graph built from
crowd fraud click relations, where different colors show different hit times and the white color means no click
occurred; and (c) A snapshot of the fraudulent click number on one advertiser changes through time.

number of sources; (2) The total fraudulent traffic generated
by each web worker in crowd fraud is limited, while other
malpractices usually induce hit bursts; (3) Since crowd fraud
clicks are generated by real humans, their behaviors have no
distinct regularity, while the auto generated traffic usually
has detectable repeatability; and (4) Besides the fraudulent
traffic, each web worker may also have normal click behav-
iors, which is also different from automatic clicks. All these
differences make the set of conventional features used to de-
tect automatic fraudulent behaviors invalid for crowd fraud
detection, which calls for a careful investigation to identify
more distinctive and stable characteristics.

This paper focuses on the crowd fraud detection problem
in search engine advertising. A main purpose of attackers
is to raise fraudulent traffic on competitors to increase their
promotional expenses. Thus the attacks usually aim at cer-
tain advertisers rather than advertisements.

To compare the differences between normal traffic and
crowd fraud traffic, we collect a click dataset from a ma-
jor Chinese search engine company. The raw click logs on
the search engine maintain a history of all click actions that
happened within a time period. We investigated the follow-
ing attributes in the click logs. Log Id: We use log Id to
identify a unique click log. IP: though both cookie Id and IP
address can identify different surfers, cookie changes more
frequently than IP. So we use the latter in our method, de-
spite the network address translation. Advertiser Id: since
malpractices mostly aim at certain advertisers, we use ad-
vertiser Id to identify their targets. Hit time: the time
when the click happened. Query: the phrase that a surfer
searched before his or her click action. We studied a subset
of the click logs. After carefully examining the datasets we
collected, we find similarities among the crowd fraud traffic
on the moderateness, synchronicity and dispersivity charac-
teristics, which provide strong hints to detect crowd fraud
effectively. Below, we describe these characteristics in detail.

2.1 Moderateness
In a common search engine session, a surfer searches a

query and the engine returns the most relevant results as well
as advertisements in search engine results pages (SERPs).
Then the surfer may click some links or advertisements
which satisfy their requirements or preference. Advertisers
can buy keywords from the search engine so that the sys-
tem will display their message once a surfer’s search query
matches their keywords. As a result, the advertisers’ inten-

tions as well as their advertisement contents are expressed
by the corresponding searching queries. We separately count
the hit frequencies on each unique query appeared in the
crowd fraud dataset and the full dataset, then plot the his-
togram of hit frequencies in Fig. 2(a).

We can see that most crowd fraud queries are clicked from
50 to 20,000 times during one week, while 50% queries of the
full dataset lay outside this range. Thus, crowd fraud traffic
differs from normal traffic in that the hit frequencies of its
target queries will neither be too small nor too large. It is
not too small may be because fraud practices always intend
to raise click traffic, so they must click advertisements with
considerable frequencies. It is not too large may be because
normal traffics on frequently hit queries are very large, while
crowd fraud traffics are usually relatively less since the hu-
man click efficiency is limited. So the effects of fraudulent
traffics will be buried under the normal traffics.

2.2 Synchronicity
We characterize two types of crowd fraud’s synchronic-

ity. The first is the target synchronicity. Since crowd fraud
starts from malicious crowdsourcing platforms, their behav-
iors can usually be grouped into sets. Workers on the same
platform tend to accomplish similar tasks published on that
platform, so their target advertisers are also likely to be sim-
ilar. The click records can be viewed as a bipartite graph,
with surfer vertices and advertiser vertices at two sides, as in
Fig. 1, where each edge represents one unique click log, and
it contains features such as the hit time and searching
query. Then from the view of graph structure, although the
click relation between surfers and advertisers forms a very
sparse bipartite graph, the links between these crowd fraud
workers from the same coalitions to the tasks on the same
platform will be dense. To show this phenomenon, we select
a dense corner of the bipartite graph built from the crowd
fraud dataset, and plot the adjacency matrix of this sub-
graph in Fig. 2(b), where each cell represents one click from
the surfer of the column to the advertiser of the row, and dif-
ferent colors represent different hit times. Our experimental
results on real data also verify that these dense structures
are common among fraudulent traffics.

The second is the temporal synchronicity. The different
colors of cells in Fig. 2(b) show different hit times of the
corresponding clicks. We can see that cells in the same row
usually have similar colors, which means that the hit times of
crowd fraud clicks on a same advertiser usually concentrate



Table 1: Example queries, where each row repre-
sents the queries from one surfer.

Queries from normal surfers # Domains

eye cream, cleansing milk, skin care 1

electronic game, card game, game platform 1

headache, dizzy, light-headed 1

Queries from crowd fraud surfers # Domains

franchised outlet, excavator, royal jelly 3

beach BBQ, hospital, calligraphy training 3

toy bear, stainless steel, gym 3

on a short period. We show this phenomenon more clearly
by snapshotting the hit times of fraudulent clicks on one
advertiser in Fig. 2(c). We can see that most clicks occurred
within short time periods of several hours. This phenomenon
also appears on other advertisers, We think this time period
may be related to the task’s publishing time on malicious
crowdsourcing platforms, while their normal traffics usually
show periodicity.

2.3 Dispersivity
As a more in-depth examination, we expand the click logs

of some frequently appeared individual surfers of both the
crowd fraud dataset and the full dataset. After compari-
son, we find differences between their target business do-
mains. For normal surfers, their click targets during a short
period usually focus on one certain business field or a few
highly related fields, such as eye cream, cleansing milk, and
skin care. However, crowd fraud surfers may click advertise-
ments from many unrelated domains in a short period, such
as franchised outlet, excavator and royal jelly. We think this
is because web workers do not have real information de-
mand, so if they do many tasks from different advertisers on
crowdsourcing platforms, their searching queries as well as
their target business domains show dispersivity. Some exam-
ple searching queries and the number of domains are shown
in Table 1.

In summary, the group behaviors of crowd fraud show
strong regularities, including moderateness, synchronicity
and dispersivity. These regularities differ crowd fraud traffic
from normal traffic. Based on these observations, we develop
an effective crowd fraud detection system in next section.

3. CROWD FRAUD DETECTION
Our method consists of three major stages: construct-

ing, clustering and filtering, as outlined in Fig. 3.

3.1 Constructing Stage
This stage removes irrelevant data and reorganizes the

logs into a surfer-advertiser inverted list.
We first filter out irrelevant logs based on their

queries. According to the moderateness condition, click logs
with queries whose hit frequency is extremely small or large
are barely crowd fraud. So we choose a lower threshold SL
and an upper threshold SU , and remove the logs with queries
whose hit frequency falling outside the range [SL, SU ]. The
appropriate threshold values can be found from statistics of
fraudulent traffic. Smaller Interval means less data left. This
pre-filtering can significantly reduce the data volume. In our
experiments, it removes more than 70% click logs.

Constructing

Clustering

Filtering

Input raw click logs

Remove logs with extreme queries

Build surfer-advertiser bipartite graph

Seeking for coalitions by clustering

Query dispersity filter

Recall relevant clicks

Output

Figure 3: Workflow for crowd fraud detection.

Then, we reorganize the remaining data as a surfer-
advertiser inverted list. As shown in Fig. 1, the click logs
represent a surfer-advertiser bipartite graph. The structure
of this bipartite graph can be stored as a surfer-advertiser
inverted list, which can express the surfers’ behaviors more
explicitly. In the sequel, we use G to denote an inverted
list; xi ∈ G is the ith entry of G, representing the click
history of the ith surfer; each click history xi consists of an
undetermined number of click events; an event xij ∈ xi con-
sists of a target advertiser Id xIij and a hit time xTij , meaning

that surfer i clicked an advertisement at time xTij , and this

advertisement belongs to an advertiser with Id xIij . If surfer
clicked advertisements belong to the same advertiser more
than one time, we only record one click with the earliest hit
time, which is sufficient to represent the intention of all this
kind of clicks. A click history is of the form:

{{Id : 74, time : 456}, {Id : 64, time : 93}, ...}.

Suppose we have N unique IPs, M unique advertisers Ids
and D click logs after pre-filtering, there will be N lines in
G, and each line will contains D/N events on average.

3.2 Clustering Stage
After pre-filtering the logs using the moderateness con-

dition, we proceed to consider the synchronicity condition,
which states that surfers involving in crowd fraud usually
group into coalitions; in each coalition they usually attack a
common set of advertisers; and most of their clicks toward a
certain advertiser happen within a common short time pe-
riod. We formulate the coalition detection as a clustering
problem, and solve it by a nonparametric method that can
automatically learn the unknown number of coalitions.

3.2.1 Problem Formulation
By the synchronicity property, we need to detect malicious

surfer coalitions in which all surfers have similar behavior
patterns. We define the synchronization similarity (sync-
similarity for short) between each pair of click histories and
the coalition center for every surfers coalition in order to
formulize these coalitions.
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Definition 1. [Sync-Similarity] Given two click histo-
ries xi,xj and a time window radius τ , the sync-similarity
between them is given by

Sτ (xi,xj) =
∑

xis∈xi
xjt∈xj

1(xIis = xIjt, |xTis − xTjt| < τ), (1)

where 1(·) is the indicator function.

Numerically, the sync-similarity equals to the number of tar-
gets shared by two click histories. Here a common target not
only requires a same advertiser Id appearing in both click
histories, but also requires the hit times on this advertiser
Id in the two click histories fall into a same time period.

Definition 2. [Coalition Center] The center µk of coali-
tion k has the same form as the click history. It consists of
many click events, and each event µks consists of two at-
tributes, i.e., µks = {µIks, µTks}, where the advertiser Id µIks
denotes a common attacking target of the coalition and the
intrinsic hit time µTks denotes the average hit time of clicks
on this advertiser induced by surfers in this coalition.

For all surfers in coalition k, if the sync-similarities between
their click histories and the center µk are larger than a sim-
ilarity threshold T , their behaviors will be regarded as syn-
chronized. Suppose there are K malicious coalitions, zi de-
notes the coalition to which the ith surfer belongs, these
coalitions should satisfy the following condition:

Condition 1. [Synchronicity Condition]

Sτ (xi,µk) > T, ∀k, i, s.t. zi = k, (2)

where T is a similarity threshold.

Now our problem is to find coalitions that satisfy
Eq. (2), as well as to find their centers. If we consider surfers
who reside outside all coalitions as coalitions with only one
surfer in it, the original detection problem will became a
clustering problem. Each point for clustering represents the
click history of one surfer; each cluster represents one coali-
tion; and the cluster center represents the coalition cen-
ter. For convenient calculation, we assume that all coalitions
target on exact w advertisers. This assumption may lead to
omit some coalitions which target on less than w advertis-
ers, the reduction of flexibility brought by this assumption
can be compensated by a propagation step in the final stage.

3.2.2 Clustering Algorithm
There are two main differences between our problem and

an ordinary clustering problem. Firstly, the number of clus-
ters is very hard to decide in advance, and it increases about
linearly as the number of surfers increases. This is because
most surfers behave normally, and then each of them belongs
to one new cluster. Secondly, for each surfer in a cluster, the
sync-similarity between it and the cluster center should be
larger than a radius threshold. So we can not use classic
clustering algorithms (e.g., K-means) directly. Inspired by
DP-means [9, 12, 23], which is a small variance asymptotics
of Dirichlet process mixtures [2], we present a nonparametric
method, which solves the following problem:

max
C,{lc}kc=1

k∑
c=1

∑
i∈lc

Sτ (xi,µc)− λwk, (3)

where C = {µc} denotes all cluster centers, lc = {i|zi = c}
denotes all indexes of the surfers in cluster c, λw = (1− ρ)w
is a similarity threshold, and ρ ∈ [0, 1] is a relaxing factor.

Problem (3) admits two properties: (1) The final cluster
number is potentially unbounded and automatically deter-
mined by the data, and (2) The sync-similarity between each
point to its most similar cluster center must be larger than
ρw. To see the first property, since the cluster number k is
also a variable in this objective, we need to learn the cluster
number in real time. So the cluster number will increases
when data grows, which is potentially unbounded. To see
the second property, once the similarity between a point xi
to its most similar center µc is smaller than ρw, we can
create a new cluster whose center is composed by w events
in xi, then the similarity between xi and this new cluster
center will be w, and the total change on the objective is
w − Sτ (xi,µc)− λw = ρw − Sτ (xi,µc) > 0.

These two properties provide us an iterative way to find
a local optimum of problem (3). The final algorithm is simi-
lar as K-means’ two-step update. For each iteration, we first
assign each point into its nearest cluster, then update the
cluster centers based on the assignments. The main differ-
ence between our algorithm and K-means is the assignment
step. When a new point xi comes, we find its most similar
cluster center. If the similarity between xi and this center is
smaller than ρw, we generate a new cluster whose center is
composed by w events in xi. Then we assign xi to this new
cluster. Fig. 4 illustrates this procedure. When converge, we
maintain the remaining clusters whose size larger than a
threshold n for the use of the next stage.

The algorithm is outlined in Alg. 1, which consists of a
UpdateCenter subroutine that solves the subproblem

max
µc

∑
i∈lc

Sτ (xi,µc). (4)

Though the problem can be solved by enumerating all the
possible combinations of w events, the time complexity is
O(mw), where m is the average number of unique events
in points of this cluster, which is very large. Here we in-
troduce an greedy algorithm, which is approximate but effi-
cient. We sort all advertisers by their occurrence frequencies
in all surfers’ click histories in this coalition, then use the top
w advertisers as the cluster center. The intrinsic hit times
are the averages of click times on these advertisers.

As we shall see in experiments, the algorithm with greedy
approximation still converges well and finds good solu-



Algorithm 1: Serial solution for coalition detection

Input: ρ, w, τ
Input: surfer-advertiser inverted list G
k = 0, C = ∅
while not converged do

for xi ∈ G do
c = arg maxc∈{1,··· ,k} Sτ (xi, µc)

if Sτ (xi, µc) < ρw then
µ′ = {Select w events in xi}
C = C ∪ {µ′}, k = k + 1
zi = k

else zi = c;

for c ∈ {1, · · · , k} do µc =UpdateCenter(c)
;

Output: Accepted cluster centers C

Procedure UpdateCenter(c)

n = t = ∅
for xi ∈ G and zi = c do

for j ∈ {1, · · · , |xi|} do
r = xIij
if nr /∈ n then

Update n and r
nr = nr + 1
tr = tr + xTij

for nr ∈ n do tr = tr/nr;
y = {the indexes of largest w elements in n}
Output: {events formed by y and times in t}

tions. By this approximation, the time complexity of Up-
dateCenter is reduced to O(m log(m)), and it can be further
reduced to O(m log(w)). If m ≈ D/k, the overall time com-
plexity for one iteration of Alg. 1 is O((k + log(w))D). As
analyzed above, most items belong to a cluster with size 1, so
k ≈ N . This causes the algorithm still very time consum-
ing. We will describe an approximate and parallel algorithm
that we use in practice in the next section.

3.3 Filtering Stage
Usually we can find many large coalitions after cluster-

ing, which may contain false alarms. For example, for hot
businesses such as games or healthcare, normal surfers with
similar information demands may also click a lot of common
advertisers that provide similar services. Since the number
of these kinds of surfers can be large, it is possible to appear
groups of normal surfers which exhibit both the target syn-
chronicity and the temporal synchronicity. This will cause
false alarm detections. In order to distinguish these false
alarms from real fraud coalitions, we build a query disper-
sity filter for clusters based on the dispersivity condition.

From our observations, although normal coalitions may
exhibit synchronicity, their targets usually focus on one busi-
ness domain or a few highly related domains, which invalid
the dispersivity condition. To evaluate how dispersive a clus-
ter is, we define the domain coherence coefficient (DCC) of
a set of advertisers.

Definition 3. [Domain Coherence Coefficient] Given
a set of advertisers A. Let A′ be its largest subset in which

Algorithm 2: Query dispersity filter

Input: Q, λ, w
Input: candidate cluster centers C
F = ∅;
for µi ∈ C do

di = maxqj∈Q |µIi ∩ qj |;
if di ≤ λw then
F = F ∪ {µi};

Output: fraudulent cluster centers F

all advertisers belong to a same business domain. The do-
main coherence coefficient of this set is

Rdcc(A) =
|A′|
|A| . (5)

Collecting domain information for all advertisers to cal-
culate each cluster’s DCC relies on a lot of external inter-
ventions. In our method, we choose a more straight-forward
way. We first build a query-advertiser inverted list Q from
raw click logs. Each entry qi ∈ Q corresponds to a unique
query, and the elements qij ∈ qi represent advertisers that
have displayed together with query qi. Since these advertis-
ers are related to a common query, their business domains
should be related. For cluster i, we use µIi = {µIis|µis ∈ µi}
to represent all advertisers targeted by surfers in this clus-
ter, then if we find an entry qj that satisfies |µIi ∩ qj | =
pij , we can say at least pij advertisers in µi are related. So
by the definition of DCC, we can find a relation that

Rdcc(µ
I
i ) ≥ max

qj∈Q

|µIi ∩ qj |
|µIi |

, (6)

where |µIi | always equal to w in our setting. Since larger
Rdcc means less dispersity, we can choose a threshold λ for
Rdcc and remove clusters that invalid the dispersivity con-
dition. Alg. 2 outlines the query dispersity filter.

After filtering, the remaining clusters represent the de-
tected fraudulent coalitions. As a final step, we recall click
logs that relate to them. For each coalition, the clicks hap-
pened between its surfers and the advertisers within its coali-
tion center are recalled as crowd fraud clicks. Here we can
also use our fraudulent centers as seeds of a bipartite graph
propagation algorithm [14], then iteratively expand the set
of suspicious surfers and the set of suspicious advertisers, as
well as their intrinsic hit times. The propagation can com-
pensate the reduction of flexibility brought by the assump-
tion that every coalition center consists of w events, and it
helps to increase the recall rate of the method.

4. PARALLELIZATION
The real world click logs can be very large, easily render-

ing a serial algorithm as above inapplicable. So we develop a
parallel implementation to make it practical in real scenar-
ios. The constructing stage and filtering stage are easy to
parallelize under a distributed computing framework, such
as MapReduce [6]. Our discussion will focus on the difficult
nonparametric clustering step. We also provide some imple-
mentation details of our system.

4.1 Parallel Nonparametric Clustering
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Figure 5: Parallel diagram for the assignment step.

The nonparametric nature of our clustering algorithm
causes difficulties in its parallelization. The main difficulty
lies in the assignment step, in which newly generated clus-
ters are immediately used by other data points. So we can-
not simply divide the assignment tasks to different com-
puting nodes. Here, we use the optimistic concurrency con-
trol (OCC) technique [18] to make parallelization possible.

Fig. 4 shows a diagram of parallel assignment step. Using
the OOC technique, we divide the assignment step into T
epoches and equally partition the whole inverted list G into
T parts denoted by B(t), t ∈ {1, · · · , T}.

Each epoch only processes one data portion. The newly
generated clusters in an epoch are recorded for further
use, but not used immediately. That is, each data point pro-
cessed in this epoch only needs to be compared with clusters
generated by the end of the last epoch. Since these clusters’
information is known before the start of this epoch, the as-
signment tasks in one epoch can be distributed without com-
munication. After each epoch, the new clusters generated by
different nodes may overlap as they are not compared with
each other. So a serial validation step is needed between
each two epoches. During validation, running on a master
node, every pair of the newly generated clusters are com-
pared; and if their similarity is larger than the similarity
threshold, we merge them as well as their associated data
points. Pan, et al. [18] has proved this OOC algorithm for
DP-means is equivalent to the serial algorithm. Their proof
is also suitable for our algorithm.

For our problem, the total number of clusters approxi-
mately equals to the number of surfers. So both comparing
a point with all cluster centers and delivering cluster cen-
ter files from slave nodes to master nodes are very expen-
sive. However, since most clusters are induced by normal
surfers, they only contain one surfer per cluster and will be
removed after clustering. So if the data points are randomly
arranged, we can remove smaller clusters and maintain no
more than K clusters after each epoch to speed up clus-
tering. This reduction approximation may lead to remove
some small fraudulent coalitions, but the algorithm can be
speed up significantly. With OCC parallelization and reduc-

Algorithm 3: Parallel solution for coalition detection

Input: T, ρ, w,K, τ
Input: B(t), t ∈ {1 · · ·T}
C = ∅
while not converged do

k = |C|,Z = ∅;
for epoch t = 1 to T do
C′ = ∅
for xi ∈ B(t) do in parallel

c = arg maxc∈{1,··· ,k} Sτ (xi, µc)

if Sτ (xi, µc) < ρw then
µ′ = {Select w events in xi}
C′ = C′ ∪ {µ′}
zi =Ref(xi) //Ref() is the reference
function to the coalition center;

else zi = c;

Validate(C′, ρw)
C ={K largest clusters in C ∪ C′}

for c ∈ {1, · · · , |C|} do in parallel
µc =UpdateCenter(c)

Output: Accepted cluster centers C

Procedure Validate(C, λ)

for µi ∈ C do
c = arg maxc∈{1,··· ,|C||c6=i} Sτ (µi,µc)

if Sτ (µi,µc) > λ then
Ref(µi)=c
µi = ∅

tion approximation, our final parallel solution for coalition
detection is described in Alg. 3.

Remark 1. Intuitively, the majority of people behave nor-
mally, so almost all clusters in our problem are small clus-
ters with only one data point in it, and the mistake induced
by the reduction approximation will not be very high. In
fact, under a relatively ideal setting that each point comes
from an i.i.d. distribution, the false negative rate can be es-

timated as ni
T

(1− TK
N

)(e− 1)−
ni
T , where ni is the size of a

suspicious large cluster i with more than one point in it. We
defer the derivation details to Appendix. This result shows
that a larger N leads to a larger false negative rate. Since
the function xa−x is monotonically decreasing when x > 0, a
large cluster is less likely to be removed. Moreover, the larger
K will lead to a smaller false negative rate, and if K = N/T
(i.e., no reduction), the false negative rate is 0.

4.2 Implementation Details
Both the clustering and filtering stages involve a lot of

calculations on sync-similarity. To make this computation
efficient, we sort every click history when constructing the
surfer-advertiser inverted list. The events in a click history
are ordered by their target advertiser Ids. When clusters are
newly generated or updated, we maintain their orders. So
when comparing two click histories, we can array in order
all events belonging to them within linear time, and compute
their sync-similarity by counting the number of adjacent and
similar event pairs. The time complexity for this calculation
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Figure 6: Performance on synthetic data: (a) the relation between the number of generated coalitions and
the number of discovered coalitions; (b) the per iteration running time for the two clustering settings.

is O(d1 + d2), where d1 and d2 are the sizes of two click
histories.

The validation procedure of OCC compares every pair of
the newly generated clusters. This is a very time consum-
ing bottleneck of the clustering algorithm. Meanwhile, we
empirically found that only very few clusters can be merged
during validation. So we can skip the validating procedure to
further speed up the algorithm. Through evaluation in the
next section, we can see this trick brings significant speed
up and still holds an acceptable accuracy.

5. EXPERIMENTS
To verify the effectiveness of our crowd fraud detection

system, we conduct a series of experiments on both synthetic
and real click data and carefully evaluate its sensitivity, con-
vergence, scalability and accuracy. Most of our algorithms
are written in C++ ran under the streaming mode of a mod-
ified Hadoop [1] system. All the experiments are conducted
on a Hadoop cluster with more than 4,000 nodes, and we use
1,000 mappers and 400 reducers. Raw click logs are stored
on the HDFS.

5.1 Synthetic Data
Malpractices for Internet advertising is often hard to dis-

tinguish. To judge whether a single click log is malicious or
not, an evaluator often needs to expand a lot of logs that
correspond to the source IP or target advertiser Id of this
log. Even an experienced researcher can only label about
50 logs per hour, so it is too labor intensive to label all the
logs in a real large dataset. Thus, it is hard to evaluate the
performance of our system, especially its recall rate.

In concern about this issue, we first provide results on
synthetic data, where the truth is known, to check the san-
ity of our algorithms as well as evaluate the recall. Here,
we generate several datasets, each of which consists of two
parts: normal part and fraudulent part. For the normal
part, we simulate 1 million surfers and 100 thousand ad-
vertisers. Each normal surfer randomly clicks 10 advertis-
ers, and the hit times for these events are uniformly sam-
pled from [1, 240], which represents a time period of 240
hours. Since advertiser Ids and hit times are randomly sam-
pled, it is unlikely to appear coalitions within this part of
click logs. As for the fraudulent part, we generate L coali-
tions, each of which consists of 200 surfers and 5 adver-

tisers and assigns each advertiser a random intrinsic hit
time. Each surfer in a coalition clicks all the advertisers
in that coalition, and the clicks target on each advertiser
happen within a 6 hours time period centered at the ad-
vertiser’s intrinsic hit time. In the experiment, we set L at
100, 250, 500, 750 and 1,000, leading to 5 different datasets.

The synthetic experiments only use the clustering stage
of the system to evaluate recall rate, and due to the data
generating mechanism, the coalition detection precision on
this synthetic dataset should be near 100%. So we do not
test the result precision on this dataset, and the evalua-
tion on the system’s precision is left to the real data ex-
periments. As stated in Sec. 4.2, the validation procedure
is the computational bottleneck, and only very few clusters
can be merged in this procedure. So we test two types of
clustering methods, one with the validation procedure and
one without it. The parameters are set as: T = 4, n =
50, w = 5, τ = 8, K = 10, 000, that is, each iteration is
divided into 4 epoch, the minimum number of surfers in one
malicious coalition is 50, the minimum number of advertis-
ers is 5, the time window radius is 8 hours, and the upper
bound for the number of clusters maintained during learning
is 10,000. Other small clusters are discarded on the fly. The
discovered cluster numbers and the per-iteration running
times for the 5 synthetic datasets with different numbers of
fraudulent coalitions are shown in Fig. 6(a) and Fig. 6(b).

Sensitivity Fig. 6(a) shows the relation between the true
number of coalitions and the number of coalitions discovered
by the algorithm, where the diagonal line shows the optimal
performance (i.e., the number of discovered coalitions equals
to the true number of coalitions). We can see the number
of discovered coalitions for both settings with/without the
validation procedure increase about linearly when the num-
ber of true coalitions increase. The algorithm with validation
achieves a recall rate of nearly 100% on average. This result
shows the ability of our algorithm on detecting unknown
crowd frauds. The recall rates of the algorithm without val-
idation are relatively lower, e.g., it is about 82% on the
dataset with 100 coalitions and 65% on the dataset with
1,000 coalitions. Since the occurrences of coalitions in real
click logs are much rarer than the occurrences we defined
in the synthetic datasets, the performance of the algorithm
without validation is also acceptable.
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Figure 7: Performance on real click data: (a) shows the number of malicious IPs we found during iterat-
ing. (b) shows the the overall running time after each epoch.

Efficiency Fig. 6(b) shows the per iteration running time
for the two types of clustering algorithms. We can see the
average running time for the algorithm with validation is
about 3 times larger than that of the algorithm without
validation. Considering the overhead time cost induced by
the MapReduce implementation, the efficiency gap brought
by the different algorithm strategies could be much larger. So
when testing on the real click dataset, we use the clustering
algorithm without validation for the clustering stage.

5.2 Real World Data
We applied our method to advertisement click logs of a

major Chinese commercial search engine. We use the dataset
in Sec. 2, which consists of around 400 million logs, and each
log is composed by log Id, source IP, target advertiser Id, hit
time and searching query.

At the constructing stage, we set SL = 50 and SU =
10, 000 to remove queries whose hit frequencies are ex-
tremely small or large, these parameters are decided by
the statistics of traffic moderateness on the collected crowd
fraud dataset, such as in Fig. 2(a). Then we generate a
surfer-advertiser inverted list for further use. At the clus-
tering stage, we set parameters as n = 3, w = 8, ρ =
0.8, τ = 9, that is, each malicious coalition needs to contain
at least 3 surfers and 8 advertisers, and each surfer needs to
click at least 80% of these advertisers during a time period
of radius 9 hours. These parameters are selected to maxi-
mize the recall rate of coalitions on the given crowd fraud
dataset. In the experiment, we run 50 iterations at the clus-
tering stage. Each iteration is divided into 6 epoches and
all validation procedures are skipped. As for the reduction
approximation, we maintain 10,000 largest clusters at most
during clustering, other small clusters are discarded in real
time. So T = 6, K = 10, 000. These parameters are de-
cided by our computing resources, which make sure that the
program stops running within a reasonable time period. For
the filtering stage, we choose domain coherence coefficient
threshold λ = 3

8
. For the ease of evaluating, the results are

not expanded by propagation.
The experimental results are shown as following.
Convergence Fig. 7(a) shows the number of malicious

IPs we found after each iteration. Since the numbers of tar-
get advertisers in each coalition are the same, this curve ac-
tually reflects the objective value of the problem. We can see

λ=3/8

Amount = 29.3K

New discovered

Crowd Fraud

Simple Fraud
λ=1/8

Amount = 18.2K

12.4 K

4.8 K
1.0K

61%
18.0 K

6.7 K

4.6 K

Figure 8: Diagram for the results on real data.

this curve converges after about 30 iterations, which shows
the convergence of our clustering algorithm.

Scalability To show the running time of our system scales
up linearly when data size scales up, we record the overall
running time after each epoch among 50 iterations. Fig. 7(b)
shows the average running times. We can see that the run-
ning time increases about linearly when the percentage of
processed data increases. This result shows our detection
system is scalable when data grows.

Accuracy To evaluate the accuracy of detected frauds, we
compare our results with a rule-based system, which can dis-
tinguish simple automatically generated fraud and the crowd
fraud in the full traffics. After the clustering stage, we found
231 malicious coalitions; after filtering stage, 210 coalitions
are removed by query dispersity filter. The remaining 21
coalitions contain 29.3 thousand click logs in total. Through
our observation, 20 of them satisfy the dispersivity condi-
tion, which correspond to 98.7% of click logs. The test results
of these click logs are shown in Fig. 8.

24700 logs meet the results of the baseline system, which
account for 83% of our results. 18000 of them are confirmed
to be simple fraudulent clicks, they are caused automati-
cally by malwares or spywares; 6700 of them are confirmed
to be more hidden fraudulent clicks, they are very likely to
be caused by crowd fraud behaviors. The rest 4600 logs are
not found by the baseline methods. Since manual evaluating
is very expensive, we randomly sampled 200 clicks among
them to judge whether they are fraudulent clicks. The fi-
nal manual evaluating result, provided by several domain



experts, confirms that the accuracy on this subset is about
90%.

During manual evaluating, we find that all bad cases of
previous trial are induced by one false alarm coalition. So
we use a tighter query dispersity filter with λ = 1

8
, then

all result coalitions satisfy the dispersivity condition. The
evaluation of this result is also shown in Fig. 8. It shows
that the overall accuracy of this trial is even higher than
that of the last one.

6. RELATED WORK
Crowdsourcing is rising field that includes a series of prob-

lem solving strategies, business models or activities [7, 8,
20]. Online working platforms, such as Amazon Mechanical
Turk (MTurk) 2, provide a new way to distribute enormous
tasks to a crowd of workers, and each worker only needs
to finish a small part of the entire task, resulting in faster
and cheaper solutions. This mode is particularly suitable
for large but repetitive tasks like labeling, evaluating, etc.
However, the popularisation of crowdsourcing also gives rise
to new types of security problems on the web. Crowdturf-
ing [22] is the way to hire web workers through malicious
crowdsourcing platforms to initiate fake campaigns. This
phenomenon has brought serious problems to social net-
works and electronic commerce. In this paper, we focus on
the fraudulent click problem for Internet advertising which
also starts from malicious crowdsourcing platforms.

Anomaly Detection [4] is a well studied topic in various
application domains. It aims to find patterns in data which
do not conform to the expected behavior. Many methods
have been developed for different applications such as fraud
detection for credit cards, insurance, health care, intrusion
detection for cyber-security, etc. Fraud detection for In-
ternet advertising is an important application of anomaly
detection. Rule-based methods such as detecting empty
cookie and hit inflations [17] are useful to find simple at-
tacks. Graph-based detection methods are also tried, e.g.,
people use co-clustering or prorogation methods [13] to find
suspicious dense connections between surfers and targets.
As for other related areas, CopyCatch [3] is a successful ap-
proach which focuses on detecting fake likes on Facebook.
They provided a way to find coalitions who demonstrate
steplock behavior. In our work, we build a detection sys-
tem aimed at crowd fraud detection for Internet advertising
which is unbounded and scalable.

Clustering is one fundamental problem in data mining. It
groups a set of objects so that objects in the same group are
more similar to each other than to those in other groups. K-
means is one of the most popular clustering methods, but
it needs to pre-specify the number of clusters. Many non-
parametric methods has been studied to overcome this limi-
tation, such as Dirichlet process mixtures (DPM) [2], which
is the nonparametric version of the Gaussian mixture model
and can learn the cluster number. Mean-shift clustering is an
approach which merges clusters on the fly [5], with wide use
in computer vision. DP means [12] is another nonparametric
clustering method derived by a small variance asymptotics
of DPM. It reserves the nonparametric essence and dramat-
ically increases running speed compared to DPM. Similar
small variance techniques have been extended to many other
nonparametric Bayesian models [19, 23]. Inspired by DP-

2http://www.mturk.com/.

means, our work converts crowd fraud detection to cluster-
ing by defining the sync-similarity, and proposes a fast and
parallel algorithm for real Internet advertising.

7. CONCLUSIONS
We formalize the crowd fraud detection problem in Inter-

net advertising, and carefully analyze the behaviors of crowd
fraud to identify three important characteristics, including
moderateness, synchronicity and dispersivity. Based on the
findings, we further develop an effective detection system,
which consists of three major steps, data constructing, clus-
tering and filtering. One key step is convert the original
coalition detection problem to a clustering problem. Our
nonparametric clustering method ensures to learn the un-
known number of coalitions, which is important for real-
world applications. Finally, we build a parallel detection
system for search engine advertising, and conduct extensive
experiments to evaluate its performance on both synthetic
and real click data. Results show that our system can find
fraudulent clicks with a high accuracy, and it can be scaled
up to large datasets.

In the future, we would like to do more analytical work
on crowd fraud, and test the performance of our system on
datasets of shorter time period. We’d also like to extend
current algorithms to other fraud detection problems such
as click fraud or social network spams.
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APPENDIX
A. FALSE-NEGATIVE RATE ANALYSIS

Let s be the number of large clusters with size larger
than 1, d be the number of small clusters with only one
point in each cluster, and ni be the size of the ith clus-
ter. Assume that the N data points are i.i.d. sampled
from a multinomial distribution with s + d parameters
ε1, ε2, · · · , εs, ε0, · · · , ε0, where εi = ni

N
denotes the proba-

bility that a point is sampled from cluster i, and
∑s
i=1 εi +

dε0=1. Since the number of clusters is large, each εi is small.
After the tth epoch, we maintain only K largest clusters

and remove about N
T
−K small clusters, so the probability

that a small cluster will be removed is 1 − TK
N

. For the ith
cluster, the probability that its current size equals to one is
N
T
εi(1−εi)t

N
T
−1 ≈ N

T
εi exp (−tN

T
εi) = ni

T
exp (−tni

T
), where

we use the fact that the binomial distribution converges to-
wards the Poisson distribution as the number of trials goes
to infinity while the product Nεi remains fixed. Thus the
probability that this cluster will be removed after this epoch
is (1 − TK

N
)ni
T

exp (−tni
T

). Considering all T epoches, the
probability that the ith cluster will be removed is (1 −
TK
N

)ni
T

∑T
t=1 exp (−tni

T
) ≤ (1 − TK

N
)ni
T

(e− 1)(−
ni
T

). There-
fore, the false negative rate is the one as sated in Remark
1.
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